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Résumé du Mémoire

Le concept central de ce mémoire est la complexité de Kolmogorov et ses diverses
applications. Le travail présenté s’articule autour de deux sujets principaux : d’un
côté, nous étudions les mesures fondamentales de l’information, leurs propriétés
universelles et leurs applications combinatoires ; de l’autre côté, nous étudions la
notion de la densité de l’information dans le contexte de la dynamique symbolique.
Bien que ces deux sujets soient liés l’un à l’autre, ils sont motivés par des questions
très différentes et intéressent deux communautés scientifiques assez éloignées.

1. Le contexte autour de la théorie algorithmique de l’information

La notion de la complexité algorithmique a été introduite dans les années 1960. La
formalisation mathématique de la notion de quantité d’information dans un objet
individuel a été proposée en 1965 par Andrei Kolmogorov. Quelques années plus
tôt, des idées similaires avaient été développées par Ray Solomonoff, qui était mo-
tivé par la notion de probabilité a priori. Des versions similaires de la complexité
algorithmique ont été indépendamment proposées par Gregory Chaitin.

L’idée de la définition de Kolmogorov est très simple : la complexité C (x) d’un
objet constructif x est définie comme la longueur du programme le plus court qui
produit cet objet. De la même manière, la complexité conditionnelle C (x | y) d’un
objet x relativement à un autre objet y est définie comme la longueur du programme
le plus court qui transforme y en x. L’ambiguïté causée par le choix du langage de
programmation est résolue par un théorème d’invariance, qui garantit l’existence
d’un langage de programmation optimal : un langage optimal assigne à chaque ob-
jet une valeur de la complexité qui est minimale à une constante additive près.

Bien que la complexité de Kolmogorov soit normalement définie pour les mots
binaires, cette définition peut être facilement transposée à d’autres types d’objets
finis : les mots sur tout alphabet, les suites finies de mots, les matrices, les ensembles
finis, les graphes finis, etc.

L’article original de Kolmogorov était intitulé « Trois approches à la définition
du concept de quantité d’information ». Ces trois approches ont été respective-
ment algorithmiques, probabilistes et combinatoires. L’approche algorithmique re-
pose sur la complexité algorithmique (complexité de Kolmogorov) mentionnée ci-
dessus. L’approche probabiliste est attribuée à Claude Shannon, qui a défini en 1948
la notion d’entropie. L’entropie de Shannon mesure la quantité d’information dans
une variable aléatoire. Cette approche est à l’heure actuelle la plus populaire : elle
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est très efficace à la fois en théorie et dans les applications pratiques ; plusieurs
chercheurs et ingénieurs spécialisés dans la théorie de l’information travaillent dans
le cadre de la méthode suggérée par Shannon. L’approche combinatoire à la no-
tion d’information (attribuée à Ralph Hartley) mesure l’incertitude d’un élément in-
connu dans un ensemble fini. Plus précisément, cette mesure est définie comme
logarithme de la cardinalité de l’espace de messages possibles. Malgré sa simplic-
ité apparente, cette approche est loin d’être triviale. Nous verrons dans ce mémoire
que l’idée de l’information « combinatoire » de Hartley amène très naturellement
notre recherche à des problèmes intéressants et sophistiqués.

Kolmogorov a mis en évidence des analogies et des liens étroits entre ces trois
« incarnations » de la théorie de l’information. Même aujourd’hui, 50 ans après la
publication originale de Kolmogorov, les interactions entre les approches de Hartley,
Shannon et Kolmogorov restent un fil conducteur pour les chercheurs travaillant sur
la théorie de l’information.

Nous pouvons étudier le parallélisme entre les théories de Shannon et de Kol-
mogorov sous différents angles. Dans certains cas, nous pouvons établir une équiv-
alence précise et formelle entre les résultats probabilistes et les résultats proba-
bilistes algorithmiques. Alors, certaines propriétés de la théorie algorithmique de
l’information peuvent être formellement traduites en propriétés équivalentes de
la théorie de l’information de Shannon et réciproquement. Ensuite, les méthodes
d’une théorie peuvent être réutilisées directement pour déduire de nouveaux ré-
sultats dans l’autre. Dans d’autres cas, il n’y a pas d’équivalence formelle entre les
théorèmes sur l’entropie de Shannon et la complexité de Kolmogorov, mais le paral-
lélisme entre ces deux théories nous donne des heuristiques utiles. Alors, étant con-
scient des théorèmes d’une incarnation de la théorie de l’information, nous pou-
vons deviner quels résultats peuvent également être vrais dans l’autre théorie, mal-
gré l’absence d’une équivalence formelle et explicite. Dans certains cas, le paral-
lélisme entre les différentes versions de la théorie de l’information échoue totale-
ment, et nous observons une discordance entre les propriétés des mesures de l’in-
formation dans les contextes algorithmique et probabiliste. Cependant, même ce
genre d’échec est fructueux : en explorant les raisons de cette divergence, nous
révélons des propriétés fines de la complexité de Kolmogorov et de l’entropie de
Shannon.

2. Les mesures fondamentales dans la théorie algorithmique de l’in-
formation

Une partie importante du mémoire est consacrée aux mesures basiques d’informa-
tion qui sont utilisées dans les versions algorithmique et probabiliste de la théorie de
l’information. Pour chaque ensemble de mots binaires, nous nous sommes donné
plusieurs quantités standards d’information : il s’agit des complexités de Kolmogo-
rov de chaque mot, des complexités de chaque paire de mots, des triplets, et ainsi
de suite, ainsi que de nombreuses instances de la complexité de Kolmogorov con-
ditionnelle, aussi bien que les valeurs de l’information mutuelles, etc. Également,
étant donné un ensemble de variables aléatoires (distribuées conjointement), nous
nous sommes donné les valeurs de l’entropie de Shannon de chaque distribution
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marginale, de nombreuses instances de l’entropie conditionnelle, des instances de
l’information mutuelle, et ainsi de suite. Le problème fondamental est donc de com-
prendre les liens entre différentes quantités d’information.

Plusieurs relations fondamentales entre les quantités d’information sont bien
connues depuis les publications originales de Shannon (1948) et Kolmogorov (1965).
Par exemple, nous savons que l’entropie d’une paire de variables aléatoires ne peut
jamais être plus grande que la somme des entropies de ses composantes. De même,
la complexité de Kolmogorov d’une paire de mots n’est pas plus grande (à un terme
négligeable près) que la somme des complexités des deux mots,

C (x, y).C (x)+C (y).

Cette propriété (appelée subadditivité) ainsi que les propriétés standards de mono-
tonicité et submodularité possèdent des interprétations intuitives claires, ce qui est
apparemment important pour de nombreuses applications de la théorie de l’infor-
mation. Pendant plusieurs années ces trois inégalités fondamentales se sont man-
ifestées dans de nombreuses applications de l’entropie de Shannon, en rattachant
l’intuition des ingénieurs et les outils formels des mathématiciens. En 1998 (50 ans
après la publication originale de Shannon), cette unicité de l’intuition pratique et
de la théorie mathématique a été mise en cause : Z. Zhang et R. W. Yeung ont trouvé
le premier exemple d’une inégalité linéaire pour l’entropie de type non-Shannon.
Cette inégalité est vraie pour chaque quadruple de variables aléatoires (distribuées
conjointement), bien qu’elle ne puisse pas être représentée comme une combi-
naison des inégalités classiques (qui expriment les propriétés de subadditivité, de
monotonie et de submodularité de l’entropie de Shannon).

Inégalités d’information. Au cours des vingt dernières années, de nombreux
autres exemples d’inégalités d’information non classiques (pour l’entropie de Shan-
non) ont été trouvés. Bien que la caractérisation complète des inégalités universelles
pour l’entropie de Shannon reste insaisissable, nous savons maintenant qu’exacte-
ment les mêmes classes d’inégalités linéaires sont justes pour l’entropie de Shannon
et pour la complexité de Kolmogorov (le résultat prouvé dans la thèse de doctorat de
l’auteur de ce mémoire). L’équivalence établie suggère que ces inégalités (qui sont
communes pour les versions probabiliste et algorithmique de la théorie de l’infor-
mation) expriment des propriétés de la notion de l’information qui sont vraiment
fondamentales. Nous croyons que la poursuite des recherches sur les inégalités in-
formationnelles reste une direction intéressante et prometteuse.

Dans une publication jointe avec Konstantin et Yury Makarychev et Nikolai Ve-
reshchagin, nous avons proposé une nouvelle méthode pour dériver les inégalités
d’information. Cette technique utilise le lien entre les inégalités d’information et le
concept de l’extraction de l’information mutuelle (qui remonte aux publications de
R. Ahlswede, P. Gács, et J. Körner dans les années 1970). Ce type d’argument a per-
mis de retrouver une interprétation intuitive de l’inégalité non classique de Zhang
et Yeung et de découvrir une série infinie de nouvelles inégalités d’information.

Depuis la fin des années 1990, les chercheurs ont découvert quelques exem-
ples des inégalités dites inégalités conditionnelles d’information — des inégalités
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linéaires pour l’entropie de Shannon qui sont valides pour les distributions véri-
fiantes des conditions linéaires pour les valeurs d’entropies. Dans une série de
travaux communs avec Tarik Kaced nous avons montré que certaines de ces inéga-
lités sont, pour ainsi dire, substantiellement conditionnelles. Cela signifie qu’elles
ne peuvent pas être obtenues comme une projection d’une inégalité d’informa-
tion conventionnelle (inconditionnelle) quelconque, connue ou encore inconnue.
Nous avons établi la connexion entre les inégalités conditionnelles et la géométrie
du cône des inégalités inconditionnelles pour l’entropie de Shannon. Plus précisé-
ment, nous avons montré qu’une seule inégalité conditionnelle pour un ensemble
de variables aléatoires correspond à une infinité d’inégalités linéaires convention-
nelles. L’existence d’une inégalité conditionnelle de ce type explique pourquoi le
cône d’inégalités inconditionnelles pour n variables aléatoires (avec n ≥ 4) n’est pas
polyédrique (un résultat prouvé plus tôt par F. Matúš). Nous avons étudié les con-
treparties des inégalités conditionnelles d’information dans le cadre de la complex-
ité de Kolmogorov. Nous avons trouvé que certaines de ces inégalités possèdent des
homologues valides pour la complexité de Kolmogorov, tandis que d’autres ne les
possèdent pas. Apparemment, cette divergence entre les propriétés de l’entropie de
Shannon et de la complexité de Kolmogorov mérite une grande attention. En explo-
rant ce type d’inégalités conditionnelles « exceptionnelles » (qui sont valables dans
le cadre de Shannon mais pas dans celui de Kolmogorov), nous avons obtenu des
applications intéressantes de la théorie de l’information à l’analyse combinatoire et
à la complexité de la communication, comme décrit ci-dessous.

Matérialisation de l’information mutuelle et de la complexité conditionnelle.
Pour chaque paire de mots x, y nous nous sommes donné les complexités condi-
tionnelles C (x | y) et C (y | x) (qui sont par définition les longueurs des programmes
les plus courts qui transforment x en y et y en x), et la valeur de l’information mu-
tuelle I (x : y), qui est définie sous une forme symétrique telle que

I (x : y) :=C (x)+C (y)−C (x, y)

(le « chevauchement » des informations contenues dans x et dans y). Dans ce con-
texte, nous pouvons poser la question sur l’interprétation plus explicite et opéra-
tionnelle de ces quantités d’information. Dans le cadre de la théorie de Shannon, le
théorème de Slepian–Wolf donne une caractérisation opérationnelle de l’entropie
conditionnelle, tandis que Gács et Körner ont montré que l’information mutuelle
en général ne peut pas être matérialisée. Dans le cadre de la théorie algorithmique,
cette question est devenue populaire dans les années 1990. Dans ce qui suit, nous
discutons séparément le problème de la matérialisation de la complexité condition-
nelle et le problème de la matérialisation de l’information mutuelle.

À la fin des années 1990 An. Muchnik a proposé une interprétation intéres-
sante de la valeur de C (x | y). Par définition, cette quantité est comprise comme
la longueur du programme le plus court qui transforme le mot y en mot x. Selon
Muchnik, cette quantité peut aussi être interprétée comme une « empreinte digitale
numérique » optimale (ou « valeur de hachage »), qui (i) peut être extraite directe-
ment du mot x, et (ii) qui donne assez d’information pour reconstruire x si y est
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donné. En d’autres termes, la quantité de C (x | y) peut être « extraite » directement
de x, quasiment sans autre information sur y .

Dans un travail commun avec Daniil Musatov et Alexander Shen, nous avons
présenté deux nouvelles preuves de ce théorème. L’une de nos constructions est
basée sur un algorithme qui cherche « online matching » pour les graphes bipartis.
La seconde, basée sur des graphes extracteurs, permet de démontrer une version du
théorème de Muchnik pour la complexité de Kolmogorov avec une limite d’espace
(mémoire) accessible au calcul. Nous avons prouvé aussi une autre version du théo-
rème de Muchnik avec des ressources limitées — pour la complexité de Kolmogorov
basée sur les protocoles d’Arthur–Merlin. Dans les travaux ultérieurs de M. Zimand,
une autre version du théorème de Muchnik a été établie : Zimand a montré que
l’empreinte digitale numérique de x peut être calculée très efficacement, en temps
polynomial. (Pourtant la reconstruction de x à partir de y et l’empreinte digitale
numérique reste coûteuse et prend beaucoup de temps.)

Les techniques utilisées dans les preuves des différentes variantes du théo-
rème de Muchnik impliquent certaines versions de graphes pseudo-aléatoires (ex-
tracteurs, expandeurs). La technique des empreintes digitales pseudo-aléatoires
développée dans le contexte du théorème de Muchnik a trouvé une application dans
un domaine très différent : nous l’avons utilisée pour construire une structure de
données (un schéma de bit-probe avec un traitement randomisé des requêtes) avec
des paramètres presque optimaux. Cette structure stocke un ensemble fini S sous
une forme compressée, de sorte que les requêtes d’appartenance « x ∈ S ? » sont
traitées pour chaque x très rapidement, en récupérant seulement un bit de la base
de données.

Le problème de la « matérialisation » de l’information mutuelle des mots est
plus délicat que la matérialisation de la complexité conditionnelle. L’intuition naïve
suggère que l’information mutuelle entre x et y représente la quantité de données
partagée par deux mots. Les chercheurs ont donc exploré la mesure dans laquelle
l’information mutuelle peut être extraite de x et y , d’une manière ou d’une autre.
P. Gács et J. Körner ont introduit dans ce contexte le terme information commune.
Bien que la définition précise soit assez technique, l’intuition derrière l’information
commune est simple. Dans les grandes lignes, z est une information commune ex-
traite de x et y , si z peut être « facilement » calculé à partir de x et à partir de y , i.e.
C (z | x) ≈ 0 et C (z | y) ≈ 0.

Il est connu que l’information commune est limitée par l’information mutuelle.
Pourtant, Gács et Körner (1973) ont montré qu’il existe des mots x et y tels que l’in-
formation commune entre eux est beaucoup plus petite que l’information mutuelle.
De plus, l’écart entre l’information mutuelle et l’information commune ne dépend
pas uniquement des mesures de complexité de x et y . En fait, il existe des paires
(x1, y1) et (x2, y2) qui ont le même profil de complexité, mais pour (x1, y1) l’infor-
mation commune et l’information mutuelle sont égales, alors que pour (x2, y2) elles
sont radicalement différentes. Des résultats négatifs similaires (l’information com-
mune peut être de beaucoup inférieure à l’information mutuelle, même avec un
seuil plutôt lâche pour les valeurs de « petites » complexités C (z | x) et C (z | y))
ont été établies dans les années 1990 par un groupe de chercheurs à l’université
de Moscou (Muchnik, Shen, Vereshchagin et d’autres ; quelques résultats de ce type
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ont été présentés dans la thèse de doctorat de l’auteur de ce mémoire).
Nous pouvons reformuler le problème de l’extraction de l’information mutuelle

pour un triplet de mots. Nous disons que l’information mutuelle partagées par des
mots x, y , z peut être complètement matérialisée, s’il existe un mot w tel que x, y
et z sont indépendants étant donné w , et w est simple conditionnel relativement
à chacun des mots x, y , z. Nous avons montré que la question de l’extraction de
l’information mutuelle pour un triplet de mots a une réponse positive surprenante
: l’information mutuelle partagée par des mots x, y , et z peut être complètement
matérialisée, si et seulement si, les valeurs de l’information mutuelle

I (x : y | z), I (x : z | y), et I (y : z | x)

sont négligeables. La preuve de ce résultat dépend fortement des nouvelles inégali-
tés d’information non-classiques mentionnées ci-dessus.

Applications combinatoires. L’entropie de Shannon est un outil qui s’applique
bien dans les preuves combinatoires, y compris dans des cas où l’idée de la quantité
de l’information ne se manifeste pas immédiatement. Un exemple classique d’un
tel argument est le lemme combinatoire de Shearer, qui est, en substance, une tra-
duction d’une inégalité pour l’entropie de Shannon dans le langage de l’information
« combinatoire » de Hartley (autrement dit, en termes de tailles d’ensembles finis).
Cependant, les applications combinatoires de la théorie de l’information ressem-
blent généralement à une solution ad hoc. Dans le même temps, l’idée du paral-
lélisme entre trois approches à la théorie de l’information proposée par Kolmogo-
rov suggère qu’une méthode plus générale doit exister. En particulier, nous pouvons
supposer que toute inégalité d’information (valide à la fois pour l’entropie de Shan-
non et pour la complexité de Kolmogorov) pourrait être traduite en forme combi-
natoire équivalente. Dans un travail commun avec A. Shen et N. Vereshchagin nous
avons essayé d’établir formellement cette règle de traduction. Nous avons démontré
que toute inégalité linéaire valide pour la complexité de Kolmogorov ou l’entropie
de Shannon peut être reformulée comme une propriété combinatoire. Les inégali-
tés combinatoires de Shearer peuvent être considérées comme un cas particulier de
cette traduction générale. Plus tard, une autre version d’une interprétation combi-
natoire des inégalités d’information a été suggérée par A. Shen et N. Vereshchagin
dans un travail commun avec I. Newman et G. Tárdos.

En ce qui concerne les inégalités conditionnelles d’informations, aujourd’hui,
nous n’avons pas de schéma général qui traduise chaque inégalité en une propo-
sition combinatoire équivalente. Cependant, nous avons trouvé des applications
combinatoires pour certaines (très particulières) inégalités contraintes d’informa-
tions. Les propriétés combinatoires que nous avons obtenues peuvent être for-
mulées naturellement en termes de coloration des arêtes des graphes (un travail
commun avec T. Kaced et N. Vereshchagin). De ce point de vue, certaines inéga-
lités contraintes d’information sont comprises comme des inégalités pour les cou-
vertures de graphe par bicliques (en résumé, nous pouvons estimer la quantité de
bicliques nécessaires pour couvrir toute arête d’un graphe donné). Cette technique
s’applique dans les preuves de résultats négatifs sur la complexité de la communi-
cation, comme décrit ci-dessous.
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Une caractérisation opérationnelle de l’information mutuelle. Dans un travail
commun avec Marius Zimand, nous avons réexaminé la question de la matériali-
sation de l’information mutuelle dans la théorie de l’information algorithmique et
proposé une sorte de « caractérisation opérationnelle » de cette valeur. Nous mon-
trons que l’information mutuelle d’une paire de mots x et y est égale à la taille de la
plus longue clé secrète commune que deux parties (l’une ayant x et l’autre ayant y)
peuvent établir via un protocole probabiliste de communication, avec interaction
sur un canal ouvert. Ce résultat est généralisé au cas de n parties, n > 2. Dans ce tra-
vail, nous avons employé plusieurs résultats de la théorie algorithmique de l’infor-
mation (qui sont mentionnées ci-dessus) : le théorème de Muchnik sur la complex-
ité conditionnelle permet de construire un protocole de communication, qui atteint
la taille optimale de la clé secrète commune ; les inégalités conditionnelles d’infor-
mation nous aident à prouver les résultats négatifs (la taille de la clé commune ne
peut pas être plus grande que l’information mutuelle entre les mots d’entrées) ; et
enfin, les résultats négatifs sur l’extraction de l’information commune sont utilisés
pour estimer la complexité de la communication de ce problème (si le nombre des
bits transmis tombe en dessous du seuil établi, alors seulement une clé secrète très
petite peut être obtenue).

3. Shifts de type fini : les règles locales et la densité de l’information

Le second chapitre du manuscrit est consacré aux shifts multidimensionnels,
surtout à leurs propriétés algorithmiques. Les shifts sont les ensembles de configu-
rations invariants par la translation et topologiquement clos dans l’espace de Cantor
(plus précisément, les ensembles de configurations dansZd sur un alphabet fini, in-
variants par la translation et topologiquement clos). Chaque shift est uniquement
déterminé par un ensemble de motifs interdits (de sorte qu’une configuration ap-
partienne au shift, si et seulement si, elle n’implique aucun motif interdit). Les shifts
de type fini (shifts of finite type, SFT) sont les shifts définis par un nombre fini de
motifs interdits.

C’est ici qu’il faut mentionner un type spécial des SFTs, les pavages de Wang
(Wang tilings), qui sont définis en termes de tuiles. En dimension deux, les tuiles
de Wang sont normalement représentées comme un ensemble de carrés colorés
sur chacun de leurs côtés. Les carrés peuvent être agencés de telle façon que les
couleurs des côtés correspondants soient les mêmes. (Il existe, bien évidemment,
une généralisation des tuiles de Wang à l’espace à dimension d > 2.) Cette définition
ressemble à un jeu d’enfant (une version simple d’un puzzle). Malgré la simplicité
de la définition, ce modèle est très général : chaque shift de type fini est isomorphe
à un shift qui correspond à un jeu de tuiles de Wang.

Les shifts de type fini donnent un cadre pour étudier l’apparition de phénomènes
non-triviaux globaux à partir de règles locales et très simples. Les shifts de type fini
jouent un rôle important dans plusieurs domaines, tels que la logique mathéma-
tique, la théorie des langages, la complexité de calcul, la dynamique symbolique et
même la physique mathématique (où les shifts de type fini sont utilisés comme un
modèle simpliste pour des structures cristallines et quasi-cristallines).
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Plusieurs résultats profonds concernant les shifts de type fini dépendent forte-
ment de l’incorporation d’un calcul dans la structure géométrique d’un shift. Nous
proposons une nouvelle technique d’intégration d’une machine de Turing dans un
shift de type fini. Cette technique est connue comme les pavages auto-simulants ou
les pavages de point-fixe. Notre méthode réunit l’idée de l’auto-similitude géomét-
rique et de l’idée d’un programme auto-référentiel.

Notre technique de programmation auto-référentielle est similaire à la preuve
classique du théorème de récursion de Kleene. Il existe deux autres exemples dans
la littérature qui sont encore plus proches de notre construction : la construction
des automates autoréplicatifs de J. von Neumann et les automates cellulaires auto-
correcteurs de P. Gács. Il s’est avéré que la méthode de la programmation auto-
référentielle se marie parfaitement à l’idée géométrique d’une configuration auto-
similaire, qui reproduit des structures similaires à différentes échelles. En employ-
ant cette technique, nous proposons de nouvelles preuves de certains théorèmes
classiques sur la dynamique symbolique, et nous obtenons ensuite quelques nou-
veaux résultats. Ci-dessous, nous discutons brièvement les directions principales
de cette recherche.

De règles locales simples vers un comportement global complexe. Pour tout d ≥
2 il existe un shift de type fini non-vide en dimension d , où toute configuration est
apériodiques (R. Berger, 1966). Le fait de l’existence d’un SFT apériodique est déjà
non-trivial. De façon encore plus importante, des shifts de type fini apériodiques
sont utilisés comme la base et le cadre pour plusieurs constructions avec diverses
propriétés non-triviales.

La construction proposée par Berger en 1966 est assez complexe. Dans la suite,
plusieurs preuves plus simples de ce résultat ont été suggérées. Toutes les construc-
tions connues d’un SFT apériodique combinent dans des proportions différentes
des idées géométriques et algorithmiques. Notre construction (basée sur l’idée de
l’auto-simulation) est en quelque sorte extrémale : elle est presque purement algo-
rithmique, avec très peu d’éléments géométriques. Cette approche ne permet pas
de minimiser la taille de l’alphabet ou le nombre de contraintes locales d’un SFT
construit. Cependant, elle est assez flexible et admet diverses généralisations et ex-
tensions, ce qui est crucial pour les applications.

Nous commençons par de nouvelles preuves de certains résultats déjà connus.
Une des premières applications de la nouvelle technique est une preuve simplifiée
du résultat classique par W. Hanf et D. Myers (1974) : pour chaque d ≥ 2 il existe un
shift de type fini non-vide où toute configuration est non-calculable. La même tech-
nique est employée ensuite pour construire un shift de type fini avec une densité
d’information maximale. Plus précisément, pour chaque d ≥ 2, nous construisons
un shift de type fini de dimension d , où pour chaque configuration, chaque motif de
taille n×n×·· ·×n a la complexité de KolmogorovΩ(nd−1). (Un shift de type fini avec
une densité d’information élevée a été construit à l’origine par B. Durand, L. Levin,
et A. Shen (2001) par une technique basée sur les pavages de Robinson.)

Une extension du résultat mentionné ci-dessus (un shift de type fini avec une
haute complexité de Kolmogorov) nous a conduit à une meilleure compréhension
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de la sous-dynamique projective des shifts de type fini multidimensionnels. Nous
avons montré que tout shift effectif sur Zd peut être représenté comme une projec-
tion de la sous-dynamique dans un shift de type fini sur Zd+1. Cette observation
répond à une question soulevée par M. Hochman (2009). Ce dernier résultat a été
prouvé indépendamment par N. Aubrun et M. Sablik (2013) avec une autre tech-
nique.

SFTs quasi-périodiques minimaux. A. Ballier et N. Ollinger (2009) ont montré
qu’il existe un shift de type fini où chaque configuration est à la fois apériodique et
quasi-périodique. Nous avons suggéré une nouvelle preuve de ce résultat, en util-
isant des pavages auto-simulants. Il est à noter que dans cet exemple particulier
nous avons employé une technique intrinsèquement algorithmique (la programma-
tion récursive, des programmes auto-référentiels) pour prouver un théorème sans
aucune notion algorithmiques dans son assertion.

Nous avons également prouvé qu’il existe un shift de type fini où chaque config-
uration est à la fois non-calculable et quasi-périodique. De plus, nous avons obtenu
une caractérisation des classes de degrés de Turing qui peuvent être représentées
par les configurations d’un shift de type fini quasi-périodique. À notre connais-
sance, les seules preuves connues de ces résultats utilisent la technique des pavages
auto-simulants.

SFTs robustes (tolérants aux fautes locales). Nous montrons que plusieurs résul-
tats mentionnés ci-dessus (les shifts de type fini apériodiques et fortement apéri-
odiques, les shifts de type fini avec des motifs à haute complexité de Kolmogorov, et
ainsi de suite) restent valides dans un contexte plus général — pour les pavages avec
des « fautes », c’est-à-dire pour les configurations où les contraintes locales peu-
vent être perturbées par un ensemble clairsemé d’ « erreurs » choisies au hasard. La
technique des pavages auto-simulants est, jusqu’à présent, la seule méthode con-
nue pour construire ce type de shifts de type fini robustes. Dans certains de ces ré-
sultats, nous observons à nouveau qu’une technique fortement algorithmique peut
être employée dans les démonstrations de théorèmes mathématiques sans objets
algorithmiques dans leurs assertions.

Remarques de conclusion. La technique des pavages auto-simulants est apparue
dans une série d’articles communs avec Bruno Durand et Alexander Shen. Notre tra-
vail a été largement inspiré par la construction d’automates cellulaires fiables sug-
gérée par P. Gács. Au cours des dernières années, la technique des pavages auto-
simulants a été redéveloppée par L. B. Westrick et C. Zinoviadis.

Nos contributions : les techniques proposées et l’interrelation entre les domaines
apparentés

Dans le premier chapitre du mémoire nous étudions les visages divers des mesures
quantitatives de l’information. Nous examinons les définitions d’un objet aléatoire
et pseudo-aléatoire sous différentes perspectives. Notre étude est motivée par des
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parallèles entre les approches au concept de l’information proposées et développées
dans les différentes communautés. Nous employons des idées similaires dans des
contextes plutôt hétérogènes, avec des techniques probabilistes, algorithmiques et
combinatoires. D’un point de vue technique, nous proposons quelques méthodes
nouvelles (par exemple, la technique du « clonage » pour la complexité de Kolmo-
gorov, les inégalités conditionnelles d’information) ; mais notre contribution prin-
cipale consiste en l’adaptation des techniques développées dans la théorie de l’in-
formation (inégalités d’information, extraction de l’information commune, graphes
pseudo-aléatoires, etc.) dans des situations variées. Dans le texte du mémoire, nous
discutons les motivations et les idées principales derrière les preuves de théorèmes.
Normalement, les preuves détaillées sont reportées aux publications originales (cer-
taines d’entre elles sont jointes en annexe). Cependant, nous présentons dans le
texte du mémoire certaines esquisses des preuves techniques, dans les cas où nous
croyons qu’une perte (légère) de généralité permet de simplifier considérablement
l’argument concerné.

L’organisation du second chapitre du mémoire est différente. Ce chapitre s’ar-
ticule autour d’une technique particulière — la construction des pavages auto-si-
mulants. Nous étudions en détail des aspects divers de cette technique, depuis la
construction générique vers plusieurs généralisations et renforcements. Nous par-
lons d’applications dans lesquelles cette méthode est efficace et discutons ses lim-
ites. Tandis que dans le premier chapitre nous réunissons des techniques variées
avec une intuition commune, dans le second chapitre nous faisons le contraire —
des techniques similaires s’appliquent à des situations hétérogènes.

Dans cette ligne de recherche, il est difficile de bien séparer la technique de base
des suppléments spécifiques pour chaque application particulière. C’est pourquoi
dans tout article original, nous sommes obligés de réexpliquer la technique de base
de pavages auto-simulants. Dans ce chapitre, nous préférons ne pas renvoyer le
lecteur vers des publications originales où les parties techniques se chevauchent
fortement. Au lieu de cela, nous présentons les preuves complètes de nos résultats
principaux.

Les sujets du chapitre 1 et du chapitre 2 se chevauchent peu, et formellement
parlant, ces chapitres peuvent être lus indépendamment l’un de l’autre. Pourtant,
ils sont réunis par un concept fondamental qui joue un rôle important dans l’un et
l’autre chapitre : c’est la complexité de Kolmogorov, qui donne la mesure de quan-
tité de l’information dans un objet fini pour le premier chapitre et la mesure de
densité d’information pour les configurations infinies pour le second. En conclu-
sion du mémoire nous proposons un projet de travail ultérieur. Dans ce projet nous
traçons quelques lignes de recherche (basées sur la complexité de Kolmogorov avec
des ressources bornées) qui pourraient éventuellement réunir ces deux domaines
plus étroitement.
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Introduction and research summary

The main theme of this manuscript is Kolmogorov complexity and its various appli-
cations. Our research is mostly related to the following two areas: the fundamental
information measures and their combinatorial applications on the one hand, and
the notion of information density in symbolic dynamics on the other. Although
these research areas are closely related, they are driven by different motivating fac-
tors and are attributed to two different scientific communities.

1. The context around algorithmic information theory

The notion of algorithmic complexity was introduced in the theory of computability
in the 1960s. The formal mathematical definition of the amount of information in
a constructive object was suggested in 1965, in the seminal paper by Andrei Kolmo-
gorov. A few years earlier, similar ideas appeared in papers by Ray Solomonoff (who
was studying the notion of the universal a priori probability). Also, similar versions
of algorithmic complexity were proposed by Gregory Chaitin.

The intuition behind Kolmogorov’s definition is quite transparent: the complex-
ity of a constructive object is the length of the shortest program that generates this
object. Similarly, the complexity of one object given another one is the length of the
shortest program that transforms the latter into the former. The ambiguity caused
by the choice of the programming language is resolved by the invariance theorem,
which claims that there exists an asymptotically optimal programming language
that assigns to all objects an asymptotically minimal complexity. The Kolmogorov
complexity is usually defined for binary strings, but the standard definition can be
easily transposed to other types of finite objects: words over any finite alphabet, tu-
ples of words, matrices, finite sets, finite graphs, etc.

The original paper by Kolmogorov was entitled “Three Approaches to the Quan-
titative Definition of Information.” These approaches were the algorithmic, the
probabilistic, and the combinatorial ones. The probabilistic approach goes back
to Claude Shannon who defined in 1948 the notion of entropy, which is a mea-
sure of information quantity in a random variable. This approach has proven to be
highly fruitful both in theory and in practical applications, and the vast community
of information theorists work by now in the framework suggested by Shannon. The
combinatorial approach to the notion of information (traced back to Ralph Hartley)
measures the “uncertainty” of an element in a finite set; technically this measure is
defined as the logarithm of its cardinality. Despite its apparent simplicity, the com-
binatorial approach is far from trivial; Hartley’s definition of information in finite
sets naturally lead to interesting and sophisticated mathematical problems.

Kolmogorov highlighted the parallels and close connections between these three
incarnations of information theory. Even 50 years after the original paper by Kol-
mogorov, the interplay between Hartley’s, Shannon’s, and Kolmogorov’s approaches
remains a major clue for information theorists. The parallelism between Shannon’s
and Kolmogorov’s theories can be viewed from different perspectives. In some cases
we can establish a formal equivalence between probabilistic and algorithmic re-
sults, i.e., some types of properties of algorithmic information theory can be for-
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mally translated to equivalent properties of Shannon’s information theory, and visa-
versa. Then, the technique from one theory can be reemployed directly to deduce
new results in the other one. In other cases, there are no formal equivalences be-
tween the frameworks of Shannon’s entropy and Kolmogorov complexity, but the
parallelism provides helpful heuristics: knowing a result from one incarnation of
the information theory we can guess the homologous statement in the other, even if
there is no explicit formal equivalence between the statements. In some cases, the
parallelism between different versions of information theory fails and we observe
a discrepancy between the properties of information measures in the algorithmic
and the probabilistic frameworks. But even this kind of failure is fruitful: while ex-
ploring the reasons for that discrepancy we reveal deeper properties of Kolmogorov
complexity and Shannon’s entropy.

2. The fundamental measures in algorithmic information theory

A major part of our research is devoted to the information measures in algorithmic
and probabilistic versions of information theory. Given a tuple of strings, we can
deal with many standard information quantities: with the Kolmogorov complexities
of each of these strings, with the complexities of each pair, triple, and so on, with
many instances of conditional Kolmogorov complexities, with the values of pair-
wise mutual information, and so on. Similarly, given a jointly distributed tuple of
random variables, we have the values of Shannon’s entropy of each marginal distri-
bution, many instances of the conditional entropy, instances of the pairwise mutual
information, and so on. The fundamental problem is to understand the connection
between different information quantities.

Several basic relations between information quantities are well known since the
original papers by Shannon and Kolmogorov. For example, it is known that the en-
tropy of a pair of random variables cannot be larger than the sum of entropies of
two its components. Similarly, the Kolmogorov complexity of a pair of strings is
not greater (up to a negligible additive term) than the sum of complexities of both
strings. This property (called subadditivity) as well as the standard properties of
monotonicity and submodularity have clear intuitive meanings, which is important
for numerous applications of information theory. In 1998 (50 years after Shannon’s
original publication), Z. Zhang and R.W. Yeung came up with the first example of
a non-Shannon-type linear inequality for the entropies of a tuple of random vari-
ables. This inequality holds true for every quadruple of jointly distributed random
variables, though it cannot be represented as a convex combination of the basic in-
equalities (expressing the properties of subadditivity, monotonicity, and submodu-
larity of Shannon’s entropy).

Information inequalities. In the last 20 years, many other examples of non-classi-
cal information inequalities for Shannon’s entropy have been found. Though a com-
plete characterization of the universal information inequality remains elusive, we
know that exactly the same classes of linear inequalities are valid for Shannon’s en-
tropy and for Kolmogorov complexity (this result was proven in the PhD thesis of the
author). The established equivalence suggests that these inequalities (common for
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the probabilistic and the algorithmic versions of information theory) express funda-
mental properties of the notion of “information,” and the further research of infor-
mation inequalities seems to be a promising direction.

In a joint paper with Konstantin and Yury Makarychev, and Nikolai Vereshcha-
gin we proposed a new method of deriving information inequalities. This technique
uses the connection between the information inequalities and the idea of “extract-
ing” the mutual information (which goes back to the works by R. Ahlswede, P. Gács,
and J. Körner in 1970s). This type of argument helped to reveal the intuitive meaning
of the Zhang–Yeung inequality and to discover an infinite series of new information
inequalities.

Since late 1990s, the researchers discovered several examples of so-called con-
straint information inequalities — linear inequalities for Shannon’s entropy that are
valid for the distribution that match some linear conditions for the values of en-
tropies. In a series of joint works with Tarik Kaced we showed that some of these
inequalities are, so to say, substantially conditional. This means that they cannot be
obtained as a projection of any conventional (unconditional) information inequal-
ity, known or yet unknown. We established the connection of the conditional in-
equalities with the geometry of the cone of the unconditional inequalities of en-
tropies. Loosely speaking, one single constraint inequality for a quadruple of ran-
dom variables corresponds to infinitely many conventional (unconditional) linear
inequalities for entropies. The existence of such a constraint inequality explains why
the cone of unconditional inequalities for n-tuples of random variables (with n ≥ 4)
is not polyhedral (a result proven earlier by F. Matúš). We studied the counterparts of
the constraint information inequalities in the framework of Kolmogorov complexity.
It turned out that some of these inequalities have a valid homologue for Kolmogorov
complexity, while others do not. Apparently, such a divergence between the proper-
ties of Shannon’s entropy and Kolmogorov complexity deserves closer attention. By
exploring these exceptional constraint inequalities (that are valid in Shannon’s but
not in Kolmogorov’s framework), we found interesting applications of information
theory to combinatorics and communication complexity, as described below.

Materialization of mutual information and conditional complexities. For each
pair of strings x, y , we consider the conditional complexities C (x|y) and C (y |x) (the
lengths of the shortest programs that transform x to y and y to x) and the value
of the mutual information I (x : y) (that can be defined in a symmetric form as
C (x)+C (y)−C (x, y)). There is a long-standing question on a more explicit and oper-
ational interpretation of these information quantities. A version of these questions
for Shannon’s entropies was extensively studied in 1970s (e.g., the Slepian–Wolf the-
orem gives an operational characterization of the conditional entropy, and Gács and
Körner showed that the mutual information in general cannot be materialized). In
the algorithmic framework these questions become popular in 1990s.

In the late 1990s, An. Muchnik proposed a nice interpretation of the value of
C (x|y). He showed that this quantity can be understood not only as the length of the
shortest programs that transform one string to another but also as the optimal “fin-
gerprint” (or a “hash value”), which (i) can be extracted directly from x, and (ii) pro-
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vides enough information to reconstruct x given y . In other words, the quantity of
C (x|y) can be “extracted” directly from x, with almost no information on y .

In a joint work with Daniil Musatov and Alexander Shen we presented two new
proofs of this theorem. One of these constructions is based on a so-called on-line
matching algorithm for bipartite graphs. The second one, based on extractors, can
be generalized to prove a version of Muchnik’s theorem for space-bounded Kolmo-
gorov complexity. We proved another version of Muchnik’s theorem for a resource-
bounded variant of Kolmogorov complexity based on Arthur–Merlin protocols. In
subsequent works by M. Zimand, a time-bounded version of Muchnik’s theorem
was established (Zimand showed that the fingerprint can computed from x by a ran-
domized algorithm very efficiently, and only the reconstruction of x from y and the
fingerprint is time consuming).

It is worth mentioning that the techniques used in proofs of resource-bounded
versions of Muchnik’s theorem involve different versions of pseudo-random graphs
(extractors, expanders). Quite interestingly, the technique of pseudo-random fin-
gerprints developed in the context of a resource-bounded version of Muchnik’s
theorem has found an application in a fairly different area. We used it to con-
struct a data structure (a bit probe scheme) that stores a finite set so that mem-
bership queries can be answered very efficiently, by retrieving only one bit from the
database.

The problem of materialization of mutual information of strings seems to be
trickier than a materialization of conditional complexity. The naive intuition sug-
gests that the mutual information between x and y represents the quantity of data
shared by two strings. So researchers have explored the extent to which mutual
information can be extracted from x and y , in one way or another. P. Gács and
J. Körner, in this context, introduced the term common information. Very informally,
a string z is common information extracted from x and y , if z can be “easily” com-
puted from x, and also from y , i.e., C (z|x) ≈ 0 and C (z|y) ≈ 0. It can be shown that
common information is upper bounded by mutual information (up to logarithmic
precision). Gács and Körner (1973) showed that from some x and y the common in-
formation is much smaller than the mutual information. Moreover, the possibility
of extracting the mutual information does not depend solely on the basic complex-
ity measures involving x and y ; there exist pairs (x1, y1) and (x2, y2) that have the
same complexity profile, though for (x1, y1) the common information and the mu-
tual information are equal, whereas for (x2, y2) they are drastically different. Similar
negative results (the common information can be much less than the mutual in-
formation, even with a rather loose threshold for the values of C (z|x) and C (z|y))
were established by a group of researchers at Moscow University in 1990s (Much-
nik, Shen, Vereshchagin, and others; several results of this type were presented in
the PhD thesis of the author).

The problem of extracting the mutual information can be restated for a triple of
strings. We say that the mutual information shared by strings x, y , z can be com-
pletely materialized if there exists a string w such that x, y , and z are independent
given z, and z is simple conditional on each of the strings x, y , z. We showed that the
question of extracting the mutual information for a triple of strings has a surprising
positive answer: the mutual information shared by strings x, y , and z completely
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materialized, if and only if, the conditional mutual informations I (x : y |z), I (x : z|y),
and I (y : z|x) are negligibly small. The proof of this result heavily depends on the
new non-Shannon-type information inequalities mentioned above.

Combinatorial applications. The idea of applying Shannon’s entropy in combi-
natorial proofs is by no means new. A textbook example of such an argument is the
combinatorial Shearer lemma, which is per se a translation of an inequality for Shan-
non’s entropy in the language of Hartley’s information (i.e., in terms of sizes of finite
sets). However, the combinatorial applications of information-theoretic arguments
typically look like a smart ad hoc trick. At the same time, the idea by Kolmogorov of
the parallelism between three approaches to the information theory suggests that
every information inequality (which is valid both for Shannon’s entropy and for the
Kolmogorov complexity) might be translated to an equivalent combinatorial state-
ment. In a joint work with A. Shen and N. Vereshchagin we tried to establish this
connection formally. We proved that every valid linear inequality for the Kolmogo-
rov complexity or Shannon’s entropy can be translated into an equivalent combina-
torial statement. Shearer’s combinatorial inequality can be considered as a special
case for this general translation. Later, another version of a combinatorial interpre-
tation of information inequalities was suggested by A. Shen and N. Vereshchagin in
a joint work with I. Newman and G. Tárdos.

For the constraint information inequalities we still do not have a similar gen-
eral scheme translating every inequality to an equivalent combinatorial statement.
However, for some specific constraint information inequality we found some com-
binatorial applications. The resulting combinatorial statements can be naturally
stated in terms of edge coloring for bipartite graphs (a joint work with T. Kaced and
N. Vereshchagin). From this perspective, some constraint information inequalities
can be understood as lower bounds for biclique cover of graphs. This technique was
used in proofs of negative results in communication complexity, as described below.

An operational characterization of the mutual information. In a joint work with
Marius Zimand we revisited the question of materializing the mutual information
in algorithmic information theory and proposed a sort of “operational characteriza-
tion” of the value of mutual information.

We show that the mutual information of a pair of strings x and y is equal to the
size of the longest shared secret key that two parties, one having x and the other one
having y, can establish via a probabilistic protocol with interaction on a public chan-
nel. This result is an extension to the case of n > 2 parties. In this work we simulta-
neously employed various results of algorithmic information quantities mentioned
above: an operational characterization of conditional complexity helped to prove
the positive result and set up a communication protocol that achieves the optimal
size of the shared secret key; a constraint information inequality was used to prove
the negative results (the size of the common secret key cannot be larger than the
mutual information between the inputs strings); and lastly, the negative results on
extracting the common information was used to estimate the optimal communica-
tion complexity of this communication problem (if the communication complexity
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drops below the established threshold then only negligibly small secret keys can be
obtained).

3. Shifts of finite type: local rules and information density

The other part of this research is devoted to multi-dimensional shifts. The shifts are
the translation invariant and topologically closed sets of configurations of a Cantor
space (more precisely, the translation invariant and topologically closed sets of con-
figurations on Zd over a finite alphabet). Every shift can be uniquely determined
by some set of forbidden patterns (so that a configuration belongs to the shift, if and
only if, it does not involve any forbidden finite pattern). The shifts of finite type (SFT)
are the shifts defined by forbidding a finite number of patterns.

The shifts of finite type provide a playground to study the appearance of non-
trivial global phenomena from simple local rules. The SFT play a prominent role in
several areas such as mathematical logic, language theory, computational complex-
ity, symbolic dynamics and even mathematical physics (where the SFT are used as a
simplistic model of crystalline and quasicrystalline structures).

Many profound results concerning SFT depend heavily on embedding a compu-
tation in the geometric structure of a shift. We proposed a new technique of embed-
ding a Turing machine in an SFT. This technique is referred to as self-simulating or
fixed-point tilings. It combines the idea of geometric self-similarity with the idea of
a self-referential program.

The employed technique of self-referential programming is similar to the idea
of Kleene’s recursion theorem. Even closer analogues to our technique are the con-
structions of self-reproducing automata by J. von Neumann and especially the self-
correcting cellular automata by P. Gács. It turned out that the idea of a self-referential
program matches perfectly the idea of a self-similar geometric configuration that
reproduces similar patterns on different scales. Using this technique we give new
proofs of some classic theorems of symbolic dynamics and then obtain several new
results. Below, we briefly describe the main points of this research.

Simple local rules imply complex global behavior. For every d ≥ 2 there exists a
non-empty SFT of dimension d where all configurations are aperiodic (R. Berger,
1966). The very existence of aperiodic SFT is non-trivial and has interesting impli-
cations. What is even more important, aperiodic SFT are used as basic frameworks
for constructions with various non-trivial properties.

The construction suggested by Berger was quite technical. Later, several simpler
proofs of this result were suggested. All known constructions of aperiodic SFT com-
bine in different proportions geometric and algorithmic ideas. We propose a con-
struction (based on “self-simulating tilings”) which is in some sense extremal: it is
almost purely algorithmic, with only very few geometric tricks. This approach does
not help minimize the size of the alphabet or the number of local constraints in an
SFT. However, it is pretty flexible and admits various generalizations and extensions,
which is crucial for applications.

We started with several new proofs of previously known results. One of the first
applications of the new technique was a simplified proof of the classic result by
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W. Hanf and D. Myers (1974): for every d ≥ 2 there exists a non-empty SFT where all
configurations are uncomputable. This technique was extended then to construct
an SFT with a maximal possible “density of information.” More precisely, for every
d ≥ 2 we constructed an SFT of dimension d , where for all configurations each pat-
tern of size n×n×·· ·×n has Kolmogorov complexityΩ(nd−1). (An SFT with high in-
formation density was originally obtained by B. Durand, L. Levin, and A. Shen (2001)
with a technique based on Robinson’s tilings.)

An extension of the result concerning SFT with high Kolmogorov complexity
mentioned above led us to a better understanding of the projective subdynamics
of multidimensional SFT. We showed that every effective shift on Zd can be repre-
sented as a projection of the subdynamics in an SFT onZd+1, which answers a ques-
tion raised by M. Hochman (2009). (The latter result was independently proven by
N. Aubrun and M. Sablik (2013) with a different technique.)

Quasiperiodic and minimal SFT. A. Ballier and N. Ollinger (2009) showed that
there exists an SFT where each configuration is at once aperiodic and quasiperi-
odic (this SFT is even minimal). We suggested a new proof of this result, based again
on self-simulating tilings. In this noteworthy example we employed an intrinsically
algorithmic technique of self-referential programs to prove a theorem with no algo-
rithmic notions in its assertion.

We also proved that there exists an SFT where each configuration is at once non-
computable and quasiperiodic. Moreover, we obtained a characterization of the
classes of Turing degrees that can by represented by the configurations of a quasi-
periodic SFT. To the best of our knowledge, the only known proofs of these results
use the technique of self-simulating tilings.

Robust (fault-tolerant) SFT. We show that several results mentioned above (aperi-
odic SFT, strongly aperiodic SFT, SFT with patterns with high Kolmogorov complex-
ity, and so on) remain true for a more general type of objects – for so called faulty
tilings, i.e., for configurations where local constraints can be violated at a sparse set
of randomly chosen “errors.” The technique of self-simulating tilings is, until now,
the only known method to prove this type of result on robust SFT. In some of these
results we observe again that a heavily algorithmic technique can be useful in proofs
of mathematical theorems with no algorithmic issues in their statements.

Concluding remarks. The technique of self-simulating tilings à la Kleene ap-
peared in our series of joint papers with Bruno Durand and Alexander Shen. Our
work was largely inspired by the construction of reliable cellular automata with self-
organization suggested by P. Gács. In recent years, the technique of self-simulating
tilings was redeveloped by L.B. Westrick and C. Zinoviadis.

5. Our contribution: new techniques and an interplay between different frame-
works

In the first half of this manuscript we study the fundamental notion of randomness.
We discuss various versions of information measures in the algorithmic, probabilis-
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tic, and combinatorial frameworks. Our studies are motivated by parallels between
alternative approaches to the notion of information developed in different commu-
nities. In this research we employ similar arguments in heterogeneous contexts,
implementing pretty close intuitive ideas with different formal tools. We suggest
several new techniques (e.g., the method of “clones” in Kolmogorov complexity, the
method of constraint information inequalities, and so on); but the principal con-
tribution of this part of our work consists in adapting the existing techniques of
information theory (information inequalities, extraction of common information,
pseudo-random graphs, and so on) in new contexts.

Another part of the manuscript is built around one specific technical idea — a
construction of self-simulating tilings. We study different aspects of this construc-
tion, from the basic generic scheme to various extensions and enhancements, and
show several applications where this technique proves to be efficient. The con-
cerned results share not intuitive insights but a similar technical implementation.

The questions discussed in these two parts of the manuscript are pretty different.
Nevertheless, we emphasize that they are connected by one fundamental concept —
by Kolmogorov complexity, which gives the measure of information in a finite ob-
ject in the first part and the measure of information density in an infinite configura-
tion in the second part of the manuscript. At the end of the manuscript we outline
a prospective research project. In this project we sketch the directions (based on
resource-bounded Kolmogorov complexity) that can eventually bring these fields of
research closer together.
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Organization of the Manuscript

The scientific content of the manuscript is presented in Chapters 1 and 2. In Chap-
ter 1, we study the fundamental complexity measures of algorithmic information
theory: plain and conditional Kolmogorov complexity, mutual information, condi-
tional mutual information, and so on. We discuss the universal information inequal-
ities, different aspects of materialization of the mutual information, with a focus on
the interplay between algorithmic and probabilistic versions of information theory,
and on their applications in combinatorics. In Chapter 2, we study the problems of
symbolic dynamics: shifts of finite type and Wang tilings, their algorithmic, topo-
logical, and combinatorial properties. Kolmogorov complexity is employed in this
chapter as a measure of the density of information, which appears interesting from
the algorithmic and combinatorial perspectives. The principal tool in Chapter 2 is
the technique of self-simulating tilings.

Chapter 1 is organized raditionally: in each section, we discuss a particular
group of results, explaining the context around and the driving motivations behind,
and the principal ideas employed in the proofs of the concerned theorems. In most
cases, the technical proofs are deferred to the full versions of the original papers.
(Some of these papers are attached in the appendices of the manuscript.) How-
ever, in several cases we sketch in the body of the manuscript the proofs of weaker
versions of our main results. We do it when we believe that a minor loss of general-
ity simplifies the argument significantly, and this simplification makes the methods
used in the proof more transparent.

In what follows we outline the content of Chapter 1. In Sections 1.1–1.5 we dis-
cuss the context of our research (including several results from the PhD thesis of the
author). The main contribution is presented in Sections 1.6–1.14.

• Section 1.1: the basic definitions of algorithmic complexity.

• Section 1.2: measures of information by Shannon and by Hartley.

• Section 1.3: the principal information quantities in algorithmic and proba-
bilistic versions of information theory.

• Section 1.4: the universal information inequalities (the general setting and a
survey of known results).

• Section 1.5: the notion of (α,β)-stochasticity.

• Section 1.6: Muchnik’s theorem on the optimal conditional description and its
variations (on a joint work with D. Musatov and A. Shen, [c8], [j8]).

• Section 1.7: efficient bit-probe schemes, on [j5].

• Section 1.8: the common information of a pair: positive and negative results
(on a joint work with An. Muchnik, [c10], [j9]).

• Section 1.9: algorithmic version of the Ahlswede-Körner lemma and the in-
ference of non-Shannon-type information inequalities (on joint works with
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K. Makarychev, Yu. Makarychev, N. Vereshchagin, [j13], and An. Muchnik,
[j9]).

• Section 1.10: application of non-Shannon-type information inequalities to ex-
tracting the common information of a triple, on [c13], [j12].

• Section 1.11: constraint information inequalities (on a joint work with T. Kaced,
[c20], [c17], [j6]).

• Section 1.12: combinatorial interpretation of (unconditional) information in-
equalities (on a joint work with A. Shen and N. Vereshchagin, [c14], [j14]).

• Section 1.13: combinatorial application of constraint information inequali-
ties. (on a joint work with T. Kaced and N. Vereshchagin, [j2]).

• Section 1.14: common secret key agreement in the framework of Kolmogorov
complexity (on a joint work with M. Zimand, [c1], [e1]).

To the experts in the field, we suggest starting the reading with the very last section of
the chapter (Section 1.14). This section sets out recent results on a secret key agree-
ment in the context of algorithmic information theory. Quite noteworthy, this work
combines the techniques from most of the previous sections, justifying a posteriori
the former research on extracting common information, information inequalities,
and their combinatorial interpretation.

Chapter 2 is organized very differently. In this chapter, we use the proofs based
on hierarchical self-simulating tilings, and in these arguments, it is hard to sepa-
rate the core technique and the features specific to a particular application. In every
new result, we cannot only cite the statements of several previously known theo-
rem, but we also have to re-explain the proofs of the former results and to reemploy
once again the entire constructions of these proofs (adding several new twists and
embedding new gadgets in the same general scheme). This makes the proofs long
and somewhat cumbersome, and every original paper begins with reproducing the
same general technical framework. Instead of providing texts of original papers with
vastly overlapping technical sections, we present in Chapter 2 a self-contained ex-
position of the proofs of our principal results. We start with a general perspective of
this technique and show how it applies to several classic results. Then, in each suc-
ceeding section, we explain how to adjust and extend the generic construction to
prove one or another particular theorem.

We outline the content of sections of Chapter 2:

• Section 2.1: discussion of the context and of the principal motivations in the
field.

• Section 2.2: the basic definitions used in symbolic dynamics.

• Section 2.3: the core technique of self-simulating tilings that appeared in [c9],
[c7], [j10], [c19], [j7].

• Section 2.4: applications to classical results (SFTs with non-computable con-
figurations), on [j7].
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• Section 2.5: quasiperiodic constructions in the framework of self-simulating
SFTs, on [c4].

• Section 2.6: combining quasiperiodicity and non-computability, [c4].

• Section 2.7: a characterization of one-dimensional subdynamics of two-di-
mensional SFTs, on [j7].

• Section 2.8: SFTs with high information density and strongly aperiodic SFTs,
on [c7], [j7].

• Section 2.9: on subdynamics of quasiperiodic SFTs, on [c2].

• Section 2.10: faulty tilings and robust SFTs, on [c9], [c7], [j7].

The results of this chapter were published in a series of joint papers with Bruno Du-
rand and Alexander Shen, [c9], [c7], [j10], [j7], [c4], [c2]. We follow mostly the expo-
sition from the journal version of [j7] and from the preprint [e2] (though we do not
reproduce them literally). We use in this manuscript several figures from [e2].

Chapter 1 and Chapter 2 can be read independently. At the end of the manuscript
we summarize open problems and outline the future work.

Notation

In the manuscript we use the following standard notation:

• #S stands for the cardinality of a finite set S;

• for a string (a word over a finite alphabet) x we denote by |x| the length of x
(the number of letters in the word);

• given a tuple of strings (x1, . . . , xk ), for every set of indices V = {i1, . . . , is } (where
1 ≤ i1 < ·· · < is ≤ k) we denote by xV the tuple (xi1 , . . . , xis ); a similar notation
is used for tuples of random variables;

• we abbreviate L 1 ≤L2+O(logn) to L1 ≤+ L2, where the parameter n is clear
from the context (n is typically the Kolmogorov complexity of the strings in-
volved in terms L1 and L2); similarly, we use the notation L1 ≥+ L2 and
L1 =+ L2;

• all logarithms in the manuscript are to base 2;

• C(x) denotes the Kolmogorov complexity of a string x;

• H(X ) denotes Shannon’s entropy of a random variable X ;

• we keep the usual notation I (·) for the mutual information in the frameworks
of Kolmogorov complexity and Shannon’s entropy (it is clear from the context
which version of the mutual information we discuss).
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Chapter 1

Algorithmic Information
Theory: Fundamental
Complexity Quantities and
Information Measures

1.1 The basic definitions of algorithmic information
theory

As we have mentioned in the introduction, the notion of algorithmic complexity was
introduced in the 1960s in works by A. Kolmogorov, R. Solomonoff, and G. Chaitin
(in slightly different forms, with somewhat different motivations). The seminal pa-
per by Kolmogorov, [3], is for us the most important source of motivations and fun-
damental ideas. We start with the very basic definitions of the theory of algorithmic
descriptive complexity.

Kolmogorov’s measure of algorithmic complexity. Let us recall the main defini-
tions of algorithmic complexity (usually called nowadays Kolmogorov complexity).

Definition 1. Let U be a (partial) computable function of two arguments. The con-
ditional complexity of x given y (with respect to the description method U ) is

CU (x | y) := min{ |p| : U (p, y) = x }.

If there is no p such that U (p, y) = x, we assume that CU (x | y) =∞.

The intuition behind this definition is simple: U is understood as a “description
method” or a programming language (or, more precisely, an interpreter of this pro-
gramming language); p is a program that takes y as an input and returns x as an
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output. The complexity of x given y is the length of (one of) the shortest programs
p that transforms y into x.

The obvious problem with this definition is its dependence on U : for different
“programming languages” U the resulting complexity measures CU (x | y) can be
drastically different. Apparently, we are interested in more economical description
methods. The next definition helps compare different instantiation of the complex-
ity CU (x | y) with each other.

Definition 2. Let U and V be a computable functions of two arguments. We say that
U is not worse than V as a description method, if there exists a number c such that
for all strings x, y

CU (x | y) ≤ CV (x | y)+ c

(the complexity in the sense of U is asymptotically not greater than the complexity in
the sense of V ).

The theory of Kolmogorov complexity is possible due to the following result.

Theorem 1 (Kolmogorov, [3]). There exists a computable function of two arguments
U that is not worse as a description method (in the sense of Definition 2) than any
other V .

A computable function U that is not worse as a description method than any
other V is called an optimal description method. Such an optimal description
method is not unique. If U1 and U2 are two optimal description methods, then there
exists a number c such that for all strings x, y

|CU1 (x | y)−CU2 (x | y)| ≤ c,

so the choice of the optimal description method has little importance. We fix once
and forever an arbitrary optimal U (whose existence is guaranteed by Theorem 1);
in what follows we omit the subscript U and denote CU (x | y) by C(x | y). The value
C(x | y) is called Kolmogorov complexity of x conditional on y .

We denote by C(x) (the unconditional Kolmogorov complexity of x) the value of
C(x |Λ), i.e., the complexity of x given the empty wordΛ.

In a similar way, we define Kolmogorov complexity in terms of programs with
bounded resource (space and time). In this definition, we should specify explicitly
the computational model. We use the conventional model of computations — Tur-
ing machines.

Definition 3. Let U be a Turing machine; we define the conditional Kolmogorov com-
plexity Ct ,s

U (x | y) as the length of the shortest p such that U (p, x) produces y in at most
t steps using at most s cells on the tape.

It is known that there exists an optimal description method U in the following
sense: for every Turing machine V

Cpoly(t ),O(s)
U (x | y) ≤ Ct ,s

V (x | y)+O(1).

For multi-tape Turing machines a slightly stronger statement can be proven:
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Theorem 2 (see [76], with the simulation technique from [5]). There exists an opti-
mal description method (multi-tape Turing machine) U in the following sense: for
every multi-tape Turing machine V there exists a constant c such that for all strings
x, y

Cct log t ,cs
U (x | y) ≤ Ct ,s

V (x | y)+ c.

We fix such a method U , and in the sequel use for the resource-bounded version of
Kolmogorov complexity the notation Ct ,s instead of Ct ,s

U . We use the notation Ct ,∞
and C∞,s if only time or only space available to the algorithm are bounded.

In algorithmic information theory, we want to handle the Kolmogorov complex-
ities of compound objects, e.g., pairs of strings, triples of strings, etc. To this end, we
fix a computable enumeration of tuple of strings, i.e., a computable injective map-
ping

〈x1, . . . , xk〉 7→ code(x1, . . . , xk )

that assigns to every k-tuple of strings its code (which is a binary string itself). Kol-
mogorov complexity of a k-tuple of strings 〈y1, . . . , yk〉 (possibly given another m-
tuple of strings 〈x1, . . . , xm〉) is defined as the Kolmogorov complexity of the code of
the given tuple (respectively, given the code of another tuple). To simplify the nota-
tion, we write

C(y1, . . . , yk ) and C(y1, . . . , yk | x1, . . . , xm)

instead of

C(code(y1, . . . , yk )) and C(code(y1, . . . , yk ) | code(x1, . . . , xm))

respectively. The change of the encoding affects the value of Kolmogorov complexity
by only an O(1) terms, so we do not have to specify our choice of the computable
enumeration of tuples.

For a finite set S (of strings or tuples of strings) we define its Kolmogorov com-
plexity as the Kolmogorov complexity of the list of all elements of S in alphabetical
order.

In this manuscript we do not provide an exhaustive exposition of the basic prop-
erties of Kolmogorov complexities. For an extensive survey on this theory, we refer
the reader to [8], [27], [65], [76], [99]. In this introduction, we only recall the basic
properties of Kolmogorov complexity that are crucial for algorithmic information
theory.

Remarks on incompressible words. From a simple counting argument, it follows
that for every n there is a binary string x of length n whose complexity is at least
n (i.e., C(x) ≥ n). Such a string is called incompressible. Similarly, for every integer
c > 0 there are at most 2n−c strings of length n whose complexity is less than n − c.
Thus, most strings of length n are almost incompressible (for all strings of length n
except for a fraction of size 2−c their Kolmogorov complexity is not less than n − c).

Let us mention another (much more involved) fact concerning infinite se-
quences: there exists a bi-infinite binary sequence where all factors of length n have
Kolmogorov complexityΩ(n). This result is known as Levin’s lemma:
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Lemma 1. (a) [one-dimensional version] For every c < 1 there exists a bi-infinite bi-
nary sequence (. . . x−1x0x1x2 . . .) such that for all large enough n and for all k

C(xk xk+1xk+2 . . . xk+n−1) > cn.

(b) [multi-dimensional version] for every integer number d > 1 and for every real
number c < 1 there exists a d-dimensional configuration

f :Zd → {0,1}

such that for all large enough n the Kolmogorov complexity of every n ×n × . . .×n
pattern in this configuration is greater than cnd .

Observe that a randomly chosen infinite sequence (or a randomly chosen d-di-
mensional configuration) with probability 1 contains all possible finite patterns and
therefore does not satisfy Lemma 1. In particular, this property does not hold for
Martin-Löf random sequences (see the definition of infinite algorithmically random
objects in [6] and in the textbooks [76], [99]). Lemma 1 can be proven with the chain
rule for the prefix-free version of Kolmogorov complexity or with the Local Lovász
Lemma, see [68], [74].

Basic notions of algorithmic information theory. We use the standard notation
for the mutual information:

I (x : y) := C(x)−C(x | y)

and its conditional version

I (x : y | z) := C(x | z)−C(x | y, z).

Now we proceed with the algorithmic version of the “chain rule.” This theorem
was historically one of the first nontrivial results on Kolmogorov complexity:

Theorem 3 (Kolmogorov–Levin, [8]). There exist constants c1 and c2 such that for all
strings x, y

|C(x, y)−C(x)−C(y | x)| ≤ c1 logC(x, y)+ c2. (1.1)

The logarithmic term in (1.1) cannot be avoided: the gap between C(x, y) and
C(x)+C(y | x) can be indeed of sizeΘ(log(C(x, y))), for arbitrarily large strings x and
y . Note that (1.1) can be reformulated in our notation as

C(x, y) =+ C(x)+C(y | x). (1.2)

Theorem 3 implies the symmetry of the mutual information:

Corollary 1. The mutual information is symmetric (up to a logarithmic term),

I (x : y) =+ I (y : x) =+ C(x)+C(y)−C(x, y).

A similar statements holds for the conditional mutual information,

I (x : y | z) =+ I (y : x | z) =+ C(x, z)+C(y, z)−C(x, y, z)−C(z).
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1.2 Non Algorithmic Measures of Information: Shan-
non’s and Hartley’s Approaches.

The original paper by Kolmogorov [3] was entitled “Three approaches to the quan-
titative definition of information.” One of these approaches was algorithmic, while
two others were the probabilistic and the combinatorial ones. Kolmogorov high-
lighted the parallels and close connections between these three formalisms.

In the probabilistic approach, which goes back to Claude Shannon, [2], the ob-
ject that contains “information” is a random variable (or, more precisely, a prob-
abilistic distribution). The measure of information in a distribution is defined as
Shannon’s entropy of this distribution. For a discrete distribution X with a finite
range

values of X : a1 a2 . . . ak

probabilities: p1 p2 . . . pk

(with non-negative probabilities pi that sum to 1) its entropy is defined as

H(X ) :=
k∑

i=1
pi log

1

pi
,

with the usual convention 0 · log 1
0 = 0.

Shannon’s entropy of X provides the asymptotically optimal compression ratio
for a flow of letters over an alphabet a1, . . . , ak with frequencies p1, . . . , pk . Thus, sim-
ilar to the algorithmic complexity, Shannon’s approach measures a sort of optimal
compression rate. The difference between these approaches is that Shannon’s mea-
sure of information focuses only on the frequencies of letters, while the Kolmogorov
complexity deals with all types of regularities.

For jointly distributed random variables X and Y , for each value b j of Y we can
consider the corresponding conditional distribution on X and the value of Shan-
non’s entropy for this conditional distribution, denoted H(X | Y = b j ). The weighted
average of these values is called the conditional entropy of X given Y ,

H(X | Y ) :=∑
j

prob[Y = b j ] ·H(X | Y = b j ).

Thus, for a pair of jointly distributed random variables (X ,Y ) we have the follow-
ing standard information quantities: the entropy of the entire distribution H(X ,Y ),
the entropies of the marginal distributions H(X ) and H(Y ), and the conditional en-
tropies H(X | Y ) and H(Y | X ). A version of the “chain rule” for Shannon’s entropy
can be easily deduced from the basic definitions:

H(X ,Y ) = H(X )+H(X | Y ). (1.3)

It follows immediately that the mutual information defined as

I (X : Y ) := H(Y )−H(Y | X )

is symmetric:
I (X : Y ) = I (Y : X ) = H(X )+H(Y )−H(X ,Y ). (1.4)
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Given a jointly distributed triple of random variables (X ,Y , Z ), we can define the
conditional mutual information

I (X : Y | Z ) := H(Y | Z )−H(Y | X , Z ).

This quantity also enjoys the property of symmetry:

I (X : Y | Z ) = I (Y : X | Z ) = H(X | Z )+H(Y | Z )−H(X ,Y | Z )

= H(X , Z )+H(Y , Z )−H(X ,Y , Z )−H(Z )
(1.5)

For a detailed introduction to Shannon’s information theory, we refer the reader to
the classic textbooks [65], [85].

We can see now that even syntactically the basic properties of the Kolmogorov
complexity and Shannon’s entropy look very similar: we have similar expressions of
the chain rule, similar properties of symmetry of the mutual information, and so on.
In the present manuscript, we address this parallelism in several different contexts.
In some cases we establish a formal equivalence: the properties of algorithmic in-
formation theory can be translated into formally equivalent properties of Shannon’s
information theory, and visa-versa. Thus, in these cases, the technique from one
theory can be re-employed to prove statements in the other one. In other cases we
will use this parallelism as a heuristics: knowing a statement from one incarnation of
information theory we can conjecture plausible homologous statements in the other
one, even though there is no formal correspondence between these statements. Fur-
thermore, in some cases we observe a discrepancy between the algorithmic and the
probabilistic versions of information theory; and while exploring the profound rea-
sons explaining this discrepancy we reveal particularly interesting properties of both
Kolmogorov complexity and Shannon’s entropy.

In conclusion of this section, we mention the third approach to the quantitative
definition of information — the combinatorial one. It goes back to Ralph Hartley, [1],
who defined the information contained in a finite set as a logarithm of the cardinal-
ity of this set. On the one hand, this idea is very natural, since we need dlog#Ae bi-
nary digits to specify an element in a set A. On the other hand, this definition seems
to be very naive and simplistic. Nevertheless, the combinatorial approach turns out
to be far from trivial. Even very elementary questions on Hartley’s information lead
to interesting and non self-evident combinatorial results. Actually, the interplay be-
tween Hartley’s, Shannon’s, and Kolmogorov’s approaches provides a wide range of
applications of Shannon’s entropy and Kolmogorov complexity. We discuss several
combinatorial applications of information theory in Section 1.12.

1.3 Information Quantities for a k-tuples of Correlated
Objects

For an individual bit string x we have only the value of its Kolmogorov complexity
C(x), and this single quantity represents the most fundamental properties of x from
the perspective of algorithmic information theory. For a pair of strings, x and y ,
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we have several different meaningful information quantities. First of all, we have
the Kolmogorov complexities of both strings, C(x) and C(y), and the Kolmogorov
complexity of the pair, C(x, y). Besides, we have two conditional complexities C(x |
y) and C(y | x), and the values of the mutual information I (x : y) and I (y : x). There
are several well-known correlations between these quantities. From Theorem 3 it
follows that

C(x, y) =+ C(x)+C(y | x),
C(x, y) =+ C(y)+C(x | y),
I (x : y) =+ C(x)+C(y)−C(x, y),
I (x : y) =+ I (y : x),

where all equations hold “up to a logarithmic additive term,” i.e., up to the term
O(logC(x, y)). It is remarkable that the logarithmic residue terms cannot be elim-
inated from these relations (see [8]). In what follows we ignore the accuracy issue
and always consider relations between information quantities up to an unavoidable
logarithmic term (which is assumed to be negligibly small with respect to the com-
plexity of the strings involved).

We observe that all information quantities for x and y listed above can be ex-
pressed (up to a logarithmic term) as linear combinations of three “primary” quan-
tities. The choice of the triple of primary quantities (like the choice of a coordi-
nate system in a three-dimensional space) is not unique. One standard approach is
to choose as the “basic coordinates” the values of unconditional complexities C(x),
C(y), and C(x, y). Then the other quantities for the triple can be expressed as

C(x | y) =+ C(x, y)−C(y),
C(y | x) =+ C(x, y)−C(x),
I (x : y) =+ C(x)+C(y)−C(x, y),
I (y : x) =+ C(x)+C(y)−C(x, y).

In some cases it is more convenient to chose other primary quantities: the values
of the conditional complexities C(x | y) and C(y | x), and the mutual information
I (x : y). Then the other quantities can be represented as

C(x) =+ C(x | y)+ I (x : y),
C(y) =+ C(y | x)+ I (x : y),

C(x, y) =+ C(x | y)+C(y | x)+ I (x : y),
I (y : x) =+ I (y : x).

These simple relations suggest a geometric representation of all standard informa-
tion quantities: we can visualize the “complexity profile” of a pair of strings (x, y)
by the Venn-like diagram, as shown in Fig. 1.1. In this picture, the area covered by
the left circle corresponds to the value of C(x), and the area covered by the right
circle corresponds to the value of C(y); the area of the union of both circles corre-
sponds to the value of C(x, y). Accordingly, the complement of one circle to another
corresponds to the conditional complexity, i.e., in this picture the size of the red
area represents C(x | y) and the size of the blue area represents C(x | y). The size of
the intersection of the circles (the violet area in the picture) represents the value of
I (x : y) =+ I (y : x).
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x y

Figure 1.1: The diagram representing the information quantities of a pair (x, y).

All quantities shown in Fig. 1.1 (the “atomic” quantities C(x | y), C(y | x), I (x :
y) and their combinations) are non-negative for all pairs (x, y) (as usual, up to a
logarithmic term). The non-negativity of C(x | y) and C(y | x) is trivial; the non-
negativity of the mutual information is a reformulation of the well-known inequality

C(x, y) ≤+ C(x)+C(y)

(which claims that we can combine a description of x and a description of y in a
joint description of the pair (x, y), and the joining of two descriptions requires only
a logarithmic overhead).

Let us extend the observations made above and adapt this geometric represen-
tation to a triple of binary strings. Given a triple of binary strings x, y, z we deal with
a bunch of information quantities. First of all, we have the values of Kolmogorov
complexity for each string, for each pair of strings, and for the entire triple,

C(x),C(y),C(z),C(x, y),C(x, z),C(y, z),C(x, y, z) (1.6)

(we may ignore the order of strings in each pair and in the triple, since by varying
the order of components in a tuple, we change the Kolmogorov complexity of the
tuple by only an additive term O(1)). Besides these “canonical” quantities we have
several values of the conditional complexities (e.g., C(x | y), C(x | y, z), C(x, y | z))
and the mutual information (e.g., I (x : y), I (x : y, z)). We also have the quantities
of the conditional mutual information, e.g., I (x : y | z). There is one more (a less
standard) information quantity called the mutual information of the triple, denoted
by I (x : y : z). It has many equivalent (up to a logarithmic term) definitions; the most
symmetric one is

I (x : y : z) := C(x)+C(y)+C(z)
−C(x, y)−C(x, z)−C(y, z)
+C(x, y, z).

Using the Kolmogorov–Levin theorem, we can express each of these quantities as a
linear combination of the primary values (1.6), e.g.,

I (x, y : z) =+ C(x, y)+C(z)−C(x, y, z),
I (x : y | z) =+ C (x, z)+C (y, z)−C(x, y, z)−C(z),
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x y

z

Figure 1.2: The diagram representing the information quantities of a triple of strings
(x, y, z).

x y

z

Figure 1.3: The area corresponding to C(x | y, z).

and so on.
Venn diagrams help to deal with this variety of information quantities, see

Fig. 1.2. In this picture the Kolmogorov complexities of x, y , and z correspond to
the areas of the circles (red, blue, and gray respectively); the Kolmogorov complex-
ity of a pair or a triple corresponds to the area occupied by the union of two or three
circles.

The conditional complexities are represented by the differences of the corre-
sponding areas: C(x | y, z) is shown in Fig. 1.3, C(x, y | z) in Fig. 1.4, and so on. The
values of the mutual information are represented by the corresponding intersec-
tions. For example, the value of I (x : y) is represented by the intersection of the red
and the blue circles in Fig. 1.2; the value of I (x, y : z) is shown in Fig. 1.5; the value
of I (x : y | z) is shown in Fig. 1.6. The mutual information of the triple I (x : y : z) is
shown in Fig. 1.7.

So far the geometric representation in Fig. 1.1 is only a simple way to visualize the
information quantities, without any “added value cost.” However, these diagrams
simplify the manipulation with information quantities. For example, using these
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z

Figure 1.4: The area corresponding to C(x, y | z).

pictures it is easy to guess that

C(x, y | z) =+ C(x | y, z)+C(y | x, z)+ I (x : y | z),
I (x, y : z) =+ I (x : z | y)+ I (y : z | x)+ I (x : y : z),

or
I (x : y : z) =+ I (x : y)− I (x : y | z).

Once such an equation is seen from the diagram, its formal proof can be easily ob-
tained as a combination of several instances of the basic equation from the Kolmo-
gorov–Levin theorem.

Notice that all information quantities for a triple of string can be represented as
linear combinations of seven “atomic” quantities

C(x | y, z), C(y | x, z), C(z | x, y),

I (x : y | z), I (x : z | y), I (y : z | x),

I (x : y : z)

(1.7)

(one guy for each “atomic” area in Fig. 1.2). Thus, we have two useful “coordinate
systems” that permit to express all standard information quantities for a triple of
strings: the “canonical” quantities (1.6) and the “atomic” quantities (1.7). Obviously,
all quantities (1.6) are non-negative. The quantities (1.7) are also non-negative (up
to a logarithmic term) with one exception: the mutual information of the triple I (x :
y : z) can be far below zero. For example, for a pair of independent n-bit strings x,
y of maximal complexity, and for z defined as the bitwise XOR of x and y , we have
I (x : y : z) ≈−n.

For an arbitrary n > 3 we can take an n-tuple of strings (x1, . . . , xn) and consider
information quantities of all kind involving these strings. And again, similarly to the
case of n = 2 and n = 3, all usual information quantities (unconditional and condi-
tional complexities and mutual information) can be represented as linear combina-
tions of the “canonical” quantities

C(xi1 , . . . , xik ) (1.8)

(here we take all 2n −1 non-empty subsets of indices 1 ≤ i1 < . . . < ik ≤ n). We can
also define a general version of 2n −1 “atomic” coordinates, similar to (1.7) (though
drawing a visual diagram similar to Fig. 1.1 and Fig. 1.2 is not that simple for n > 3).
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z

Figure 1.5: The area corresponding to I (x, y : z).

x y

z

Figure 1.6: The area corresponding to I (x : y | z).

x y

z

Figure 1.7: The area corresponding to I (x : y : z).
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1.4 Universal Information Inequalities

We mentioned in the previous section that for every n-tuple of strings (x1, . . . , xn) we
have 2n −1 “canonical” information quantities (1.8). We refer to this vector of real
numbers as the complexity profile of (x1, . . . , xn). A fundamental problem of algo-
rithmic information theory is to find a characterization of the set of all complexity
profiles for every integer n. (Roughly speaking, which vectors can be realized as
complexity profiles?) This problem is rather simple for n = 2 and n = 3 (see [j16]),
but it remains widely open for n > 3. In what follows we discuss a dual version of
this problem — the problem of linear information inequalities.

It is well-known that the following inequalities are true for all x, y, z:

C(x) ≤+ C(x, y),
C(x, y) ≤+ C(x)+C(y),
C(x, y, z)+C(z) ≤+ C(x, z)+C(y, z).

The first of these inequalities is trivial: the optimal description of x is not longer
than the optimal description of (x, y) (this inequality holds up to an additive con-
stant, even without logarithmic terms). The second inequality claims that a pair
of descriptions for x and y can be joint in a description for (x, y) (with a logarith-
mic overhead). The last inequality becomes more intuitive if we rewrite it (using the
Kolmogorov–Levin theorem) to the form

C(x, y | z) ≤+ C(x | z)+C(y | z),

and observe that a pair of programs translating z to x and z to y can be joined in one
program translating z to 〈x, y〉 (again, with a logarithmic overhead).

These three inequalities rewrite to more compact forms

C(y | x) ≥+ 0,
I (x : y) ≥+ 0,
I (x : y | z) ≥+ 0,

respectively. These inequalities claim that every “atom” in Fig. 1.1 is non-negative.
Of course, these inequalities remain valid of we substitute any tuples of strings

instead of individual strings x, y, z. Thus, for all (x1, . . . , xn) we have

C(xV ) ≤+ C(xW ) for V ⊂W,
C(xV ∪W ) ≤+ C(xV )+C(xW ), for all V ,W,
C(xV ∪W )+C(xV ∩W ) ≤+ C(xV )+C(xW ) for all V ,W

(1.9)

(the properties of monotonicity, subadditivity, and submodularity). The inequalities
of type (1.9) are usually called basic information inequalities.

For a triple of strings (x, y, z) the basic inequality claim that each “atom” in
Fig. 1.8 except for the central area (corresponding to I (x : y : z)) is non-negative,

C(x | y, z) ≥+ 0, C(y | x, z) ≥+ 0, C(z | x, y) ≥+ 0,
I (x : y | z) ≥+ 0, I (x : z | y) ≥+ 0, I (y : z | x) ≥+ 0,
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C(x | y, z) ≥+ 0 C(y | x, z) ≥+ 0

C(z | x, y) ≥+ 0

I (x : y : z)

I(
x

:y
|z

)≥
+

0

I (y : z | x)≥ +
0I (x

: z | y)≥
+ 0

Figure 1.8: The atomic information quantities of a triple of strings (x, y, z): six of
them are always non-negative. The quantity shown in white can be negative.

and also the sums corresponding to the pairwise mutual information are non-
negative,

I (x : y | z)+ I (x : y : z) ≥+ 0,
I (x : z | y)+ I (x : y : z) ≥+ 0,
I (y : z | x)+ I (x : y : z) ≥+ 0.

(The other basic inequalities can be reduced to the nine inequalities listed above.)
Thus, the class of basic inequalities for 2-tuples of strings reduces to 3 indepen-

dent inequalities, and the class of basic inequalities for 3-tuples of strings reduces
to 9 independent inequalities (see [j16], [87] for detail).

Obviously, any linear combination of basic inequalities (with non-negative real
coefficients) is again a universal information inequality, i.e., an inequality that is
valid (up to a logarithmic term) for all tuples of strings. In what follows we discuss
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Figure 1.9: Diagrams representing inequality (1.10).

two simple (and pretty standard) examples.

Example 1. The inequality

2C(x, y, z) ≤+ C(x, y)+C(x, z)+C(y, z) (1.10)

is valid as a positive linear combination of basic inequalities. To see this, we rep-
resent the left-hand side and the right-hand side of this inequality in Venn-like di-
agrams, see Fig. 1.9. The difference between the left-hand side and the right-hand
side of this inequality is shown in Fig. 1.10. In other words, we have reduced (1.10)
to the inequality

I (x : y | z)+ I (x : z | y)+ I (y : z | x)+ I (x : y : z) ≥+ 0.

The sum of the four “atomic” quantities with non-zero coefficients shown in Fig. 1.10
can be represented as the sum of I (x : y), I (x : z | y), and I (y : z | x). Each of these
three quantities is non-negative (up to a logarithmic term), and therefore the left-
hand side of (1.10) is indeed not greater than the right-hand side of this inequality.

This argument can be explained more formally, without diagrams. We start with
three basic inequalities I (x : y) ≥+ 0, I (x : z | y) ≥+ 0, and I (y : z | x) ≥+ 0. The sum of
these inequalities rewrites to

C(x)+C(y)−C(x, y) ≥+ 0
+ C(x, y)+C(y, z)−C(x, y, z)−C(y) ≥+ 0

C(x, y)+C(x, z)−C(x, y, z)−C(x) ≥+ 0

C(x, y)+C(x, z)+C(y, z)−2C(x, y, z) ≥+ 0,

which is equivalent to (1.10).
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Figure 1.10: The difference between the right-hand side and the left-hand side
of (1.10).

Example 2. Similarly we can prove the inequality

C(z) ≤+ C(z | x)+C(z | y)+ I (x : y). (1.11)

The left-hand side and the right-hand side of this inequality are represented in the
diagrams in Fig. 1.11. The difference between the left-hand side and the right-hand
side of this inequality is shown in Fig. 1.12. The two o “atomic” quantities with non-
zero coefficients in Fig. 1.12 are I (x : y | z) and C(z | x, y). Both of them are non-
negative due to the basic information inequalities.

Let us rephrase the same argument more formally. The basic inequalities I (x : y |
z) ≥+ 0 and C(z | x, y) ≥+ 0 rewrite to

C(x, z)+C(y, z)−C(x, y, z)−C(z) ≥+ 0,
C(x, y, z)−C(x, y) ≥ 0.

The sum of these inequalities is

C(x, z)+C(y, z)−C(x, y)−C(z) ≥+ 0,

which easily rewrites to (1.11).

The two examples above show that the proof of corollaries of basic information
inequalities is a simple mechanical procedure. If more than three variables are in-
volved, we may need to use a linear programming solver instead of a Venn-type di-
agram, but the general principle remains simple. In the subsequent text, we skip
detailed proofs of inequalities that can be reduced to combinations of basic infor-
mation inequalities.

In general, we say that an inequality with coefficientsλV is a universal inequality
for the Kolmogorov complexity, if ∑

V ⊂{1,...,k}
λV C(xV ) ≥+ 0 (1.12)
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Figure 1.11: Diagrams representing inequality (1.11).
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Figure 1.12: The difference between the right-hand side and the left-hand side
of (1.11).
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for all x1, . . . , xk . (In the implicit O(logn) term in (1.12) we assume n = C(x1, . . . , xk ),
and the multiplicative factor hidden in the O(·) notation does not depend on the
strings involved.)

Major Open Problem: Characterize the universal inequality for the Kolmogorov
complexity (1.12).

Only a partial solution of this problem is known:

Theorem 4 ([j16]). For n ≤ 3 the class of all universal inequality for the Kolmogorov
complexity of n-tuples of strings coincides with the class of all non-negative linear
combinations of the basic information inequalities (1.9).

Theorem 4 cannot be extended to n > 3, see inequality (1.14) below. In other
words, it is known that for every n > 3 there exist universal information inequalities
that cannot be represented as a combination of basic inequalities, though a com-
plete description of these inequalities remains elusive.

The Major Open Problem above can be naturally translated in the language of
Shannon’s theory. We say that an inequality with coefficients λV is a universal in-
equality for Shannon’s entropy, if ∑

V ⊂{1,...,n}
λV H(XV ) ≥+ 0 (1.13)

for all joint distributions (X1, . . . , Xn) with a finite range. We can ask a similar ques-
tion on a characterization of the universal inequalities for Shannon’s entropy. It
turns out that these two questions are equivalent, i.e., the same linear inequalities
are valid for Shannon’s entropy and for Kolmogorov complexity:

Theorem 5 ([j16]). For every integer n ≥ 0 and for every set of 2n −1 coefficients λV

(V ⊂ {1, . . . ,n}), inequality (1.12) is valid for all binary strings x1, . . . , xn if and only if
inequality (1.13) is valid for all jointly distributed (X1, . . . , Xn).

Thus, though for n > 3 we do not know what inequalities are valid for the Kolmo-
gorov complexities of n-tuples of strings and for Shannon’s entropies of n-tuples of
random variables, we know that these classes of inequalities are the same.

In 1998 Z. Zhang and R.W. Yeung came up with the first example of a universal
inequality for Shannon’s entropy that cannot be represented as a combination of
basic inequalities, [44]. Technically, this inequality involves four random variables
and can be expressed in standard notation as follows:

I (X : Y ) ≤ 2I (X : Y | A)+ I (X : Y | B)+ I (A : B)

+ I (X : A | Y )+ I (Y : A | X )
(1.14)

A more symmetric version (with 5 variables) of (1.14) was later proven in [j13]:

I (X : Y ) ≤ I (X : Y | A)+ I (X : Y | B)+ I (A : B)

+ I (X : Y | Z )+ I (X : Z | Y )+ I (Y : Z | X )
(1.15)

(inequality (1.14) is an instantiation of (1.15) for A = Z ).
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Given Theorem 5, we can conclude that the counterparts of (1.14) and (1.15) are
universal inequalities for the Kolmogorov complexity (that are valid, as usual, up to
a logarithmic additive term). The universal inequalities for Shannon’s entropy and
for Kolmogorov complexity that cannot be represented as a convex combination of
basic inequalities are called in the literature non-Shannon-type linear information
inequalities. Since 1998 many examples of non-Shannon-type information inequal-
ities were discovered, see [84]. Most of these inequalities were originally proven for
Shannon’s entropy. Due to Theorem 5, each of these inequalities can be reformu-
lated as an inequality for Kolmogorov complexity.

1.5 Stochastic Strings and Tuples of Strings

Though the notion of (α,β)-stochasticity is not a central subject of this manuscript,
we extensively use it as a powerful technical tool. In this section, we recall the defi-
nition and the basic properties of stochastic objects.

The idea of a stochastic object was proposed by Kolmogorov in the 1970s (see
[19]). The following definition first appeared in print in [21].

Definition 4. A string x is called (α,β)-stochastic if there is a finite set S containing
x such that C(S) ≤α and C(x | S) ≥ log(#S)−β.

This definition is usually applied with rather small α and β (say, with α and β

logarithmic in complexity of x). The intuitive interpretation of this definition is the
idea of “explanation” of a random object x. Here S is a “simply explainable” set, and
x is a “typical” element in this set. Thus, if we get x as an observation or a measure-
ment of a “natural phenomenon” (in one or another sense), then it is plausible to
conjecture that the global natural phenomenon is the set S, and we observed just a
typical instance of this phenomenon.

The property C(S) ≤αmeans that there is a program of size at mostα that prints
the list of all elements of S and stops. A distinguishable completion is crucial, it is
not enough to have an algorithm that enumerates all elements of S but never shows
manifestly the end of the process.

For example, if x is a binary string of length n and C(x) ≥ n −O(logn), then x is
(O(logn),O(logn))-stochastic since we can let S be the set of all strings of length n.

Definition 4 applies to tuples of strings as well as to individual strings. In fact, in
most applications of Kolmogorov complexity, we deal with various (O(logn),O(logn))-
stochastic objects (i.e., with typically behaving constructive objects chosen from a
set S that has a simple description), see many instances of the incompressibility ar-
gument in [76].

The very fact that some strings are not stochastic (for reasonably small α and β)
is not trivial. It is known (see [21]) that if

2α+β< n −O(logn),

then there exists a string of length n that is not (α,β)-stochastic. An example of
a highly non-stochastic object is the n-bits prefix of Chaitin’s Omega number, [18]
(see also the survey [100]).
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For every string x, there exists a similar stochastic “sibling” x ′. More precisely,
we say that x and x ′ are δ-equivalent, if

C(x | x ′) < δ and C(x ′ | x) ≤ δ.

We observe that for every string x of complexity n, there exists an (O(logn),O(logn))-
stochastic x ′ such that x and x ′ are O(logn)-equivalent. Indeed, for any given x we
can define its stochastic sibling x ′ as the shortest description (in the sense of the
optimal description method U , see p. 27) of x.

The same time, a tuple combined of stochastic objects can be highly non-sto-
chastic as a whole. Moreover, we generally cannot convert a non-stochastic tuple in
a stochastic one by changing each component of the tuple to an O(logn)-equivalent
sibling:

Theorem 6 ([j9]). Let α,β,γ,C > 0 be real numbers such that α+β> γ and α,β< γ.
Then for all large enough n there exist strings x1, x2 such that

• C(x1) =+ αn,

• C(x2) =+ βn,

• C(x1, x2) =+ γn,

and there is no (C logn,C logn)-stochastic pair (x ′
1, x ′

2) where xi is (C logn)-equivalent
to x ′

i for i = 1,2.

In Section 1.8 we will see that stochastic tuples of strings enjoy nice properties
of extracting the mutual information. Theorem 6 explains why this result cannot be
easily extended to non-stochastic tuples. On the other hand, by restricting ourselves
to the class of stochastic objects, we do not change the class of valid information in-
equalities. More specifically, we say that an inequality with coefficients λV (indexed
by nonempty subsets V ⊂ {1, . . . ,k}) holds for all (O(logn),O(logn))-stochastic tu-
ples, if for every real number C there exists a D such that for every (C logn,C logn)-
stochastic k-tuple 〈x1, . . . , xk〉∑

V ⊂{1,...,k}
λV C(xV )+D logC(x1, . . . , xk ) ≥ 0. (1.16)

Theorem 7. For every integer k ≥ 0, for every set of 2k − 1 coefficients λV (V ⊂
{1, . . . ,k}), inequality (1.12) is valid for all binary strings x1, . . . , xn if and only if the
inequality with the same coefficients is valid for (O(logn),O(logn))-stochastic tuples.

This theorem was not proven explicitly in [j16], though the argument from [j16,
theorem 1] easily adapts to this setting, as we show below.

Proof: From Theorem 5 we know that the same classes of linear inequalities are
valid for Kolmogorov complexity and for Shannon’s entropy. Also all universal in-
equalities for Kolmogorov complexity hold for all (O(logn),O(logn))-stochastic tu-
ples. It remains to show that the inequalities for Kolmogorov complexity that are
valid for all (O(logn),O(logn))-stochastic tuples also apply to Shannon’s entropy.
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Let (X1, . . . , Xk ) be jointly distributed random variables. We are going to show
that the counterparts of inequality (1.16) that are valid for the stochastic tuples of
strings hold true for Shannon’s entropies involving (X1, . . . , Xk ).

We assume that each Xi is distributed on a finite alphabet Σi . We fix an integer
N and consider (k ×N )-matrices

a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . . . . . . . . . . . . . . . . .
ak1 ak2 . . . akN


where the elements of each i th row are letters from Σi , i = 1, . . . ,k. We restrict our-
selves to the matrices where each column

σ1

σ2
...
σk


appears in the matrix

prob[X1 =σ1 & .. . & Xk =σk ] ·N +O(1)

times (the O(1) term is added to handle the rounding and guarantee that this set of
matrices is not empty). We define SN as the set of all k-tuples composed of rows of
these matrices.

It can be verified (see [j16] or [j17] for details) that the cardinality of SN is equal
to 2H(X1,...,Xk )N+O(logn) and for all tuples 〈x1, . . . , xk〉 in SN we have

C(xV ) ≤+ N ·H(XV ) for every set of indices V ⊂ {1, . . . ,k};

moreover, for most tuples in SN this bound is tight, i.e.,

C(xV ) =+ N ·H(XV ) for every set of indices V ⊂ {1, . . . ,k}. (1.17)

Now we fix an arbitrary tuple 〈x1, . . . , xk〉 in SN that satisfies (1.17). This tuple
is (O(log N ),O(log N ))-stochastic (as a typical element of a “simple” set SN ). Hence,
it satisfies every inequality (1.16) valid for stochastic tuples. Combining (1.16) with
(1.17) we obtain: ∑

V ⊂{1,...,k}
λV H(xV ) ·N +O(log N ) ≥ 0.

Dividing this inequality by N and letting N go to infinity we get∑
V ⊂{1,...,k}

λV H(xV ) ≥ 0,

i.e., the inequality with coefficients λV holds for the entropies of the initial distribu-
tion.

45
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Figure 1.13: The diagram representing the information quantities of a pair (x, y).

1.6 The Conditional Description Theorems: Absolute
and Resource-Bounded Versions

In this section, we discuss in more detail the information quantity C (x | y), which
is shown in the Venn diagram in Fig. 1.13. By definition, this value is the length of
the shortest program (in the optimal programming language) that translates y to
x. However, a naive interpretation of the diagram suggests that this quantity may
have a more explicit interpretation. We would like to think of C (x | y) as a part of x
that lays outside y . It turns out that this naive idea can be implemented in a formal
statement. More precisely, we can find a “fingerprint” of x of size close to C (x | y)
such that x can be reconstructed given this fingerprint and y . This statement is
referred to as Muchnik’s theorem on conditional descriptions:

Theorem 8 (An. Muchnik, [55]). Let x and y be two binary strings, C(x) ≤ n and
C (x | y) ≤ k. Then there exists a string p such that

• C(x | p, y) =O(logn),

• C(p) ≤ k +O(logn),

• C(p | x) =O(logn).

The constants hidden in O(·) notations do not depend on x, y and k,n.

Remark 1. The inequality C(p) ≤ k+O(logn) in the statement of the theorem can be
replaced by the condition |p| ≤ k.

Remark 2. Without the last condition, this theorem would be a trivial rewording of
the definition of conditional Kolmogorov complexity. The whole statement is inter-
esting only because we require that C(p | x) ≈ 0.

This theorem is an algorithmic counterpart of the asymmetric Slepian–Wolf the-
orem (which is a classic result in Shannon’s information theory, [13]). Muchnik’s
theorem on conditional descriptions can be naturally interpreted in terms of multi-
source information theory. Assume that some person Bob knows y and wants to
know x. Another person Alice knows x and wants to send some message p to Bob
so that the latter could reconstruct x. How long should be this message? Does Alice
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need to know y to be able to provide such a message? Muchnik’s theorem suggests a
kind of answer to these questions. Indeed, the complexity of a piece of information
p that together with y allows Bob to reconstruct x must be at least C(x | y). It is easy
to see that the minimal p can be found (with logarithmic advice) when given both
strings x and y . Muchnik’s theorem claims more: it explains that in fact Alice does
not need to know y , she can provide p given only x (and, again, some logarithmic
advice).

Remark 3. Bennett et al. suggested in [42] a statement similar to Muchnik’s theorem
above: they showed that an almost shortest program p translating y to x can be
obtained as a function of x; however, to compute this function we need an oracle
of size O(n) (this oracle depends on n and k but not on specific x and y). Thus,
in Theorem 8 we need O(logn) bits of advice to obtain p from x, and this advice
depends on y , while in [42, Theorem 3.11] we need O(n) bits of advice, though this
advice depends only on k and n.

Theorem 8 has an interesting generalization to the case of many conditions.

Theorem 9 ([55]). Let x and y1, . . . , ym be binary strings, C(x) ≤ n and C (x | yi ) ≤ ki

for i = 1, . . . ,m. Then there exists a string p such that

• C(x | p[1:ki ], yi ) =O(logn + logm) for i = 1, . . . ,m,

• C(p) ≤ max
i=1,...,m

{ki }+O(logn + logm),

• C(p | x) =O(logn + logm).

Here p[1:ki ] denotes the prefix of p of length ki . Since the O(·) terms in the inequalities
above involve logm, this statement is usually applied with m = poly(n).

Speaking informally, Theorem 9 claims that one fingerprint p obtained from x is
enough to reconstruct x, given any of the conditions yi . Moreover, to retrieve x from
yi , we need only the first ki bits of this fingerprint.

After the publication of [55], other authors suggested several alternative proofs
of Theorem 8. Some versions of these proofs work with slightly different conditions
(e.g., with resource-bounded versions of Kolmogorov complexity). All known proofs
of Muchnik’s theorem use more or less explicitly the following scheme. We construct
some family of functions

fi : {0,1}n → {0,1}k

such that for all sets S ⊂ {0,1}n of size ≈ 2k the functions fi are “almost one-to-one”
correspondences between S and {0,1}k . More precisely, for most x ∈ S at least one
of fi -images determines x almost-uniquely (there are very few other x ′ ∈ S such that
fi (x) = fi (x ′)). Then we can take

S = {x ′ : C(x ′ | y) ≤ k}

and choose a suitable values fi (x) as the value of p required in Theorem 8. The
difficult part of the proof is to construct the family of functions fi appropriate for
all S.
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The general scheme sketched above can be explained in various combinato-
rial terms and implemented with various techniques. For instance, [j8] reduces the
statement of Theorem 8 to a combinatorial problem called on-line matching. This
problem is an on-line version of the classical matching problem for bipartite graphs.
Muchnik’s theorem can be rephrased as some combinatorial statement about on-
line matchings, and then a proof of this combinatorial statement implies Muchnik’s
theorem (see [j8, Section 2]). Another approach to Muchnik’s theorem is based on
the notion of extractors. In what follows we discuss the technique of extractors and
its variations in some detail.

First of all we recall the conventional definition of an extractor graph. Let G be
a bipartite graph with N vertices in the left part and M vertices in the right part. We
allow parallel edges. We assume that all vertices of the left part have the same degree
D . We fix an integer K > 0 and a real number ε> 0 and define an extractor as follows.

Definition 5. A bipartite graph G is an extractor with parameters (N , M ,D,K ,ε) if for
all subsets S of its left part such that #S ≥ K and for all subsets Y of the right part the
inequality ∣∣∣∣#E(S,Y )

D ·#S
− #Y

M

∣∣∣∣< ε (1.18)

holds, where E(S,Y ) stands for the set of edges between S and Y .

This definition may be rephrased as follows: We consider the uniform distribu-
tion on a set S of left-part vertices. We take a random vertex x in S and a random
neighbor y of x. Then the probability to end up in Y is equal to #E(S,Y )/(D · #S).
And we claim that this probability is ε-close to #Y /M , which is exactly the probabil-
ity to end up in Y by taking a random vertex in the right part.

An extractor can be understood as a function of two arguments E xt that takes
as an input an index x = 1, . . . , N (a vertex of the left part) and j = 1, . . . ,D (an index
of the neighbor), and returns a y = 1, . . . , M (a vertex of the right part) that is the j th
neighbor of x. If we have at our disposal a “poor” source of randomness, which is a
uniform distribution on a K -element subset of the left part of the graph, and a per-
fectly uniform distribution on the set 1, . . . ,D , then by applying E xt to this pair we
get a distribution E xt (x, j ) that is ε-close to the “perfectly random” uniform distri-
bution on the right part of the graph. In other words, we “extract” the poor random-
ness from the given distribution by adding a moderate number of fresh perfectly
random bits.

The definition of extractors is interesting when M ≈ K (we extract almost all ran-
domness from the “poorly random” distribution) and D ¿ N (we need only very few
perfectly random bits). A probabilistic argument shows that extractors with some
nice parameters do exist:

Theorem 10 (see [48]). For all K , N , M and ε such that 1 < K ≤ N , M > 0, ε> 0, there
exists an (N , M ,D,K ,ε)-extractor with

D = max

{
O

(
M

ε2K

)
, O

(
1+ log N

K

ε2

)}
.

Moreover, this bound for D is optimal up to factor of (1/ε)O(1).
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Most applications in computer science require an explicit construction of ex-
tractors. By an explicit construction we mean that for arbitrary values of n and k
(where k ≤ n) there exists an extractor with parameters N = 2n and K = 2k , the cor-
responding values of parameters M and ε can be computed in time poly(n), and the
extractor as a function of two arguments is also computable in time poly(n). By now,
no explicit constructions of extractors with optimal parameters have been invented.
In every known explicit construction the trade-off between parameters is worse than
in Theorem 10. In the sequel, we use the following theorem:

Theorem 11 ([67]). For all k, n and ε such that 1 < k ≤ n and ε > 1/poly(n), there
exists an explicit (N , M ,D,K ,ε)-extractor with parameters N = 2n , M = D · 2k and

D = 2O((logn loglogn)2).

For the sake of brevity, in the sequel, we use a slightly weaker bound O(log3 n) in-
stead of O((logn loglogn)2) .

It turns out that the definition of extractors perfectly matches Muchnik’s idea
of conditional descriptions. We can prove Theorem 8 by taking an extractor E xt
from Theorem 10 with suitably chosen parameter and by letting p = E xt (x, j ) for
some value of j . This idea appeared in [49] (though without an explicit statement
of Theorem 10). Theorem 9 can be proven similarly with a suitably defined prefix
extractors, see [j8, Section 3.2–3.3] for details.

We can combine in the proof of Muchnik’s theorem with an explicit construction
of extractors from Theorem 11. This plan results in several versions of Theorem 8,
with one or another resource-bounded variant of Kolmogorov complexity. We start
with a version of of Muchnik’s theorem for the space-bounded variant of Kolmogo-
rov complexity:

Theorem 12 ([j8]). Let x and y be binary strings and n, k and s be numbers such that
C∞,s (x) < n and C∞,s (x | y) < k. Then there exists a binary string p such that

• C∞,O(s)+poly(n)(x | p, y) =O(log3 n);

• C∞,O(s)(p) ≤ k +O(logn);

• C∞,poly(n)(p | x) =O(log3 n),

where all constants in O- and poly-notation depend only on the choice of the optimal
description method.

The O(log3 n) terms in the last theorem come from Theorem 11. The poly-loga-
rithmic bound does not look natural here ; it seems to be an artifact of the proof.
As soon as explicit extractors with optimal parameters are constructed, the proof of
Theorem 12 from [j8] will imply a similar result with O(logn) terms.

Interestingly, in some cases, we can achieve virtually optimal bounds even with-
out optimal explicit extractors. In [93] D. Musatov showed that for the most interest-
ing type of the space bound s = poly(n), the terms O(log3 n) in Theorem 12 can be
reduced to O(logn). The proof suggested by Musatov employs a nice construction
of pseudo-random functions based on the Nisan–Wigderson generator, [32]. In the
next section, we revisit this construction in a different context.
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Later, B. Bauwens, A. Makhlin, N. Vereshchagin, and M. Zimand suggested a ver-
sion of Muchnik’s theory with a polynomial time bound for C(p | x):

Theorem 13 ( [104]). Let x and y be two binary strings, C(x) ≤ n and C (x | y) ≤ k.
Then there exists a string p such that

• C(x | p, y) =O(logn),

• C(p) ≤ k +O(logn),

• Cpoly(n),∞(p | x) =O(logn).

The constants hidden in O(·) notations do not depend on x, y and k,n.

Remark 4. A subtle argument in [104] shows that even with a non-optimal explicit
extractor from Theorem 11 we can get for Cpoly(n),∞(p | x) the bound O(logn) (in-
stead of a weaker threshold polylog(n), which might be expected).

Remark 5. The statement of Theorem 13 is in some sense non-symmetric: it involves
a time-bounded version of Kolmogorov complexity only for the term C(p | x) but not
for the other complexity terms.

One more variant of Muchnik’s theorem is due to M. Zimand:

Theorem 14 ([102], [103]). There exists a probabilistic algorithm that on input x,k,ε,
where x is a string, k is a positive integer and ε > 0, returns a string p of length
k +O(log(n/ε)), and for every y, if k ≥ C (x | y), then with probability (1− ε), p is a
program for x given y. The algorithm is using O(log(n/ε)) random bits, where n is the
length of x.

Moreover, the implied probabilistic algorithm can be made efficient (polynomial
time) if we increase the overhead in the size of p from O(log(n/ε)) to poly(log(n/ε)).

(A slightly weaker version appeared earlier in [91].) Loosely speaking, Theorem 14
claims that not only one fingerprint p obtained from x but most of them are suitable
to reconstruct x given y as a condition. Theorem 14 involves no help bits: we do not
need O(logn) bits of advice to reconstruct x given p and y . This theorem is used in
Section 1.14.

In conclusion, we mention another version of Muchnik’s theorem proven for
a somewhat uncommon variant of Kolmogorov complexity based on poly-time
Arthur–Merlin games (introduced in [61]). This proof extensively employs special
properties of the extractor constructed by L. Trevisan in [47]. For details, we refer
the reader to [j8, Section 3.5]

1.7 Digression: Bit-Probe Schemes

In this section, we discuss several results obtained with the technique from the pa-
per by D. Musatov [93] mentioned in the previous section (a proof of a version of
Muchnik’s theorem for space-bounded Kolmogorov complexity). These results do
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not involve Kolmogorov complexity explicitly — they deal with a sort of data struc-
tures1. More specifically, we construct a querying scheme for the static version of
the membership problem. The aim is to represent a set A ⊂ {1, . . . ,m} by some data
structure so that queries “x ∈ A?” can be replied fast. We focus on the case when the
number of elements in the set n = #A is much less than the size m of the universe
(e.g., n = exp{poly(loglogm)} or n = m0.01).

In practical application, there are several popular data structures that represent
sets: arrays, different types of height-balanced trees, hash tables, and so on. Ar-
guably the simplest way to store a set is to keep in memory an array of m bits: the
x-th bit in the data storage is equal to 1 if and only if x ∈ A. Then, to answer a query
“x ∈ A?” we need to read from memory a single bit. The disadvantage of this simple
approach is the size of the data structure: we keep in memory m bits, though there
exist only

(m
n

)= 2Θ(n logm) different subsets A of size n in the m-elements universe.
Nowadays the standard practical solution for the membership problem is a more

complex data structure proposed by Fredman, Komlós, and Szemerédi [22]. This
scheme uses perfect hashing. A set is represented as a table of O(n) words (hash-
values) of size logm bits, and a query “x ∈ A?” requires to read O(1) words from the
memory. The space complexity of this construction is quite close to the lower bound
Ω(log

(m
n

)
). Further improvements of this scheme were suggested in [26], [45], [51].

Similar asymptotics of space complexity was achieved in dynamic data structures,
which support fast update of the set stored in the database (see, e.g., the analysis
of the cuckoo hashing scheme in [57], [60]). A subtle analysis of the space and bit-
probe complexity for the membership problems was also given in [52] (in particular,
[52] suggested a membership scheme based on bounded concentrator graphs). All
these schemes require to read from the memory O(logm) bits to answer each query.

Another popular practical solution is Bloom’s filter, [7]. This data structure re-
quires only O(n) bits, whatever is the size of the universe; to answer a query we need
to read O(1) bits from the memory. The drawback of Bloom’s filter is that we get
false answers to some queries. Only false positives answers are possible (for some
x 6∈ A Bloom’s filter answers “yes”), but false negatives are not. When this technique
is used in practice, it is usually believed that for a “typical” set A the fraction of false
answers should be small. However, in many applications, we cannot fix a priori any
natural probability distribution on the family of all possible sets A and on the space
of possible queries.

An interesting alternative approach was suggested by Harry Buhrman, Peter Bro
Miltersen, Jaikumar Radhakrishnan, and Venkatesh Srinivasan, [54]. They intro-
duced randomness into the algorithm processing the queries. In their approach,
the data structure is defined deterministically for each set A, but when a query is
handled, we toss coins and read a randomly chosen bit from memory. In this model,
we may return a wrong answer with a small probability. However, there is a criti-
cal difference with the Bloom’s filter: in this scheme, we must correctly reply to the
query “x ∈ A?” with probability close to 1 for every x (not for most x).

Buhrman, Miltersen, Radhakrishnan, and Venkatesh investigated schemes with
two-sided and one-sided errors. In what follows, we focus mostly on one-sided

1This section can be skipped without loss of continuity.
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errors: if x ∈ A, then the answer must always be correct, and if x 6∈ A, then a
small probability of error is allowed. In this setting the trivial information-theoretic
bound still applies: the size of the structure representing a set A cannot be less that
log

(m
n

) =Ω(n logm) bits. Quite surprisingly, this bound can be achieved if we allow
two-sided errors and use only single bit probe for each query, [54]. We refer to the
scheme as the BMRV-scheme.

Theorem 15 (two-sided BMRV-scheme, [54]). For any ε > 0 there is a scheme for
storing subsets A of size at most n of a universe of size m using O( n

ε2 logm) bits so that
any membership query “Is x ∈ A?” can be answered with error probability less than ε

by a randomized algorithm which probes the memory at just one location determined
by its coin tosses and the query element x.

The size of the memory achieved in this theorem is only by a constant factor
greater than the best possible. In fact, the trivial lower bound log

(m
n

)
can be im-

proved. For smaller probability of error, we need more memory.

Theorem 16 (lower bound from [54]). (a) For any ε > 0 and n
ε < m1/3, any ran-

domized scheme with error ε that answers queries using one bitprobe must use space
Ω( n

ε log1/ε logm).
(b) Any scheme with one-sided error ε that answers queries using at most one

bitprobe must useΩ( n2

ε2 log(n/ε)
logm) bits of storage.

Note that for one-sided error schemes the lower bound in this theorem is much
stronger. Part (b) of the theorem implies that we cannot achieve the size of space
O(n logm) with a one probe scheme and one-sided error. However we can get pretty
close to this lower bound if we allow O(1) probes instead of a single probe:

Theorem 17 (one-sided BMRV-scheme, [54]). Fix any δ> 0. There exists a constant
t such that the following holds: There is a one-sided 1

3 -error randomized scheme that

uses space O(n1+δ logm) and answers membership queries with at most t probes.

The constructions in [54] are not explicit: given the list of elements A, the cor-
responding scheme is constructed (with some brute force search) in time 2poly(m).
Moreover, each membership query requires exponential in m computations.

The crucial part of the constructions in Theorem 15 is an unbalanced expander
graph. The existence of a graph with required parameters was proven in [54] proba-
bilistically. We know that such a graph exists and we can find it by brute force search,
but we do not know how to construct it explicitly. If we have an effective construc-
tion of an expander with suitable parameters, we will get a more practical variant of
the BMRV-scheme.

Since Bassalygo and Pinsker defined expanders [10], [12], many explicit (and
poly-time computable) constructions of expander graphs were discovered, see an
excellent survey [66]. However, most of the known explicit constructions are based
on the spectral technique that is not suitable to get an expander of degree d with an
expansion parameter greater than d/2, see [34]. Such an expansion rate is not good
enough for the construction used in the proof of Theorem 15. There are only very
few effective constructions of unbalanced graph with larger expansion parameter,

52



especially for highly unbalanced graphs. Some explicit version of the BMRV-scheme
was suggested in [56] (this construction involves Trevisan’s extractor, which can be
used to build a good unbalanced expander, see [53]). The best known explicit con-
struction of a highly unbalanced expander graph was presented in [79]. It is based
on the Parvaresh–Vardy code with an efficient list decoding. Due to the very special
structure if this expander, it enjoys nice property of effective decoding. Using this
technique, the following variant of Theorem 15 was proven:

Theorem 18 ([79]). For any δ > 0 there exists a scheme for storing subset A of size at
most n of a universe of size m using n1+δ ·poly(logm) bits so that any membership
query can be answered with error probability less than ε by a randomized algorithm
which probes the memory at one location determined by its coin tosses and the query
element x.

Given the list of elements A, the corresponding storing scheme can be constructed
in time poly(logm,n). When the storing scheme is constructed, a query for an element
x can be calculated in time poly(logm).

In Theorems 15, 17, 18, a set A is encoded into a bit string, and when we process
a query “x ∈ A?” we read from this string one bit (or O(1) bits in Theorem 17) chosen
by a randomized algorithm. Then we use the retrieved bit to decide whether x is an
element of the set. Notice that in these computations we implicitly use more infor-
mation than just a single bit extracted from the memory. Indeed, to make a query
and to process the retrieved bit, we need to know the parameters of the scheme: the
size n of the set A, the size m of the universe, and the allowed error probability ε.
This auxiliary information is very short (it takes only log(m/ε) bits), and it does not
depend on the stored set A. We assume that this information is somehow hardwired
into the bitprobe scheme, or, so to speak, “cached” in advance by the algorithms
processing queries.

We propose to consider a slightly looser setting, where some small information
“cached” by the scheme can depend not only on n,m, and ε but also on the set A.
Technically, the data stored in our scheme consists of two parts of different size:
a long bit string B of length n ·polylog(m) and a small cached string C of length
poly(logm). Both these strings are prepared for a given set A of n elements in the
universe of size m. When we need to answer a query “x ∈ A?”, we use C to compute
probabilistically a position in B and read one bit at this position. This is enough to
answer whether x is an element of A, with a small one-sided error:

Theorem 19 ([j5]). Fix any constant ε> 0. There exists a one-sided ε-error random-
ized scheme that includes a string B of length O(n log2 m) and an auxiliary word C of
length poly(logm). We can answer membership queries “x ∈ A?” with one bit probe
to B. For x ∈ A the answer is always correct; for each x 6∈ A the probability of error is
less than ε. The position of the bit probed in A is computed from x and the auxiliary
word C in time poly(logm).

Schemes with “cached” auxiliary information that depends on A (and not only
on its size n = #A and the size m of the universe) make sense only if the cached
information is very small. Indeed, if the size of the cached data is about log

(m
n

)
bits,
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Figure 1.14: A bipartite graph representing a bit probe scheme.

then we can put there the list of all elements of A, so the problem becomes trivial.
In Theorem 19 we use cached information of size poly(logm) bits. So this result
is interesting when poly(logm) ¿ n ¿ m, e.g., for n = exp{poly(loglogn)}. Note
that due to Theorem 16 the space size O(n log2 m) with one-sided error cannot be
achieved by any schemes without cached auxiliary information that depends on A.

The model of data structures with cached memory looks useful for practical
applications. The idea of splitting the data structure into “cached” and “remote”
parts is very natural and quite common in computer science. Indeed, most practi-
cal computer systems contain a hierarchy of memory levels: CPU registers, several
levels of processor caches, RAM, flash memory, magnetic disks, remote network-
accessible drives, and so on. Each next level of memory is cheaper, but slower. So it
is reasonable to study the trade-off between expensive and fast local memory, and
cheap and slow external memory. However, this trade-off is typically studied for dy-
namic data structures. The same time, it is not obvious that fast cache memory of
negligible size can help to process queries to a static data structure. Since a small
cache “knows” virtually nothing about most objects in the database, at first sight, it
seems to be useless. However, Theorem 19 shows that even a very small cache can
be useful in static settings.

Let us sketch the construction used in Theorem 19. Our main data structure can
be represented as a bipartite graph with m vertices in the left part (the size of the
universe) and s =O(n log2 m) vertices in the right part (the size of the database), see
Fig. 1.14. The vertices of the graph are colored in red and blue. In the left part, we
use the red color for elements in A and blue for others. In the right part, we use the
red color for all neighbors of A and the blue color the other vertices.
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When such graph is constructed, the queries are processed as follows. Given
an element x from the universe, we take the xth vertex on in the left part of the
graph and choose its random neighbor on the right. If the resulting vertex is red,
we say that x belongs to A; otherwise (if the resulting vertex is blue) we say no. By
construction, all neighbors of every vertex in A are red, so the answers for all x ∈ A
are always true. The same time, the vertices in the left part of the graph outside A
can have both red and blue neighbors. The property of correctness of the scheme
(for each x 6∈ A the probability of a failure is less than ε) can be rephrased as follows:

For every vertex of the left part of the graph outside A, the fraction of red neigh-
bors is less than ε.

The nontrivial part of the proof is a construction of a graph with this property. It is
rather easy to prove for every set A that such a graph exists. But we need a stronger
statement: there exists a graph with the desired property with a concise description.
The length of this description must be at most poly(logm) bits. When such a graph
is found, the coloring of its right part becomes the string B stored in the database,
and a short description of the graph becomes the cached information C .

In the technical part of the argument (in a construction of a graph) we deran-
domize a probabilistic proof of the existence of graphs with the with required prop-
erties. In various publications, derandomization of probabilistic arguments involves
highly sophisticated ad-hoc techniques. In our case, we do derandomization in
a rather naive and straightforward way, following the ideas from [93] (on space-
bounded Kolmogorov complexity). We take a suitable pseudo-random bits gener-
ator and construct the graph as an outcome of this generator. Thus, the required
(concise) description of a graph is a suitable value of the seed of the generator.

To implement this plan, we need a generator such that with high probability (i.e.,
for most values of the seed) the resulting pseudo-random graph enjoys the required
property. It turns out that several known generators fit our construction. Since the
problem of testing the required property of a graph belongs to the computational
class AC0, we can use the Nisan–Wigderson generator or (thanks to the result of
Braverman [83]) any polylog-independent function. Also the required property of
a pseudo-random graph can be tested by a machine with logarithmic space. Hence,
we can use Nisan’s generator from [29]. We emphasize that our argument uses no
unproven assumptions (like P 6= NP or the existence of a one-way function).

In Theorem 19 we construct a scheme with an effective decoding: when the
scheme is prepared, we can answer queries “x ∈ A?” in time polynomial in logm.
However the encoding (preparing the database and the auxiliary word for a given
set A) runs in expected time poly(m). We assume that n ¿ m, so the time polyno-
mial in m seems to be too long. The next theorem claims that the encoding time can
be reduced if we slightly increase the space of the scheme:

Theorem 20 ([j5]). The scheme from Theorem 19 can be made effectively encodable in
the following sense. Fix any constants ε,δ > 0. There exists randomized scheme that
includes a bit string B of length n1+δpoly(logm) and an auxiliary word C of length
poly(logm). We can answer membership queries “x ∈ A?” with two bits probe to B.
For x ∈ A the answer is always correct; for x 6∈ A probability of error is less than ε.

55



x y

Figure 1.15: The mutual information for a pair of strings x, y .

The position of the bit probed in A is computed by x and the auxiliary word C in
time polylog(m). Given A, the entire scheme (the string B and the word C ) can be
computed probabilistically in average time poly(n, logm).

The proof of theorem 20 involves explicit constructions of expanders. For all
technical detail, we refer the reader to [c6] and [j5] (see Appendix).

1.8 The Common Information of a Pair: Positive and
Negative Results

In Section 1.6, we discussed a materialization of the quantity C(x | y) shown in the
diagram in Fig. 1.13. In this section we deal with a materialization of the quantity
shown in the diagram in Fig. 1.15, which corresponds to the mutual information of
two strings. In what follows we briefly discuss the notion of common information
and several results on the common information of a pair of strings.

Intuitively, the common information of strings x and y is thought as an “extrac-
tion” of the information shared by these two strings. In some sense, the common
information is a more material version of the mutual information I (x : y). Speak-
ing very informally we say that a string w is a common information extracted from
strings x and y , if w can be easily computed from x and likewise from y . It remains
to make more precise the idea of “easy computing.” In this context it is usually as-
sumed that we may obtain w from x and from y using a few help bits. Typically it is
required that C(w | x) = O(logn) and C(w | y) = O(logn), where n is the length of x
and y , and the constant hidden in the O(·) notation depends only on the universal
machine. In a more liberal setting we say that C(w | x) =α and C(w | y) =β for some
integer α and β, and then study the trade-off between the parameters α,β and the
maximum of C(w). From (1.11) it follows that for smallα,β the value of C(w) cannot
be much larger than I (x : y) (i.e., the common information is not larger than the mu-
tual information). The question is whether the common information can approach
the value of the mutual information. In other words, we ask when the whole mutual
information can be “materialized.”

The notion of common information appeared in 1973 in [11], where P. Gács and
J. Körner discussed this information quantity in two frameworks — for Shannon’s
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entropy and for Kolmogorov complexity. Gács and Körner showed that for some
strings x and y the common information is much smaller than the mutual informa-
tion. The notion of common information for Kolmogorov complexity was revisited
in the 1990s, see [43, j17, j15]. These works offered a subtler analysis of the possible
size of the common information for different regimes of parameters and suggested
several explicit examples of pairs x, y for which the common information is much
smaller than mutual information. A self-contained exposition of these results can
be found in [99, Chapter 11].

In what follows, we proceed with several results on extracting the common in-
formation (with those that are used in subsequent sections). We start with a formal
definition.

Definition 6. We say that k bits of common information can be extracted from x and
y with inaccuracies (α,β), if there exists a string w such that

C (w | x) ≤ α,
C (w | y) ≤ β,

C (w) ≥ k.

Denote by ComInf(x, y) the set of all triples (k,α,β) such that k bits of common infor-
mation can be extracted from x and y, with inaccuracies (α,β).

It is known that ComInf(x, y) is not uniquely defined by the complexity profile of
(x, y). That is, pairs (x, y) and (x ′, y ′) with very similar (or even identical) complex-
ity profiles can have very different properties of “extractability” of the mutual infor-
mation, see [j15]. The next theorem describes the minimal possible set of triples
ComInf(x, y) for a pair with one specific complexity profile.

Theorem 21. [43] For every δ > 0 and for all large enough n there exists a pair of
strings (x, y) such that C (x) =+ 2n, C (y) =+ 2n, C (x, y) =+ 3n, and no triple (k,α,β)
satisfying 

α≤ (1−δ)n,
β≤ (1−δ)n,
α+β+δn ≤ k

belongs to ComInf(x, y).

In particular, for x, y from Theorem 21, we know that if C(w | x) and C(w | y)
are very small, than the value of C(w) must be also very small, though the mutual
information between x and y is pretty large, I (x : y) =+ n.

Remark 6. Theorem 21 can be made stronger: in all inequalities, the terms of size
(δn) can be replaced by Θ(logn), with coherently chosen constant factors. We use a
slightly weaker version of the theorem to simplify the notation.

Remark 7. The condition suggested in Theorem 21 is in a sense optimal. If we make
the constraints slightly weaker, then we obtain a property of extractability of the
common information that holds true for all pairs of strings, see [j15] for details.
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Figure 1.16: A string z helps extract the common information from x, y . Areas of the
same color (on the left and on the right) represent equal complexity quantities. The
vanishing information quantity is shown in white.

I. Razenshteyn proposed a more constructive version of Theorem 21. We cannot
construct algorithmically a pair (x, y) satisfying Theorem 21 since there is obviously
no short algorithmic description of any object of high Kolmogorov complexity. How-
ever, we can provide a large constructive set where the majority of elements have the
required property:

Theorem 22 (I. Razenshteyn, [86]). For every δ > 0 there exists an algorithm that
for all large enough n generates a list of pairs Sn of size 23n+O(logn) such that for the
majority of (x, y) ∈ Sn it holds C (x) =+ 2n, C (y) =+ 2n, C (x, y) =+ 3n, and no triple
(k,α,β) satisfying 

α≤ (1−δ)n,
β≤ (1−δ)n,
α+β+δn ≤ k

belongs to ComInf(x, y).

Remark 8. Technically [86] contains Theorem 22 only in the symmetric setting α=
β. However, Razenshteyn’s proof applies in the general case.

When we claim in Theorem 22 that an algorithm generates a set Sn , we mean that
on the input n the algorithm prints the list of elements of this set and stops, i.e., the
enumeration of Sn has an explicit and distinguishable completion. In other words,
the pairs (x, y) from Theorem 22 are (O(logn),O(logn))-stochastic in the sense of
Definition 4. Thus, Theorem 22 claims that there are (O(logn),O(logn))-stochastic
pairs with the worst possible property of extractability of the common information.

We proceed with a positive result on extracting the common information. It ap-
plies only to stochastic pairs (x, y). The next theorem allows to extract the common
information from a stochastic pair (x, y) assuming the existence of another string z,
with some specific conditions for the joint complexity profile of x, y, z.
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Theorem 23 (A special case of a more general theorem proven in [j9]). For every
(O(logn),O(logn))-stochastic pair of strings (x, y) and for every z there exists another
string w such that

I (x : w | y) =+ I (x : z | y),
I (y : w | x) =+ I (y : z | x),
I (x : y : w) =+ I (x : y : z),
C(w | x, y) =+ 0,

where n is C(x, y, z).

Remark 9. From the four equation in Theorem 23 it follows that C(w) =+ I (x, y : z).

Remark 10. The constant factors in the O(logn)-terms hidden in the notation =+
used in this theorem depend implicitly on the constant from the O(·) terms in the
definition of (O(logn),O(logn))-stochasticity.

The statement of Theorem 23 is illustrated in Fig. 1.16: when substituting z by
w we keep untouched all atomic information quantities for the triple (x, y, z) except
for the vanishing C(z | x, y).

Corollary 2. If a pair of strings (x, y) is (O(logn),O(logn))-stochastic, and there exists
a string z such that I (x : z | y) =+ 0 and I (y : z | x) =+ 0, then at least I (x : y : z) bits of
common information can be extracted from x and y with inaccuracies O(logn).

If in addition I (x : y | z) =+ 0, then the whole mutual information I (x : y) can be
extracted from x and y with inaccuracies O(logn).

This corollary can be obtained by specializing Theorem 23 to the case when two or
all three quantities of the conditional mutual information for x, y, z are negligibly
small, see Fig. 1.17

Proof of Theorem 23: Step 1 [Constructing the set of clones of (x, y).] By definition
of stochasticity, (x, y) belongs to a set S such that C(S) =O(logn) and

C(x, y) =+ log#S.

Denote A0 the set of all “clones” of (x, y), i.e., the set of all pairs that have similar
complexity profiles with respect to z. More precisely, le A0 be the set of pairs (x ′, y ′) ∈
S such that all complexity quantities involving x ′, y ′, and having z as a condition are
not greater than the corresponding complexity quantities for x and y , i.e.,

C(x ′ | z) ≤ C(x | z),
C(y ′ | z) ≤ C(y | z),
C(x ′, y ′ | z) ≤ C(x, y | z),
C(x ′ | y ′, z) ≤ C(x | y, z),
C(y ′ | x ′, z) ≤ C(y | x, z).

It is not hard to show (see [j9] for detail) that the sizes of sections and projections
of A0 are bounded by the exponents of the corresponding complexity quantity for
x, y conditional on z. For example, the cardinality of the whole A0 is not greater
than 2C(x,y |z)+1, the cardinality of the projection of A0 onto the first coordinate is not
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Figure 1.17: A string z helps extract the common information from x, y , see Corol-
lary 2. Areas of the same color (on the left and on the right) represent equal com-
plexity quantities. The vanishing information quantities are shown in white.
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greater than 2C(x|z)+1, for every x ′ the number of strings y ′ such that (x ′, y ′) ∈ A0 is
not greater than 2C(y |x,z)+1, and so on.

We will say that a positive integer N is not greater than M in order of magnitude if
the binary expansion of N is not longer (measured in bits) than the binary expansion
of M . Obviously, if N is not greater than M in order of magnitude, then N < 2M .
Note that that the set of all N that are not greater than M in order of magnitude can
be specified log M bits (we only need to know the number of digits in the binary
expansion of M).

We say that a set A ⊂ S is valid if the cardinalities of all its sections and projec-
tions are not greater in order of magnitude than the the cardinalities of the corre-
sponding sections and projections of A0. (In particular, the set A0 is valid.)

Given the values of all complexity quantities involving (x, y, z) and the list of all
elements of S, we can algorithmically find all valid sets (the list of the valid sets is
huge, but it is finite). Since the Kolmogorov complexity of the list of all elements of
S is logarithmic in n, we conclude that the list of all valid sets also has complexity
O(logn). Denote by A1, A2, . . . the lexicographically ordered list of all valid sets. Note
that by definition the size of a valid set is at most twice as large as the size of A0.
Similar bounds hold for the cardinalities of sections and projections of each valid
set.

Step 2 [Selecting well-behaved clones]. We select from the list of valid sets some
“special” subsequence. We do it inductively as follows. Assume that the first (s −1)
valid sets in the list A1, . . . , As−1 has been examined, and Ai1 , . . . , Aik has been se-
lected as special. Then we examine the next valid set As ; we select As as special if
the difference

As \

( ⋃
r≤k

Air

)
contains at least 2C(x,y |z)−κ logn pairs (κ to be specified below). In other words, we se-
lect As if it brings many new pairs that have not been covered by Air selected earlier.

By construction the special subsequence contains at most

#S

2C(x,y |z)−κ logn
= 2I (x,y :z)+κ logn+O(logn) (1.19)

valid sets. Denote by Â the union of all selected valid sets.
Note that C(Â) = O(logn + logκ), since the lists of elements of these sets can be

found algorithmically given the complexity values involving x, y, z, the list of ele-
ments of S, and the value of κ.

Lemma 2. The pairs (x, y) belongs to Â (assuming that κ is large enough).

Proof of lemma: Assume for the sake of contradiction that (x, y) does not belong to
Â. This means that A0 (which is a valid set) was not included in the selected subse-
quence of valid sets. It follows that the cardinality of the difference A0 \ Â is less than
2C(x,y |z)−κ logn .

Given z, we can specify the pair (x, y) as an element of A0\Â. To this end, we need
to know the complexity quantities involving x, y, z, the value of κ, and the ordinal
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number of the pair (x, y) in the natural enumeration of A0 \ Â. We obtain

C(x, y | z) ≤ log#(A0 \ Â)+O(logn + logκ)

≤ C(x, y | z)−κ logn +O(logn + logκ).

We get a contradiction be choosing a large enough κ.

Remark 11. In Lemma 2 we can choose a constant value of κ that does not depend
on n.

Step 3 [Retrieving w from the typical clones.] We conclude from Lemma 2 that
(x, y) belongs to some selected sets Ai . Denote by w the index of the first selected
valid set covering (x, y). By the definition of Aw (due to the bounds on the cardinal-
ities of sections and projections in every valid set) we have

C(x, y | w) ≤+ C(x, y | z),
C(x | w) ≤+ C(x | z),
C(y | w) ≤+ C(y | z),
C(x | y, w) ≤+ C(x | y, z),
C(y | x, w) ≤+ C(y | x, z).

Further, from the bound on the number of selected sets (1.19) we obtain

C(w) ≤+ I (x, y : z).

These inequalities (together with the values of C(x), C(y), and C(x, y)) uniquely de-
termine all information quantities involving (x, y, w). It is not hard to verify that
the value of C(w | x, y) vanishes and all other “atomic” information quantities for
(x, y, w)

C(x | y, w), C(y | x, w), I (x : y | w), I (x : w | y), I (y : w | x), I (x : y : w)

are equal (up to a logarithmic term) to the corresponding values for (x, y, z),

C(x | y, z), C(y | x, z), I (x : y | z), I (x : z | y), I (y : z | x), I (x : y : z)

respectively, as shown in Fig. 1.17.

Remark 12. We stated and proved Theorem 23 for (O(logn),O(logn))-stochastic
pairs (x, y). This result can be easily extended to stochastic k-tules of strings for any
k > 2. More precisely, we can prove (with essentially the same argument as above)
that for every (O(logn),O(logn))-stochastic tuple of strings (x1, . . . , xk ) and for ev-
ery string z, there exists a string w such that all “atomic” complexity quantities for
(x1, . . . , xk , w) are the same as the corresponding quantities for (x1, . . . , xk , z) with one
exception: whatever C(z | x1, . . . , xk ) is, we guarantee that C(w | x1, . . . , xk ) =+ 0 (the
value of n hidden in the logarithmic terms is C(x1, . . . , xk , z)).

In [j9] we proved a somewhat more general statement, which was used in a study
of the behavior of Kolmogorov complexities in the relativization with a random ora-
cle.
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Theorem 23 can be viewed as a version of the Ahlswede–Körner lemma from
Shannon’s information theory (see Theorem 2 in [14] and [64]; a similar technique-
was used, e.g., in [17]; see also a discussion of common information in [85, Section
“Source and Channel Networks”]) adapted to Kolmogorov complexity. It remains un-
known whether the condition of stochasticity of (x, y) can be omitted in Theorem 23
and in Corollary 2.

1.9 From extracting common information to
non-classic information inequalities

In this section we show how the technique of extracting the common information
helps prove new (non-Shannon-type) information inequalities. The parallels be-
tween Shannon’s entropy and Kolmogorov complexity appears to be a crucial clue
in this direction.

We start with a simple and pretty standard fact from Shannon’s version of infor-
mation theory.

Lemma 3 (see the textbook by I. Csiszar and J. Körner [85]). Let X ,Y , Z be random
variables such that

I (X : Y | Z ) = I (X : Z | Y ) = I (Y : Z | X ) = 0. (1.20)

Then there exists a random variable W that “materializes” the mutual information of
X ,Y , and Z in the sense that

H(W | X ) = H(W | Y ) = H(W | Z ) = 0,

and X ,Y , Z are independent conditional on W .

Sketch of proof: Fist of all we observe that for X ,Y , Z satisfying (1.20)

I (X : Y ) = I (X ,Y : Z ) = I (X : Y : Z ),

see Fig. 1.18. Let us split the values of the pair (X ,Y ) in equivalence classes so that
equivalent values correspond to identical conditional distributions on Z . Define W
as the index of the equivalence class corresponding to the given (randomly chosen)
values of (X ,Y ). Observe that I (W : Z ) = I (X ,Y : Z ) since W contains the same
information about Z as the pair (X ,Y ). Hence,

H(Z ) ≥ I (X : Y : Z ).

The conditions I (X : Z | Y ) = 0 and I (Y : Z | X ) = 0 imply that W can be obtained
deterministically from X and from Y (the value of only X or only Y is enough to
know the distribution on Z conditional on (X ,Y )), so H(W | X ) = H(W | Y ) = 0.
Therefore, we can apply a version of (1.11) for Shannon’s entropy

H(W ) ≤ H(W | X )+H(W | Y )+ I (X : Y )
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Figure 1.18: A triple of random variables with vanishing conditional mutual infor-
mation.
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and obtain H(W ) ≤ I (X : Y : Z ). Then we use another version of (1.11) for the condi-
tional distributions,

H(W | Z ) ≤ H(W | X )+H(W | Y )+ I (X : Y | Z ),

and conclude that H(W | Z ) = 0. It is easy to verify that X ,Y , and Z are independent
conditional on W .

We use this lemma to prove a “constraint” inequality for Shannon’s entropy:

Proposition 1. For any tuple of jointly distributed random variables A,B , X ,Y , Z , if
(X ,Y , Z ) satisfies (1.20) then

I (X : Y ) ≤ I (X : Y | A)+ I (X : Y | B)+ I (A : B). (1.21)

Sketch of proof: We know from Lemma 3 that there exists a W that materializes the
mutual information between X ,Y , Z . By applying the version of (1.11) we obtain

H(W ) ≤ H(W | A)+H(W | B)+ I (A : B).

From the definition of W it easily follows that H(W ) = I (X : Y ), and the conditional
entropies H(W | A) and H(W | B) coincide with I (X : Y | A) and I (X : Y | B) respec-
tively.

It is known that inequality (1.21) is not valid for Shannon’s entropy in general
(for the distributions that do not satisfy (1.20)), see [j16]. A natural question arises:
is there a more “robust” version of this constraint inequality that remains valid if
(1.20) is satisfied up to a “small enough error”? More specifically, if

I (X : Y | Z ), I (X : Z | Y ), I (Y : Z | X ) ≤ ε,

can we conclude that

I (X : Y ) ≤ I (X : Y | A)+ I (X : Y | B)+ I (A : B)+O(ε)

for all A and B?
Apparently Lemma 3 does not apply when (1.20) is not true precisely, so an

“error-tolerant” version of Proposition 1 requires a new proof technique. We will
see that Kolmogorov complexity is quite appropriate in this context.

We try to transpose the proof of Proposition 1 to the framework of Kolmogorov
complexity. First of all, we translate the statement of Lemma 3 in the language of
Kolmogorov complexity. For Kolmogorov complexity there is no way to say that the
value of the mutual information is exactly zero, we only can say that it is negligibly
small. With logarithmic inaccuracy (which seems to be the most natural technical
version of “negligibly small” quantity for Kolmogorov complexity) we can conjecture
the following proposition.

Plausible Statement. Let x, y, z be binary strings such that

I (x : y | z) =+ I (x : z | y) =+ I (y : z | x) =+ 0.
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Then there exists a string w that “materialize” the mutual information of x, y, and z
in the sense that

C(w | z) =+ C(w | y) =+ C(w | z) =+ 0,

and x, y, z are independent conditional on w, i.e.,

C(x, y, z | w) =+ C(x | w)+C(y | w)+C(z | w).

This plausible statement is true, and we prove it in the next section. Now we
are not ready to prove it for all x, y, z. However, we can prove it immediately for
(O(logn),O(logn))-stochastic triples. Indeed, for all stochastic tuples this statement
follows from Theorem 23, see Corollary 2. Now we can reproduce the proof of Propo-
sition 2 in the framework of Kolmogorov complexity, which results in the following
proposition:

Proposition 2. For any tuple of (O(logn),O(logn))-stochastic strings (a,b, x, y, z), if
(x, y, z) satisfy (1.22) then

I (x : y) ≤+ I (x : y | a)+ I (x : y | b)+ I (a : b). (1.22)

The parameter n in all logarithmic terms is C(a,b, x, y, z).

Proposition 2 is already an interesting result, but let us go further. Can we adapt
the argument to a weaker version of (1.22), where the values of the conditional mu-
tual information are bounded by εn? Can we establish a trade-off between the inac-
curacy in (1.22) and the resulting inaccuracy in (1.22)?

To address these questions, we take the general version of Theorem 23 (instead
of the special case from Corollary 2) and substitute it into the proof of (1.21) from
Proposition 1.21. The result can be stated as follows:

Theorem 24. For any (O(logn),O(logn))-stochastic triple (x, y, z) and for any a,b,c

I (x : y) ≤+I (x : y | a)+ I (x : y | b)+ I (a : b)

+ I (x : y | z)+ I (x : z | y)+ I (y : z | x),
(1.23)

where n in all logarithmic terms is C(a,b, x, y, z).

(When given Theorem 23, the inference of (1.23) is quite straightforward, see [j13] for
technical details.) Theorem 5 and Theorem 7 allow to prove (1.23) for Kolmogorov
complexity of all tuples (not necessary stochastic) and for Shannon’s entropy:

Theorem 25 ([j13]). (a) Inequality (1.23) is true for all tuples of strings (a,b, x, y, z).
(b) For all jointly distributed random variables (A,B , X ,Y , Z )

I (X : Y ) ≤I (X : Y | A)+ I (X : Y | B)+ I (A : B)

+ I (X : Y | Z )+ I (X : Z | Y )+ I (Y : Z | X ).
(1.24)

This theorem directly implies an error-tolerant version of Proposition 1:
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Corollary 3. For all jointly distributed random variables (A,B , X ,Y , Z ) and for every
ε > 0, if the quantities I (X : Y | Z ), I (X : Z | Y ), I (Y : Z | X ) are not greater than ε,
then

I (X : Y ) ≤ I (X : Y | A)+ I (X : Y | B)+ I (A : B)+3ε.

This corollary closes the circle: we have obtained a positive answer to the initial
question stated at the beginning of this section.

Inequality (1.24) is non-Shannon-type, i.e., it cannot be obtained as a convex
combination of the standard inequalities of monotonicity, subadditivity, and sub-
modularity (see [j13] for the proof). Specialization of (1.24) to A = Z gives exactly
the very first example of a non-Shannon-type inequality from [44].

Applying a more general version of Theorem 23 (see Remark 12) we can deduce
a countable sequence of non-Shannon-type information inequalities for Kolmogo-
rov complexities of k-tuples of binary strings (or entropies of k-tuples of random
variables) with k > 4, see [j13].

Historical remark. The original proof of a non-Shannon-type inequality in [44]
used the method of reducing the conditional mutual information, which is pretty
different from the argument used in this section. The core of this method can be ex-
pressed in terms of adhesive extensions, see [72]. A somewhat more general version
of this framework (so-called book extensions) is presented in [92]. The proof of (1.24)
with the technique of extracting the mutual information was suggested in [j13]. This
argument was presented in [j13] in the language of Shannon’s entropy, with the orig-
inal version of the Ahlswede-Körner lemma instead of Theorem 23 (though an ap-
plication to Kolmogorov complexity was the primary motivation).

Variations of these techniques remain until now the only known tools for de-
ducing non-Shannon-type inequalities. T. Kaced showed in [90] that the standard
versions of these techniques are equivalent (a proof with one method can be trans-
formed in a proof with another one and visa-versa). Both techniques can be repre-
sented in the framework of self-adhesive polymatroids, see [97].

1.10 From Non-Classic Information Inequalities to Ex-
tracting Common Information

In the previous section, we used the materialization of the mutual information to
prove non-Shannon type information inequalities. In this section, we go in the op-
posite direction and use a non-Shannon type information inequality to materialize
the mutual information. Technically, we prove the Plausible Statement on p. 65 from
the previous section. Let us formulate the statement more precisely, with explicit
quantifiers for all constant factors.

Theorem 26. [j12] For every C1 > 0 there exists a C2 > 0 such that for all of binary
strings x, y, z, if the values I (x : y | z), I (x : z | y), and I (y : z | x) are less than C1 logn,
then the mutual information between x, y, and z can be extracted with inaccuracy
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Figure 1.19: A triple of strings with negligibly small conditional mutual informations.

C2 logn, i.e., there exists a string w such that

C(w | x) ≤ C2 logn,
C(w | y) ≤ C2 logn,
C(w | z) ≤ C2 logn,

C(w) ≥ I (x : y : z)−C2 logn.

Here, n denotes the Kolmogorov complexity of the given triple of strings, n = C(x, y, z).

Under the condition

I (x : y | z) =+ I (x : z | y) =+ I (y : z | x) =+ 0

we have
I (x : y : z) =+ I (x : y) =+ I (x : z) =+ I (y : z),

see the diagram in Fig. 1.19. Assuming that

C(w | x) =+ C(w | y) =+ C(w | z) =+ 0,
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we can conclude that C(w) is not greater than the quantities of the mutual informa-
tion I (x : y : z). Hence, the bound C(w) ≥+ I (x : y : z) in Theorem 26 is tight (up to
O(logn)).

It is interesting to compare the problem of materializing of the mutual informa-
tion for pairs and triples of string. We say, somewhat informally, that the mutual
information between x and y can be completely materialized if there exists a w such
that C(w | x) =+ 0, C(w | y) =+ 0 (w is a common part of x and y), and

C(x, y | w) =+ C(x | w)+C(y | w)

(x and y are independent conditional on w , i.e., the whole mutual information be-
tween x and y is included in w). Similarly, we say that the mutual information
between x, y, and z can be completely materialized if there exists a w such that
C(w | x) =+ 0, C(w | y) =+ 0, C(w | z) =+ 0, and

C(x, y, z | w) =+ C(x | w)+C(y | w)+C(z | w).

Observe that this condition holds true for w from Theorem 26. We have mentioned
in Section 1.8 that the possibility to completely materialize the mutual information
between x and y is not determined by the complexity profile of (x, y). Theorem 26
implies that for triples of strings the situation is drastically different: the mutual
information between x, y , and z can be completely materialized if and only if the
quantities I (x : y | z), I (x : z | y), and I (y : z | x) are negligibly small.

In the rest of this section, we prove Theorem 26. Our argument is based on the
technique of “bunches” suggested in [j12].

Definition 7. An (α,β,γ)-bunch X is a set of strings such that

1. #X = 2α,

2. C(x1 | x2) <β for all x1, x2 ∈ X ,

3. C(x) < γ for all x ∈ X .

Remark 13. The property of being an (α,β,γ)-bunch is enumerable.

Example. We construct an example of an (n,n +O(1),2n +O(1))-bunch as follows.
Let us fix some string w of length n and define X as the set of all strings x of length 2n
having w as a prefix. In other words, all strings in X share the same first n bits (taken
from w), and only the last n bits vary. Then for all strings x, x ′ in this set we have
C(x | x ′) ≤ n+O(1), so the definition of a bunch applies. We recommend to the reader
to keep in mind this simple example (a bunch with parameters (≈ n,≈ n,≈ 2n)) in
all subsequent arguments in this section.

This example suggests that an (α,β,γ)-bunch can be though as a “sunflower”
with some core w and 2α “petals,” where each petal adds at most β bits of new in-
formation to the core. The next proposition claims that in fact every bunch has es-
sentially this structure of a sunflower.
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Proposition 3. For every (α,β,γ)-bunch X there exists a string w such that C(w) ≤+
γ−α+ε and for every x ∈ X

C(x | w) ≤+ β+ε,

where ε=β−α+O(1).

Intuitively, this proposition claims that we can find a “core” in every bunch. The
statement is interesting whenα≈β. The proof of this proposition uses the following
lemma.

Lemma 4. There exists an algorithm that takes a triple of integers α,β,γ as an input,
and enumerates a list of (α,β,γ)-bunches U0, . . . ,Uq such that:

• for every (α,β,γ)-bunch U there exists i ≤ q such that #(U ∩Ui ) ≥ 2α−ε,

• q < 2γ−α+ε,

where ε=β−α+O(1).

Proof of Proposition 3. We apply Lemma 4 and take a bunch Ui (selected for the
enumeration in the lemma) such that #(U ∩Ui ) ≥ 2α−ε. We set w to be the index
of Ui . By Lemma 4 we have i ≤ 2β+γ−2α+O(1), so we conclude that

C(w) ≤+ β+γ−2α.

It remains to estimate C(x | w) for x in the bunch U . We know that for every a ∈
U ∩Ui

C(a | w) ≤+ α (1.25)

(since a belongs to Ui ), and
C(x | a) <β (1.26)

(since a belongs to U ). In other words, there are at least #(U ∩Ui ) two-step chains

w → a → x

that satisfy (1.25) and (1.26). The cardinality of the set of x with this property is not
greater than

2α ·2β

#(U ∩Ui )
≤ 2β+ε,

and the set of such x is enumerable (given w and the integersα,β,γ). To find x given
w as a preliminary condition, we need to know the index of x in this enumeration.
It follows that

C(x | w) ≤+ β+ε,

and we are done.
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Proof of Lemma 4: Fix an algorithm that takes a triple of integers α,β,γ as an input
and enumerates the list of all (α,β,γ)-bunches. Though the number of bunches with
given parameters is finite, this enumeration has no distinguishable completion (we
can never decide whether all bunches are already found). We call this algorithm
simple enumerator.

Now we define another algorithm that selects some subsequence from the list
of all bunches generated by the simple enumerator. The selection is done by the
following rule. Assume that bunches U0, . . . ,Us are already selected; let the simple
enumerator return another bunch V . Denote ∆ = β−α+2. If #(V ∩Ui ) < 2α−∆ for
every i = 0, . . . , s, then we select this bunch and let Us+1 = V . Otherwise we skip V
and wait for the next bunch from the simple enumerator.

Let U0, . . . ,Uq be the list of all bunches that are selected in this procedure. From
the construction it follows that for every bunch V either V =Ui or at least #(V ∩Ui ) ≥
2α−∆ (for at least one selected bunch Ui ). Also by construction, #(Ui ∩U j ) < 2α−∆ for
every two selected bunches Ui ,U j . It remains to show that the number of selected
bunches is not too large.

It is enough to prove that every string x belongs to less than 2β−α+1 bunches.
Indeed, there are less than 2γ strings x such that C(x) < γ. If every x is covered by
at most 2β−α+1 selected bunches and every bunch consists of 2α strings, then the
number of selected bunches is not greater than

2γ ·2β−α+1

2α
= 2β+γ−2α+1 = 2γ−α+(β−α)+O(1) < 2γ−α+ε.

Thus, it remains to bound the number of selected bunches that cover one string
x. Assume for the sake of contradiction that there are N = 2β−α+1 selected bunches
Ui that contain some x. By the definition of a bunch, for each of these Ui

Ui ⊂ {y | C(y | x) <β}.

Thus, on the one hand, we have

#
(⋃

Ui

)
≤ #

(
{y | C(y | x) <β}

)
< 2β.

On the other hand, from the inclusion–exclusion principle, it follows that:

#
(⋃

Ui

)
≥∑

i
#Ui −

∑
i< j

#(Ui ∩U j ).

Since #Ui = 2α and #(Ui ∩U j ) ≤ 2α−∆, we have

#
(⋃

Ui

)
≥ N ·2α−N 2 ·2α−∆ = 2β,

and we get a contradiction.

Definition 8. We denote by Clonesκ(z | x, y) the set of “clones” of z from the perspec-
tive of (x, y) with inaccuracy κ logn: this is the set of strings z ′ such that all Kolmogo-
rov complexities involving (x, y, z ′) are
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(a) not greater than the corresponding quantities for (x, y, z), e.g., C(z ′) ≤ C(z),
C(z ′ | x) ≤ C(z | x), C(x, y | z ′) ≤ C(x, y | z), etc.,

(b) differ from the corresponding quantities for (x, y, z) by at most κ logn, e.g.,
C(z ′) ≥ C(z)−κ logn, C(z ′ | x) ≥ C(z | x)−κ logn, C(x, y | z ′) ≥ C(x, y | z)−κ logn,
etc.

It can be shown by a counting argument (see [j17, j9]) that for large enough constant
κ (that does not depend on n) the size of Clonesκ(z | x, y) is equal to 2C(z|x,y)−O(logn).
We fix such a κ and in what follows omit a subscript in the notation Clones(z | x, y).

Remark 14. A similar idea of “clones” was used on p. 59, when we extracted the
common information from a pair of stochastic strings.

The next lemma is a crucial part of the proof of Theorem 26; this is the point
where we use a non-Shannon type information inequality.

Lemma 5. The set Clones(z | x, y) is a bunch with parameters

(C(z | x, y)−O(logn),C(z | x, y)−O(logn),C(z)).

Proof. By definition of Clones(z | x, y) we know that every element on this set has
Kolmogorov complexity ≈ C(z), and the number of elements in Clones(z | x, y) is
2C(z|x,y)−O(logn). It remains to establish an upper bound for C(a | b) for different el-
ements a,b ∈ Clones(z | x, y). To this end it is enough to prove a lower bound for
I (a : b).

Let a and b be elements of Clones(z | x, y). We apply inequality (1.23). By defini-
tion of Clones(z | x, y) the quantities I (x : y | a) and I (x : y | b) rewrite to I (x : y | z).
Since the quantities I (x : y | z), I (x : z | y), and I (y : z | x) are bounded by O(logn),
inequality (1.23) rewrites to

I (x : y) ≤+ I (a : b),

which implies the required upper bound for C(a | b).

Proof of Theorem 26. We combine Proposition 3 and Lemma 5 and conclude that
there exists a string w (the “core” of the bunch Clones(z | x, y)) such that

C(w) ≤+ I (x : y : z), (1.27)

and for every a ∈ Clones(z | x, y)

C(a | w) ≤+ C(z | x, y).

Claim 1: I (w : x) ≥+ I (x : y : z).
To prove this claim we observe that every a from Clones(z | x, y) forms a two-step

chain
w → a → x

such that C(a | w) ≤+ C(z | x, y) and C(x | a) ≤+ C(x | z). The number of strings x that
are destinations of so many chains starting at w is at most

2C(z|x,y) ·2C(x|z)

#
(
Clones(z | x, y)

) = 2C(x|z)−O(logn) = 2C(x)−I (x:y :z)−O(logn).
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The set of all strings x with this property is enumerable (given w and the values of
all complexities involved). To find x given w , we need to know the index of x in this
enumeration. Therefore, C(x | w) ≤+ C(x)− I (x : y : z), and Claim 1 is proven.

Observe that together with (1.27) Claim 1 implies C(w) =+ I (x : y : z) and C(w |
x) =+ 0.

Claim 2: I (w : y) ≥ I (x : y : z). The proof of this claim is similar to the proof of
Claim 1. Claim 2 implies also C(w | y) =+ 0.

Claim 3: C(w | z) =+ 0. This claim follows from Claim 1, Claim 2, and a version of
(1.11) in the form

C(w | z) ≤+ C(w | x)+C(w | y)+ I (x : y | z).

Combining these claims we obtain the statement of the theorem.

Historical remarks. In [j12] we proved a somewhat stronger version of Theo-
rem 26, which applies in case when the quantities of I (x : y | z), I (x : z | y), and
I (y : z | x) are much larger than O(logn). The method of “bunches” was reused in a
different context in [j9].

1.11 Constraint Information Inequalities

In this section, we discuss a class of properties of Kolmogorov complexity and Shan-
non’s entropy that can be expressed in terms of constraint (conditional) informa-
tion inequalities. Before we give a formal definition, we briefly revisit a couple of
constraint information inequalities that we have seen in the previous sections.

Example 1. When talking about the common information, we observed that for
all strings x, y, z

if C(z | x) =+ 0 and C(z | y) =+ 0 then C(z) ≤+ I (x : y), (1.28)

i.e., the common information is not greater than the mutual information of x and
y . This property follows immediately from the conventional (non-constraint) infor-
mation inequality

C(z) ≤+ C(z | x)+C(z | y)+ I (x : y),

which can be easily proven with the standard technique, see p. 40. A similar property
holds for Shannon’s entropy: for all jointly distributed (X ,Y , Z )

if H(Z | X ) = 0 and H(Z | Y ) = 0, then H(Z ) ≤ I (X : Y ). (1.29)

This property also follows from the corresponding non-constraint information in-
equality (for entropies),

H(Z ) ≤ H(Z | Y )+H(Z | Y )+ I (X : Y ).

Example 2. In Section 1.9 we proved that for all strings a,b, x, y, z

if I (x : y | z) =+ I (x : z | y) =+ I (y : z | x) =+ 0,

then I (x : y) ≤+ I (x : y | a)+ I (x : y | b)+ I (a : b).
(1.30)
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This constraint inequality also can be deduced from the non-constraint inequality

I (x : y) ≤+ I (x : y | a)+ I (x : y | b)+ I (a : b)+ I (x : y | z)+ I (x : z | y)+ I (y : z | x),

though the latter inequality is not trivial: this is an example of a non-Shannon-type
inequality whose proof requires significant efforts.

And again, a similar property holds for Shannon’s entropy: for all jointly dis-
tributed (A,B , X ,Y , Z )

if I (X : Y | Z ) =+ I (X : Z | Y ) =+ I (Y : Z | X ) =+ 0,

then I (X : Y ) ≤+ I (X : Y | A)+ I (X : Y | B)+ I (A : B).
(1.31)

Obviously, this constraint inequality also can be deduced from a non-constraint
(non-Shannon-type) inequality for entropies (1.24). However, in Section 1.9 we dis-
cussed a simple direct proof of (1.31) that involves no non-Shannon-type inequali-
ties.

The very fact that constraint inequalities (1.29) and (1.31) can be obtained from
the corresponding non-constraint version, has an important implication. These
constraint inequalities are “robust” in the following sense: if the quantities from the
constraints do not vanish and are only bounded by a small ε, then the resulting in-
equalities remain valid with inaccuracy O(ε). Thus, the inference of (1.31) from a
non-constraint non-Shannon-type inequality gives more information than a sim-
pler direct proof.

Example 1 and Example 2 above follow the same pattern: these statements are
implications where the antecedent consists of several equations (for the values of
Shannon’s entropy or for Kolmogorov complexity), and the consequent is a linear
inequality (for Shannon’s entropy or for Kolmogorov respectively). By now, we know
several examples of non-trivial statements of this type for Shannon’s entropy. We
join all these results in one theorem:

Theorem 27. For every tuple of jointly distributed random variables

(I 1) if I (X : Y | A) = I (X : Y ) = 0, then äX Y ,AB ≥ 0, see [44],

(I 2) if I (X : Y | A) = I (Y : B | A) = 0, then äX Y ,AB ≥ 0, see [35],

(I 3) if I (X : Y |A) = H A | X ,Y ) = 0, then äX Y ,AB ≥ 0, see [j6],

(I 4) if I (X : B | A) = I (X : A | B) = 0, then äX Y ,AB + I (X : A | Z )+ I (X : Z | A) ≥ 0,
see [71],

(I 5) if I (Y : A | B) = I (A : B | Y ) = 0, then äX Y ,AB + I (Y : A | Z )+ I (A : Z | Y ) ≥ 0,
see [71],

(I 6) if I (Y : A | B) = I (A : B | Y ) = 0, then äX Y ,AB + I (A : B | Z )+ I (A : Z | B) ≥ 0,
see [71],

with the notation äX Y ,AB := I (A : B | X )+ I (A : B | Y )+ I (X : Y )− I (A : B).
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This theorem (as well as Examples 1–2 above) provides instances of constraint
information inequalities that can be defined in general as follows.

Definition 9. Let α(X ) and β1(X ), . . . ,βm(X ) be linear functions on entropies of
random variables X = (X1, . . . , Xk ),

α(X ) = ∑
;6=V ⊆{1,...,k}

αV H(XV ),

βi (X ) = ∑
;6=V ⊆{1,...,k}

βi ,V H(XV ), i = 1. . .m

such that the implication

(βi (X ) = 0 for all i = 1, . . . ,m) ⇒α(X ) ≥ 0

holds for all distributions X . We call this implication a constraint linear information
inequality.

Comparing Theorem 27 with Example 1 and Example 2 above, we can ask the
following natural questions:

Q1. Can we reduce the constraint inequalities (I 1)–(I 6) to any non-constraint
information inequalities?

Q2. Are these constraint inequalities “robust,” i.e., if the quantities from the con-
straints do not vanish and are only bounded by a small enough ε, do the re-
sulting inequalities remain valid with a small inaccuracy?

Q3. Are there any similar constraint inequalities valid for Kolmogorov complexity?

Note that a formal definition of a constraint inequality for Kolmogorov complexity
is somewhat subtle since we have to address the unavoidable “inaccuracy” of all
constraints (in algorithmic information theory the value of the mutual information
can be small, but we never can say that it vanishes). We discuss this issue later, and
for now, focus on the Shannon’s entropy framework.

We start with the negative answer to the question Q1 above.

Definition 10. Let α(X ) and β1(X ), . . . ,βm(X ) be linear functions on entropies of
X = (X1, . . . , Xn), and

(βi (X ) = 0 for all i = 1, . . . ,m) ⇒α(X ) ≥ 0

be a constraint information inequality. We call this implication an essentially con-
straint (essentially conditional) linear information inequality, if for all real numbers
(λi )1≤i≤m the inequality

α(X )+
m∑

i=1
λiβi (X ) ≥ 0 (1.32)

does not hold, i.e., there exists a distribution X that contradicts (1.32).

The following theorem was the main result of the PhD thesis of Tarik Kaced:
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Theorem 28 ([j6]). Constraint inequalities (I 1)–(I 6) cannot be obtained directly
from any (known or yet unknown) unconditional information inequality, i.e., they
are essentially constraint inequalities in the sense of Definition 10.

Theorem 28 suggests that constraint inequalities (I 1)–(I 6) are quite remark-
able properties of Shannon’s entropy. Do they correspond to any intuitive proper-
ties of the involved information quantities, or they are just artifacts of the definition?
How sensitive are these inequalities to minor errors in the constraints? Are there any
counterparts of these inequalities for Kolmogorov’s or Hartley’s versions of informa-
tion theory? To address these (slightly informal) questions, we start with a more
formal question Q2 stated above.

Digression: geometry of entropic points. First of all, we revisit the definition of
a linear information inequality and discuss the difference between entropic and
almost-entropic points.

When given a k-tuple of jointly distributed random variables X = (X1, . . . , Xk ),
we assign to each non-empty subset random variables XV its Shannon’s entropy
H(XV ). We define the entropy profile of X as the vector of entropies

(H(XV ));6=V ⊆{1,...,k},

let us say, in the lexicographic order. A point in R2k−1 is called entropic if it is the
entropy profile of some distribution X . Thus, the conventional linear information
inequalities (without constraints) are by definition the linear forms

α(X ) = ∑
;6=V ⊆{1,...,k}

αV H(XV )

that are non-negative for all entropic points.
A point is called almost-entropic if it belongs to the closure of the set of entropic

points. It is known that for every k the set of all almost entropic points (for k-tuple of

jointly distributed random variables) is a convex cone inR2k−1, and the conventional
linear information inequalities correspond to supporting half-spaces for this cone.
It can be shown that for all k ≥ 3 there exist almost-entropic but not entropic points
(they all belong to the surface of this cone), though the geometric structure of these
particular points remains not well understood. We refer the reader to [87] for a more
technical discussion of properties of entropic and almost-entropic points.

It is not hard to see that the cone of almost-entropic points and the set of all
valid linear inequalities for entropies are dual to each other. The constraint and es-
sentially constraint inequalities also have a clear geometric interpretation in terms
of the cone of almost-entropic points. However, this interpretation is hard to visual-
ize since all nontrivial constraint inequalities belong to a high-dimensional space.
Indeed, the simplest example of an essentially constraint inequality involves en-
tropies of 4 random variables, and therefore it is an inequality in R15. To explain
the geometric intuition behind the constraint information inequalities, we simplify
the situation. First, we illustrate the meaning of the constraint inequalities by sim-
plistic 2-dimensional pictures instead of 15-dimensional spaces. Second, we draw
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(−1,0) (0,0) x

y

−x+ y≥ 0

Figure 1.20: If y = 0 then x ≤ 0. This conditional inequality follows from −x + y ≥ 0.

pictures not with a convex cone but with a convex geometrical set in the plane, e.g.,
with a convex polygon. (It is only crucial to keep the property of convexity.) Thus,
the pictures below are not literal representations of information inequalities; they
should be understood as metaphorical illustrations.

We start with an illustration of the geometric meaning of a non-essentially con-
straint inequality. Assume that a constraint inequality

(βi (X ) = 0 for all i = 1, . . . ,m) ⇒α(X ) ≥ 0

is a corollary of some non-constraint inequality (1.32). In a typical case the linear
constraints βi (X ) = 0 define some facet of the cone of almost entropic points, and
the constraint inequality defines a linear boundary inside this facet. Such a bound-
ary inside a facet of the cone results from “traces” of other non-constraint informa-
tion inequalities (which correspond to other supporting hyperplanes of the cone).
Geometrically, this means that the given constraint inequality can be extended to a
hyperplane which provides a boundary to the entire cone. We show this effect in a
simplified 2-dimensional picture. In Fig. 1.20 we are given a closed convex polygon
in the plane, whose boundary consists of 5 lines. In other words, this polygon can be
represented as an intersection of 5 half-spaces (defined by 5 non-constraint linear
inequalities). Now we focus on the line y = 0 and see that a point with coordinates
(x,0) belong to the polygon, if and only if −1 ≤ x ≤ 0. This property can be stated as
a constraint inequality for this polygon:

if y = 0 then x ≤ 0. (1.33)

Where does the bound x ≤ 0 come from? In this example, the answer is obvious: the
point (0,0) is the “trace” in the line y = 0 obtained from the non-constraint inequality
−x + y ≥ 0 . In other words, constraint inequality (1.33) can be extended to the non-
constraint inequality −x + y ≥ 0.
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(−1,0) (0,0) x

y

Figure 1.21: If y = 0 then x ≤ 0. This conditional inequality is implied by an infinite
family of tangent half-planes.

We proceed with a more involved example shown in Fig. 1.11. In this picture,
the geometrical figure (a closed convex area shown in gray) is not a polygon: its
boundary contains a smooth curve. We assume that the tangent line to this curve
at the point (0,0) is horizontal. Similarly to the previous example, we focus on the
line y = 0. The point with coordinates (x,0) belongs to the gray figure if and only if
−1 ≤ x ≤ 0. That is, constraint inequality (1.33) applies to this convex figure. How-
ever, in this case, the constraint inequality cannot be extended to any unconditional
linear inequality: whatever λ is given, the inequality −x +λy ≥ 0 is not valid for the
gray area in the picture. In other words, here we have an example of an essentially
constraint inequality.

In some sense, in this example, the inequality −1 ≤ x ≤ 0 follows from an infi-
nite family of non-constraint inequalities. Indeed, (1.33) is implied by the infinite
family of supporting half-planes that are tangent to the gray area in the picture. This
phenomenon can occur for a convex closed body only if this body is not polyhe-
dral (respectively, not polygonal in the 2-dimensional case). A formal proof of this
fact involves the usual machinery of the convex analysis (Farkas’ lemma), see [j6] for
details.

Let us proceed with another example. In our last example (Fig. 1.22), the gray
area is still a convex set, but now it is not closed: we assume that the part of its
boundary shown by the bold lines belongs to the figure, and the part of the boundary
shown by the dashed lines does not. The same constraint inequality (1.33) applies
to this area. Obviously, this inequality is essentially constraint, i.e., it cannot be ex-
tended to −x+λy ≥ 0 with any λ. Moreover, (1.33) holds for the gray area but it does
not hold for its closure. For example, the point (1,0) does not satisfy this conditional
inequality.

The three examples discussed above help us to understand the geometry of the
constraint information inequalities. Each constraint linear inequality for Shannon’s
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(−1,0) (0,0) (1,0) x

y

Figure 1.22: If y = 0 then x ≤ 0. This conditional inequality does not hold for the
closure of the grey area.

entropies is a linear inequality that is valid on some facet on the set of all entropic
points. There are three substantially different types of constraint information in-
equalities.

Case 1. If an inequality is not essentially constraint, then it can be extended
to a conventional (unconditional, non-constraint) inequality, which corre-
sponds to a supporting half-space for the whole cone of almost entropic
points. This case corresponds to the illustration in Fig. 1.20.

Case 2. For an essentially constraint inequality, there are two different possi-
bilities:

Case 2(a). If a constraint inequality is valid not only for entropic but
also for almost entropic points, then this inequality follows from an in-
finite family of non-constraint inequalities, similarly to the example in
Fig. 1.21. From the very fact that such conditional information inequali-
ties exist it follows that the cone of almost entropic points (for n ≥ 4 ran-
dom variables) is not polyhedral. In other words, every essentially con-
straint inequality of this type provides an alternative proof of the Matúš
theorem from [71], see [j6, Section 6] for a more detailed discussion.

Case 2(b). If a constraint inequality does not apply to almost en-
tropic points, then its geometric meaning is similar to the illustration in
Fig. 1.22.

Now, having completed the geometric digression, we proceed with a more for-
mal classification of the known constraint information inequalities.

Theorem 29. (a) [71] Inequalities (I 4)–(I 6) are valid for almost entropic points (see
Case 2(a) above).

(b) [j6] Inequalities (I 1) and (I 3) do not hold for almost entropic points (see
Case 2(b) above).
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Remark 15. It remains unknown whether inequality (I 2) holds for almost entropic
point (whether it belongs to the Case 2(a) or to the Case 2(b) discussed above).

Remark 16. The essentially constraint inequalities from the Case 2(a) are “robust”
in the following weak sense: for every δ > 0 there exists an ε > 0 such that if the
quantities from the constraint are bounded by ε, then the resulting inequality is valid
with inaccuracy δ. However, ε goes to zero faster than a linear function of δ.

The essentially constraint inequalities from the Case 2(b) are non-robust in a
very strong sense: even a minor violation of the constraints leads to inaccuracyΩ(1)
in the resulting inequality.

It remains to address the question Q3 from p. 75 and discuss counterparts of
the known essentially constraint information inequalities in the framework of algo-
rithmic information theory. Not surprisingly, the situation is pretty different for the
inequalities from Cases 2(a) and Case 2(b). For all known inequalities of the first
type (those which are valid for almost-entropic points, Cases 2(a)) we can prove a
version with Kolmogorov complexity:

Theorem 30 ([j6]). Let f (n) be a function of an integer argument such that f (n) ≥
logn for all n. Then there exists a constant κ > 0 such that for every tuple of binary
strings (a,b,c,d ,e)

(I 4-Kolm) if I (a : d | c) ≤ f (n) and I (a : c | d) ≤ f (n), then

äab,cd + I (a : c | e)+ I (a : e | c)+κ ·
√

n · f (n) ≥ 0,

(I 5-Kolm) if I (b : c | d) ≤ f (n) and I (c : d | b) ≤ f (n), then

äab,cd + I (b : c | e)+ I (c : e | b)+κ ·
√

n · f (n) ≥ 0,

(I 6-Kolm) if I (b : c | d) ≤ f (n) and I (c : d | b) ≤ f (n), then

äab,cd + I (c : d | e)+ I (c : e | d)+κ ·
√

n · f (n) ≥ 0,

where n denotes C(a,b,c,d ,e), and äab,cd := I (c : d | a)+ I (c : d | b)+ I (a : b)− I (c : d).

In this theorem f (n) measures inaccuracy of the constraints. For example, as-
suming I (a : d | c) = O

(p
n

)
and I (a : c | d) = O

(p
n

)
we conclude that there exists a

θ > 0 such that for all a,b,c,d ,e

äab,cd + I (a : c | e)+ I (a : e | c)+θ ·n3/4 ≥ 0.

Theorem 30 provides a trade-off between two measures of inaccuracy: f (n)
measures inaccuracy of the constraints, and O(

√
n · f (n)) is a bound for inaccuracy

of the conclusions. It can be shown that the suggested trade-off is tight. In par-
ticular, given the constraints with inaccuracy O(logn) we cannot get the resulting
inequality with any better precision than O(

√
n logn), see [j6] for details.

The next theorem shows that in some sense counterparts of (I 1) and (I 3)
do not hold for Kolmogorov complexity. We argue that even a minor inaccuracy
O(logn) in the constraints results in the definitive failure of the implied linear in-
equality:
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Theorem 31 ([j6]). (a) There exists an infinite sequence of tuples of strings (a,b,c,d)
such that the lengths of all strings a,b,c,d are Θ(n), I (a : b) = O(logn), I (a : b | c) =
O(logn), and

I (c : d)− I (c : d | a)− I (c : d | b) =Ω(n)

(b) There exists an infinite sequence of tuples of strings (a,b,c,d)n such that the
lengths of all strings a,b,c,d are Θ(n), C (c | a,b) = O(logn), I (a : b | c) = O(logn),
and

I (c : d)− I (c : d | a)− I (c : d |b)− I (a : b) =Ω(n).

On the other hand, there is one positive result: some version of (I 3) is valid for
Kolmogorov complexity if we impose the constraints in a very strict form. We discuss
this constraint inequality in Section 1.14.

Historical remark: The first example of a non-trivial constraint inequality for
Shannon’s entropy was discovered in [41]. In a more general context constraint
information inequalities were discussed in [87]. Constraint inequalities were used
(somewhat implicitly) in [71] in a proof of an infinite family of information inequali-
ties. The technical definition of an essentially constraint information inequality was
suggested in [c17]. Most results of this section appeared in [j6] (see the Appendix
to this manuscript). This research (including purely probabilistic results) was moti-
vated by the interplay between Shannon’s and Kolmogorov’s versions of information
theory: we were trying to translate the known constraint inequalities for Shannon’s
entropy in the language of Kolmogorov complexity. As we have shown above, in
some cases this translation succeeds, and in others, it fails.

1.12 Combinatorial Interpretation of the Conventional
Information Inequalities

In this section, we discuss the parallelism between information inequalities in the
combinatorial, probabilistic, and algorithmic frameworks, with a focus on the com-
binatorial version. We start the discussion with a few examples.

Example 1. We start with arguably the simplest example of information inequality,

C(x, y) ≤+ C(x)+C(y). (1.34)

Intuitively, it claims that the shortest description of a pair (x, y) is not longer than
the sum of the lengths of the shortest descriptions of x and y . The proof is trivial: we
can join the descriptions of x and y and obtain a joint description of a pair (possibly,
not optimal). Only a logarithmic overhead is needed to encode the coupling of two
programs in one.

We keep in mind the basic idea of Hartley’s approach: we gauge the information
that is necessary to encode an arbitrary element of a given finite set, so the natural
measure of this information is the (binary) logarithm of a cardinality of a set. Let
S be a finite set of pairs of binary strings. Than Hartley’s measure of information
in this set is log#S. If we want to measure separately the information contained in
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x
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π1(S)

π2(S) S

Figure 1.23: The cardinality of a set S is not greater than the product of the cardinal-
ities of its projections, π1(S) and π2(S).

both components of these pairs, we should consider the projections of S on both
coordinates,

π1(S) := {x : there is a y such that (x, y) ∈ S},
π2(S) := {y : there is an x such that (x, y) ∈ S},

and take the logarithms of each of these projections. Then we observe that a joint
encoding of pairs in S requires not more bits than the sum of bits in separate encod-
ing of elements in π1(S) and π2(S). The trivial statement “Hartley’s information in a
pair is not greater than the sum of Hartley’s information in both components” can
be written as

log#S ≤ log#π1(S)+ log#π2(S) (1.35)

or, without logarithms, as
#S ≤ #π1(S) ·#π2(S). (1.36)

Inequality (1.36) is self-evident: it claims that the cardinality of a set is not greater
than the product of the cardinalities of its projections, Fig. 1.23. However, in this toy
example, we observe the parallels between (1.34) and (1.36). This example suggests
a general scheme how an inequality for Kolmogorov complexity can be translated in
a combinatorial statement.

Example 2. Let us consider a slightly stronger version of (1.34),

C(x, y) ≤+ C(x)+C(y | x). (1.37)
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This inequality is also very intuitive: the shortest description of a pair (x, y) is not
longer than the sum of the lengths of the shortest description of x and the shortest
description for y given x as a condition. Let us find a natural combinatorial version
of this inequality. Let S again be a finite set of pairs of binary strings. We suppose
again that the natural counterparts of C(x, y) and C(x) are log#S and log#π1(S) re-
spectively. It remains to define a natural combinatorial version of the conditional
complexity C(y | x).

Since Hartley’s idea was to measure the information “in the worst case,” we sug-
gest to take the quantity

log max
x∈π1(S)

#Sx ,

where Sx is a “section” of the set,

Sx := {y : (x, y) ∈ S}.

In other words, we take the number of digits required to specify all pairs (x, y) in
S assuming that the first component of the pair is already known. So we take the
maximum over the “vertical sections” of S corresponding to all possible x.

Now a natural combinatorial rephrasing of (1.37) is

log#S ≤ log#π1(S)+ log[ max
x∈π1(S)

#Sx ].

Without logarithms this inequality rewrites to

#S ≤ #π1(S) · [ max
x∈π1(S)

#Sx ], (1.38)

i.e., the cardinality of S is bounded by the product of the cardinality of its first pro-
jection and the maximal size of the vertical section, see Fig. 1.24.

Inequalities (1.36) and (1.38) look pretty trivial. In the next example we apply a
similar translation to a more interesting information inequality and end up with a
more involved combinatorial statement.

Example 3. We proceed with a less trivial example

2C(x, y, z) ≤+ C(x, y)+C(x, z)+C(y, z) (1.39)

(see a discussion on p. 39). This is an inequality for a triple of strings, so the counter-
part in the combinatorial world should be a statement about a three-dimensional
set. Let S be a finite set of triples of strings. Hartley’s information in the triple is de-
fined, as usual, as the logarithm of the cardinality of S. To deal with pairs selected
from a triple, we consider the projections of S onto two-coordinate spaces:

π12(S) := {(x, y) : there is a z such that (x, y, z) ∈ S},
π13(S) := {(x, z) : there is a y such that (x, y, z) ∈ S},
π23(S) := {(y, z) : there is an x such that (x, y, z) ∈ S},

and the combinatorial versions of C(x, y), C(x, z), and C(y, z) are the quantities

log#π12(S), log#π13(S), and log#π23(S)
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Figure 1.24: The cardinality of a set S is not greater than the product of the cardinality
of its projection on the first coordinate and the maximum size of its vertical section.

respectively. Therefore, a natural combinatorial version of (1.39) is the inequality

2log#S ≤ log#π12(S)+ log#π13(S)+ log#π23(S).

The information-theoretic meaning of this inequality can be worded as follows: the
number of bits required to encode all triples in S is not greater than the half-sum
of the number of bits required to encode separately the pairs associated to these
triples. Without logarithms this property rewrites to

(#S)2 ≤ #π12(S) ·#π13(S) ·#π23(S). (1.40)

A continuous version (1.40) would say that the volume of a three-dimensional body
is not greater than the square root of the product of areas of the projections of the
body onto three coordinate planes, see Fig. 1.25. Inequality (1.40) is known as Shear-
er’s lemma (more precisely, a special case of combinatorial Shearer’s lemma, [23],
[33]). The conventional proof of this combinatorial statement uses Shannon’s en-
tropy. Loosely speaking, to get (1.40) we introduce the uniform distribution (X ,Y , Z )
on S, apply to the obtained three-dimensional distribution the inequality

2H(X ,Y , Z ) ≤ H(X ,Y )+H(X , Z )+H(Y , Z ),

and then observe that entropies H(X ,Y ), H(X , Z ), H(Y , Z ) are not greater than log-
arithms of the cardinalities of the corresponding projections of S. An alternative
proof uses Kolmogorov complexity and inequality (1.39), see [j14].
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z

y

Figure 1.25: The square of the volume of a three-dimensional body (shown in gray)
is not greater than the product of the areas of the body’s projections on the three
coordinate planes (the projections are shown in color).
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W

V

Figure 1.26: A set (shown in gray) breaks up into two parts V and W : V has long
vertical sections and a small projection on the first coordinate, and W has shorter
vertical sections and a large projection on the first coordinate.

Examples 1-3 suggest that a natural way of translating information inequalities
in the combinatorial language provides a meaningful (and non-trivial, as we see in
Example 3) application of information theory to combinatorics. Now we aim to for-
mulate a general rule that transforms an inequality for Kolmogorov complexity in
the corresponding combinatorial statement, extending the observations from Ex-
amples 1-3. In what follows we propose such a rule. But first we discuss one more
simple example that shows that the general translation can be slightly more involved
than Examples 1-3 discussed above.

Example 4. Now we try to transform in a combinatorial form the inequality

C(x)+C(y | x) ≤+ C(x, y), (1.41)

which is the hard direction of the Kolmogorov–Levin theorem. In Example 2 we
already defined the combinatorial quantities corresponding to the complexities
C(x, y), C(x), and C(y | x). A naive translation of (1.41) looks as follows: for every
set of pairs S,

#π1(S) · [ max
x∈π1(S)

#Sx ] ≤ #S. (1.42)

However, this statement is obviously false. See, for example, the set S in Fig. 1.26,
which has large Sx for a few particular x and small Sx for many other x.

In fact, Fig. 1.26 suggests a more plausible statement which looks parallel
to (1.41). We cannot say that S has at once a small projection and small vertical
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sections. But we can split S into two parts so that the first one has a small projection
and the second one has small vertical sections. Here is the technical statement:

Let v and w be two integers such that v w ≥ #S. Then S can be
partitioned into S =V ∪W with #π1(V ) ≤ v and max

x
#Wx ≤ w . (1.43)

It can be shown that (1.43) is indeed true for all S, see [j14].

Now we are ready to present the main result of this section. We propose a general
rule that translates a linear information inequality in an equivalent combinatorial
statement (the initial inequality holds for the Kolmogorov complexity of all tuples of
strings if and only if the resulting combinatorial statement is true for all finite sets).
We apply this translation to all linear inequalities with the quantities of conditional
and unconditional Kolmogorov complexity. Given a linear inequality, we separate
the terms so that all coefficients on the left-hand side and on the right-hand side are
positive. Thus, every inequality can be represented as∑

(I ,J )∈A

αI ,J C(xI | x J ) ≤+ ∑
(I ,J )∈B

βI ,J C(xI | x J ), (1.44)

where all αI ,J and βI ,J are positive real coefficients and A ,B are disjoint sets of
pairs of disjoint subsets of {1, . . . ,k}. (We assume that I in all pairs is non-empty; if J
is empty, the value C(xI |x J ) is understood as the unconditional complexity C(xI ).)

We suppose to give a combinatorial statement that is equivalent to (1.44). To this
end we need a general version of the “combinatorial entropy” and the “combinato-
rial conditional entropy,” similar to the quantities used in Example 1–4 above. We
define them as follows. Let S be a set of k-tuples, and let I and J be disjoint subsets
of the indices in {1, . . . ,k}. For any element a ∈ S we consider the section of S going
through a obtained when all J-coordinates are fixed; consider the projection of this
section onto the coordinates from I . The cardinality of this projection depends on
a; we denote by nI |J (S) the maximal cardinality of this projection (maximum over all
a in S). In other words, we fix the J-coordinates of a point a ∈ S and consider the set
of all possible values of the I -coordinates, and the maximum cardinality of this set
is denoted by nI |J (S). Observe that the notation nI |J (S) makes sense for the empty
set of indices J (e.g., n{1,...,k}|;(S) denotes the cardinality of the entire S). Given this
notation, we can translate (1.44) in the equivalent combinatorial statement.

Theorem 32 ([j14]). Inequality (1.44) is valid for given coefficients αI ,J and βI ,J and
for any strings x1, . . . , xk (up to a logarithmic term) if and only if the following combi-
natorial statement is true:

there exists a polynomial poly(n) such that for any n, for any set S ⊂ ({0,1}n)k

and for any integers γI ,J such that∏
(I ,J )∈B

[nI |J (S)]βI ,J ≤ ∏
(I ,J )∈A

γαI ,J
I ,J

the set S can be covered by sets UI ,J (for (I , J ) ∈A ) such that

nI |J (UI ,J ) ≤ γI ,J ·poly(n).

(1.45)
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We interpret this theorem as a tool to apply information theory to combinatorial
problems. Theorem 1.45 seems to be more complicated than one could expect look-
ing at Examples 1-4 above: it involves a polynomial factor that corresponds to an
additive logarithmic term in the inequalities for Kolmogorov complexity. In [j14] we
showed that a simpler version of the combinatorial statement (without the poly(n)
term) can be proven for a large class of information inequalities. However, it remains
open whether this term can be omitted in the general version of Theorem 1.45. An-
other combinatorial interpretation of information inequalities was suggested in [69]
(it involves a version of (1.45) with a tighter bound but requires to split the given set
in poly(n) “quasi-uniform” parts).

1.13 Towards a Combinatorial Interpretation of
Constraint Information Inequalities

By now, we do not know any general scheme of translation of the constraint informa-
tion inequalities into equivalent combinatorial statements. We keep in mind such
a translation as an eventual goal and discuss several particular combinatorial appli-
cations of constraint information inequality.

We start with recalling inequality (I 3) for Shannon’s entropy:

I (X : Y | A) = 0 and H(A | X ,Y ) = 0 (1.46)

⇓
I (A : B) ≤ I (A : B | X )+ I (A : B | Y )+ I (X : Y ) (1.47)

(see Theorem 27 on p. 74). Observe that under the assumption (1.46) the concluding
inequality (1.47) can be equivalently rewritten as

H(A | B , X )+H(A | B ,Y ) ≤ H(A | B). (1.48)

Thus, (I 3) can reformulated as “(1.46) ⇒ (1.48).”
Now we are going to make the constraint (1.46) weaker (and, therefore, make the

entire statement stronger). More specifically, we consider the following constraint
imposed on a distribution (a, x, y):

For each quadruple of values a, a′, x, y,

if the probabilities of all four events

[A = a, X = x], [A = a,Y = y],

[A = a′, X = x], [A = a′,Y = y]

are positive, then a = a′.

(1.49)

It is not hard to verify (see [j2] for details) that (1.49) is indeed weaker than (1.46)
(the latter implies the former but not visa-versa). The same time, the weaker version
of the condition is enough to imply (1.48):

Theorem 33 ([j2]). Inequality (1.48) is true for all distributions satisfying (1.49).
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The implication “(1.49) ⇒ (1.48)” is interesting even for distributions (A,B , X ,Y )
with a trivial B (where B is the random variable with one single value and zero en-
tropy). In what follows we focus on this special case. In other words, we consider the
inequality

H(A | X )+H(A | Y ) ≤ H(A) (1.50)

and the implication (1.49) ⇒ (1.50), which is a special case of Theorem 33. In fact,
under the assumption (1.49) we do not lose much generality when we reduce the
variable B . Indeed, the property (1.49) is purely negative: it requires that the prob-
abilities of some events vanish. Therefore, the same property applies to all condi-
tional distributions for (A, X ,Y ) conditional on every fixed values of B . Thus, the
general version of (1.48) can be obtained as the average of (1.50) over all distribu-
tions conditional on the possible values of B .

Every distribution where the value of A is a deterministic function of (X ,Y ), can
be naturally interpreted as a distribution on a bipartite graph with colored edges.
We understand (X ,Y ) as a randomly chosen pair of adjacent vertices (X form the
left part and Y from the right part of the graph), and A as the color of the edge con-
necting X and Y . In terms of this graph (1.49) can be understood as follows.

Definition 11. An edge coloring of a graph is an assignment of colors to the edges of
the graph so that every two adjacent edges have different colors.

We say that an edge coloring in a bipartite graph is rich if for every pair

〈left vertex x, right vertex y〉

there is at most one color a touching both x and y (the latter means that there is
an edge with color a incident to x and an edge, maybe a different one, with color a
incident to y). This property is required for all pairs of vertices (x, y), including those
that are not connected by an edge.

Proposition 4. For every bipartite graph with a rich coloring and for every distribu-
tion on the edges of this graph, the random tuple

(left vertex x, right vertex y, color of the edge)

satisfies (1.50).

(This proposition is a rewording of Theorem 33 for trivial B .)

Remark 17. Keeping in mind the constraint H(A | X ,Y ) = 0, we can rewrite (1.50) to
I (A : X : Y ) ≥ 0.

We proceed with a simple and straightforward application of this proposition:

Corollary 4. Assume that the degree of each left vertex in a given bipartite graph is at
least L and the degree of each right vertex is at least R. Then, the number of colors in
every rich edge coloring of the graph is at least LR.
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Sketch of proof: Define the uniform distribution on the set of edges of the graph and
denote by (A, X ,Y ) the random triple 〈left vertex x, right vertex y, color of the edge〉.
As the coloring is rich, we apply Proposition 4 and obtain (1.50).

By construction, the distribution on the edges is uniform. Therefore, for each
vertex x, the conditional distribution of edges incident to this x is also uniform. In a
valid edge coloring all edges incident to one and the same vertex must have different
colors. Hence, for every vertex x, all colors touching this x are equiprobable. Thus,
conditional on X = x, the random variable A is uniformly distributed on the set of
colors of edges compatible with x. Therefore, H(A | X ) ≥ logL. A similar argument
gives H(A | Y ) ≥ logR. It remains to apply (1.50) and obtain H(A) ≥ logL + logR. It
follows that the range of A is at least LR.

Corollary 4 can be seen as a combinatorial interpretation of the constraint in-
equality from Theorem 33. Before we proceed with another application of Proposi-
tion 4, we recall the following definition from graph theory:

Definition 12. For any bipartite graph G = (V1,V2,E) (with the set of vertices V1 ∪V2

and the set of edges E ⊂ V1 ×V2) its biclique cover number bcc(G) is defined as the
minimal number of bicliques (complete bipartite subgraphs) that cover all edges of G.

Biclique coverings play an important role in communication complexity. Specif-
ically, the non-deterministic communication complexity (see [40]) of a predicate

P : U ×U → {0,1}

can be defined as logbcc(G) for the bipartite graph G = (V1,V2,E), where V1 = V2 =
U , and E is the set of all pairs (x, y) ∈U ×U such that P (x, y) = 1.

Corollary 5. Assume that the edges of a bipartite graph G = (V1,V2,E) are colored in
such a way that

if edges (x, y ′) and (x ′, y) of the graph have the same color a, and

vertices x and y, as well as vertices x ′ and y ′, are also connected

by edges, then the latter two edges also have color a.

(1.51)

Assume further that a probability distribution over the edges of the graph is given.
Denote by (X ,Y , A) the random variables where

• X = [the left end of the edge],

• Y = [the right end of the edge],

• A = [the color of the edge].

Then bcc(G) ≥ 2
1
2 (H(A|X )+H(A|Y )−H(A)).

(Corollary 5 follows pretty easily from Proposition 4, see [j2] for details.)

Example. We apply Corollary 5 to a bipartite graph which often plays in commu-
nication complexity the role of a benchmark for different methods. Consider the
bipartite Kneser graph KGn,k = (V1,V2,E), where both parts V1 and V2 consist of all
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k-element subsets of {1, . . . ,n}, and the set of edges E ⊂ V1 ×V2 consists of all pairs
of disjoint sets. We want to estimate the biclique cover number for this graph. This
question corresponds to the following communication problem. Consider a con-
versation between two parties (Alice and Bob), assuming that each party is given a
k-element subset in {1, . . . ,n}. Alice and Bob want to check whether their two sub-
sets have an empty intersection. The question is how many bits of information they
should send to each other to make sure that their inputs are indeed disjoint. For
deterministic communication protocols, the value logbcc(KGn,k ) provides a lower
bound on the communication complexity of the problem. For non-deterministic
protocols, this value essentially coincides with the communication complexity.

To apply Corollary 5, we should define a suitable coloring on the edges of the
graph. We assign to each edge (x, y) the color x ∪ y (the union of the sets x and y)
and consider the uniform probability distribution on the edges of this graph.

Condition (1.51) is satisfied. Indeed, assume we are given three pairs of disjoint
k-element subsets: (x, y), (x, y ′) and (x ′, y), and assume also that x ∪ y ′ = x ′∪ y = a.
It follows that x = x ′ and y = y ′, and therefore x ∪ y = a.

Thus, we can apply Corollary 5:

bcc(KGn,k ) ≥ 2
1
2 [H(A|X )+H(A|Y )−H(A)]. (1.52)

There are
( n

2k

)
equiprobable colors of edges, and therefore H(A) = log2

( n
2k

)
. On the

other hand, H(A | X ) = H(A | Y ) = log2

(n−k
k

)
. Inequality (1.52) rewrites to

bcc(KGn,k ) ≥
√√√√(

n −k

k

)2/(
n

2k

)
.

For n À k this bound implies bcc(KGn,k ) ≥ 2Ω(k). On the other hand, it is known that
bcc(KGn,k ) ≤ 2O(k+loglogn) (see [40, Section 2.3]). Thus, in the caseΩ(loglogn) ≤ k ¿
n our lower bound is almost tight.

The achieved bound is by no means new: the standard fooling set technique (see
[40]) proves for this graph the bound bcc(KGn,k ) ≥ (2k

k

)
for all n ≥ 2k. However, this

simple example illustrates the connection between biclique cover and conditional
information inequalities. We presume that communication complexity is a natural
area of application for constraint information inequalities. In the next section we
use a similar argument to prove a bound for the protocols of common secret key
agreement (in a situation where the other known techniques seem to be less effi-
cient).

Historical remarks. The questions on combinatorial and algorithmic interpreta-
tion of essentially constrain inequalities motivated several recent publications (e.g.,
[c17, j6, j2]). We believe that clique covering and similar properties of graphs pro-
vide a suitable language for interpretation of inequalities like (I 1) or (I 3). How-
ever, a complete and consistent explanation of the phenomenon of essentially con-
straint inequalities remains elusive. We refer the reader to [j2] (see Appendix to the
manuscript) for some more examples of combinatorial applications of constraint
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information inequalities and for technical proofs of the results presented in this sec-
tion.

1.14 Common Secret Key Agreement

In this section, we discuss an interpretation of mutual information from the crypto-
graphic perspective and give a sort of operational characterization of mutual infor-
mation in the framework of Kolmogorov complexity. More specifically, we show that
the mutual information of a pair of binary strings x, y is essentially the maximal size
of a shared secret key that two parties (one of them is given x as an input, and the
other one is given y) can obtain by using a probabilistic communication protocol
via a public channel. We start with a simple example.

Example. Assume two parties (Alice and Bob) want to agree on a common secret key.
Alice and Bob can communicate through a public channel. We assume also that in
the very beginning Alice is given a random line x in the affine plane over the finite
field with 2n elements, and Bob is given a random point y on this line.

The line x in the affine plane can be specified by the slope a and the intercept b,
and the point y in the plane can be specified by its two coordinates c and d . There-
fore, both x and y contain 2n bits of information. Due to the geometrical correlation,
together they have 3n bits of information.

We emphasize that x is known only to Alice (Bob merely knows that this line is
incident with his point y), and y is known only to Bob (Alice merely knows that the
point is incident with her line x). The adversary only knows a priori that the line and
the point are incident with each other. All information sent via the communication
channel is accessible to the adversary.

In this setting, the mutual information between x and y is n bits, so in some
sense Alice and Bob share n bits of the mutual information. We argue that they can
“materialize” this mutual information and obtain a common secret key of size n.
They can operate as follows:

• Alice sends a to Bob,

• Bob (keeping in mind that his point is incident with the line) reconstructs x,

• Alice and Bob use b (the intercept of the line) as the secret key.

Observe that the adversary can learn the value a by intercepting the communica-
tion, but this gives no information on b.

The solution proposed in this simple example employs crucially the very spe-
cific geometrical relation between x and y . However, it can be shown that Alice and
Bob can agree on a common secret key in a much more general setting. We con-
sider secret key agreement protocols where Alice and Bob are given inputs x and y
respectively. We assume that Alice and Bob also know how their x and y are corre-
lated. More technically, we assume that Alice and Bob know the complexity profile
of x and y , i.e., the values of Kolmogorov complexity C(x),C(y),C(x, y) (or at least
some approximations of these values). We admit randomized protocols: Alice and

92



Bob can secretly toss a coin and obtain therefore their private sequences of random
bits.

Theorem 34 ([e1, c1], informal statement). In the setting specified above we prove
the following positive and negative statements.

1. There is a secret key agreement protocol that, for every pair of n-bit strings x
and y, allows Alice and Bob to compute with high probability a shared secret
key of length I (x : y) (up to an O(logn) additive term).

2. No protocol can produce a longer shared secret key (up to an O(logn) additive
term) with a big probability.

The proofs of this theorem can be found in [e1], see Appendix. In what follows we
only sketch the main ideas and techniques used in the proof.

Comments on the positive result. Part (1) of Theorem 34 claims that there is a
communication protocol that permits to agree on a shared secret key of size I (x :
y). On the high level this protocol looks similar to the protocol from the simple
geometric example discussed above:

Step 1. Alice sends to Bob a “fingerprint” p1 of x of size ≈ C(x | y);

Step 2. Bob uses y and the received fingerprint p1 to find x;

Step 3. then both Alice and Bob independently compute another fingerprint p2 =
p2(x) of size I (x : y), which is used as a common secret key.

The construction of the fingerprints guarantees that the adversary obtains virtually
no information about the final value p2. Observe that the value of p1 becomes pub-
lic, and this divulges C(x | y) bits of information about x. So it is not surprising that

C(x)−C(x | y) =+ I (x : y)

bits of information in x remain confidential. However, to make this plan work we
have to choose an appropriate construction of “fingerprints.” Technically, we use
the fingerprints from a suitable version of Muchnik’s theorem on conditional de-
scriptions (see Section 1.6).

Remark 18. Our communication protocols are not time-efficient, and this cannot
be improved in general. The same time, for some particular types of correlation (for
instance, for a pair of inputs with a bounded Hamming distance) the protocols can
be improved. We can construct a polynomial-time computable protocol by using an
efficient reconciliation technique from [73].

Some comments on the negative result. Part (2) of Theorem 34 claims that there is
no way to obtain a longer common secret key. This statement (similar to many other
“no-go” results in information theory) is based on a relevant information inequality.
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To explain the ideas behind the proof, we simplify the setting and assume that
Alice and Bob cannot use randomness (i.e., the communication protocol is deter-
ministic). Let us simplify the problem even further and assume that Alice and Bob
want to agree on a common secret key without any communication. Though in the
general case this is impossible, Alice and Bob can do it for some very particular x and
y . (For example, of the first halves of strings x and y are the same, then Alice and Bob
can take this prefix shared by their inputs as a secret key.) In this case the problem of
a secret key agreement reduces to the problem of extracting the common informa-
tion from x and y : Alice and Bob need a key w such that w can be easily computed
given x and given y .

We have seen in Section 1.8 that for any x, y the common information cannot be
greater than the mutual information I (x : y), i.e.,

if C(w | x) ≈ 0 and C(w | y) ≈ 0, then C(w). I (x : y). (1.53)

Now we extend the setting and allow the communication between Alice and Bob.
Denote t the transcript of the protocol (logging of the data sent by Alice and Bob to
each other via the channel). Then the final result (the common secret key w) must
be easily computed from x, t (this is done by Alice) and from y, t (this is done by Bob).
The secrecy means that the obtained key has (almost) no mutual information with
the public transcript t . The relativized version of (1.53) provides an upper bound for
the size of this key:

if C(w | x, t ) ≈ 0,C (w | y, t ) ≈ 0, and I (w : t ) ≈ 0, then C(w). I (x : y | t ). (1.54)

Thus, we end up with the bound C(w) . I (x : y | t ), though we need C(w) . I (x : y).
It remains to compare the values of I (x : y | t ) and I (x : y).

We know that in general, the value of I (x : y | t ) can be much greater than I (x : y)
(see p. 35). However, in this particular case (when t is the transcript of a communi-
cation protocol), we can prove that I (x : y | t ) ≤+ I (x : y).

Lemma 6 ([e1, c1]). If t is the transcript of a deterministic communication protocol
for two parties that are given x and y as inputs, then I (x : y : t ) ≥+ 0, see Fig. 1.27.

This lemma in some sense translates in the framework of Kolmogorov complex-
ity the constraint information inequality from Proposition 4. It is instructive to com-
pare Lemma 6 with negative results in Theorem 31 on p. 81 (so it is crucial that the
constraint imposed on x, y, t in this lemma is not slack, not “up to a logarithmic ter-
m”).

Somewhat implicitly Lemma 6 provides a statement on biclique covering of a bi-
partite graph. The vertices of this graph are n-bit strings x and y , and the bicliques
are transcripts of the protocol (a biclique consists of all pairs (x, y) compatible with
one specific instance of a transcript), see Section 1.13 for a discussion of the con-
nection between communication complexity, biclique covering, and constraint in-
formation inequalities.

Lemma 6 together with the usual argument “common information is not greater
than the mutual information” results in the required bound: Alice and Bob cannot
agree on a common secret key with complexity greater than I (x : y).
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x y

transcript(x, y)

≥+ 0

Figure 1.27: The diagram for x, y , and the transcript of a communication protocol
with inputs x and y . Lemma 6 claims that I (x : y) ≥+ I (x : y | transcript).

For the sake of simplicity, in this sketch we discarded the private randomness
available to Alice and Bob. Of course, the general proof cannot ignore this issue.
However, taking into account these additional random bits causes no serious tech-
nical difficulties.

Remark 19. For communication protocols with O(1) rounds a version of Lemma 6
can be proven with the standard Shannon-type inequalities. The new technique is
vital when the number of rounds grows with n.

Some comments on communication complexity of the secret key agreement. In
the protocol suggested in Theorem 34 Alice and Bob agree on a common secret key
of size I (x : y)−O(logn) by exchanging C (x | y)+O(logn) bits. With a symmetric
version of this protocol, we obtain the communication complexity

min(C (x | y),C (y | x))+O(logn) (1.55)

bits. This protocol is randomized. We usually assume that Alice and Bob use their
private sources of random bits, but the protocol can be adapted to the setting with
public random bits (accessible to Alice and Bob, and to the adversary as well). For
the communication model with a public source of randomness, we show that the
communication complexity of the proposed protocol is optimal. More precisely, for
any protocol with public randomness (that produces with high probability a com-
mon secret key of size ≈ I (x : y)) there are pairs of inputs x and y on which Alice
and Bob exchange at least min(C (x | y),C (y | x)) bits (up to an additive logarithmic
term). We prove even a stronger statement: if the communication complexity of a

95



protocol is below the threshold (1.55), then the size of the resulting common secret
key is close to zero.

The proof of this result is based on the thorough analysis of the extractability of
common information (see Section 1.8). More specifically, we use Theorem 22 on the
common information for stochastic pairs.

The question on the optimal communication complexity for the model with pri-
vate randomness remains open.

Secret key agreement for many parties Secret key agreement can be extended to
the case of ` > 2 parties. If ` parties are given n-bit strings x1, . . . , x` respectively
and they known the complexity profile of this tuple of strings, then they can obtain
a common secret key of length

C(x1, . . . , x`)−CO(x1, . . . , x`), (1.56)

where CO(x1, . . . , x`) denotes the minimum communication for the omniscience task
in the broadcast model. (An omniscience protocol make sure that all parties get to
known the entire tuple x1, . . . , x`.) The proposed protocol is randomized, it returns a
valid result with a probability close to 1. We show that the bound (1.56) is essentially
tight (up to O(logn)), [e1, c1].

Historical comments. The idea of randomness plays the central role in cryptogra-
phy: an encrypted message must look for an eavesdropper as a random sequence
of digits, a secret password must be chosen at random to make it hard to break, and
so on. Let us consider a more specific example. In the one-time pad scheme, we
assume that two parties share a “random” key, and this key is a “secret” for the at-
tacker. It is assumed usually that both parties have access to a common source of
randomness, e.g., to the results of tossing a fair coin (invisible to the adversary). The
intuitive ideas of randomness and secrecy are usually formalized in cryptography
in the framework of probability theory and Shannon’s entropy. If we toss a fair coin
n times, we obtain a random variable with maximal possible entropy n, and there-
fore, from the Shannon’s entropy perspective, the quality of the resulting random
key is perfect. However, if by chance we obtain a sequence that consists of n zeros
(this outcome is possible, as well as any other), then this specific one-time pad looks
useless in any practical application. Disappointingly, Shannon’s information theory
provides no language to complain about an apparently non-random individual key.
This is the point where Kolmogorov complexity comes into play, since Kolmogorov
complexity measure randomness in individual objects, not in a distribution in gen-
eral. The idea to use Kolmogorov complexity to measure the secrecy of an individual
instance of a one-time pad or a secret sharing schemes was suggested by Antunes et
al. in [70]. While discussing the idea of the secret key agreement, we keep in mind a
similar motivation: we understand a good “secret key" as an individual string that is
incompressible in the sense of Kolmogorov complexity.

Let us focus now on the notion of the secret key agreement. The secret key agree-
ment was extensively studied in classic (Shannon’s) information theory. In this
framework Alice gets as an input values of random variables (X1, . . . , Xn), Bob gets
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values of random variables (Y1, . . . ,Yn), where the random pairs (Xi ,Yi ) are i.i.d., or
at least have the properties of stationarity and ergodicity. Then Alice and Bob com-
municate via a public channel. The aim of Alice and Bob is to agree on a common
value of a random variable (“secret key”) that would have large Shannon’s entropy
even conditional on the transcript of the protocol. Our work has been inspired by
the results proven in this setting in [30], [31], [59].

Our results can be understood as algorithmic (Kolmogorov-type) analogs of the
Shannon-type theorems proven in [30], [31], [59]. Technically speaking, the upper
and lower bounds on the size of the common key that we have proven in the frame-
work of Kolmogorov complexity, formally imply similar bounds previously known in
Shannon’s framework for stationary ergodic sources. Indeed, it is well known that a
sequence of i.i.d. random variables (or, more generally, an outcome of a stationary
ergodic source) gives with a high probability a string of letters whose Kolmogorov
complexity is close to Shannon’s entropy of the random source, [58], [76]. Hence, if
Alice gets a value of (X1, . . . , Xn), Bob gets a value of (Y1, . . . ,Yn), and the sequence
of pairs (Xi ,Yi ) is a stationary ergodic source, then with high probability the mu-
tual information (in the sense of Kolmogorov complexity) between Alice’s and Bob’s
individual inputs is close to the mutual information between these two random se-
quences (in the sense of Shannon’s entropy). The same time, our results are in a
sense more general than their homologs in Shannon’s theory: we do not need to as-
sume the properties of memoryless or ergodicity of sources.

The proof of our positive results (the constructions of communication protocols)
at the high level look similar to those from their Shannon’s counterparts in [30], [31],
[59]. In fact, we use similar intuitive ideas (that can be explained in terms of manipu-
lations with fingerprints of appropriate lengths). However, the technical implemen-
tation of these ideas is pretty different in Kolmogorov’s and Shannon’s frameworks.
When working with Kolmogorov complexity, we need quite explicit constructions
(we use extractor graphs and universal hashing), while similar results for Shannon’s
entropy are typically obtained by a straightforward choice of random encodings.

In the proof of the negative results (upper bounds for the size of the common
secret key), not only the technical implementation but also the intuitive ideas be-
hind the proofs somewhat differ in Kolmogorov’s and Shannon’s frameworks. The
reason for this discrepancy is that in Kolmogorov’s framework, we cannot say that
the mutual information between two objects is exactly zero. We can only say that
it is close to zero, within some minor terms. Even though each minor term is neg-
ligibly small, the errors can accumulate during the rounds of a protocol, and be-
come significant at the end of the protocol. To overcome this obstacle we proposed
a new technique based on constraint inequalities for Kolmogorov complexity. We
suppose that this technique can be eventually reemployed in Shannon’s framework
to achieve stronger no-go results in classical information theory.

To conclude, we summarize the techniques used in this section:

• In the proof of positive results (constructions of protocols) we used a variant
of Muchnik’s theorem on conditional descriptions (discussed in detail in Sec-
tion 1.6).

• In the proof of negative results (the upper bound for the size of a common se-
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cret key) we used conventional information inequalities and also some new
constraint information inequalities and their combinatorial interpretation
(see Section 1.4, Section 1.11 and Section 1.13). The proofs of the constraint
information inequalities involve the technique of “clones,” see Section 1.10.

• In the lower bound for the communication complexity of protocols, we used
the results on extracting the common information (see Section 1.8).

The detailed proofs of all results discussed in this section can be found in [e1], see
Appendix.
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Chapter 2

Self-simulating tilings

2.1 Shifts and tilings: Introduction

In this chapter of the manuscript, we study the multi-dimensional shifts, i.e., the
translation invariant and topologically closed sets of configurations of a Cantor
space. More precisely, we deal with the translation invariant and topologically
closed sets of configurations over a finite alphabet on Zd . Every shift can be speci-
fied by a set of forbidden patterns F , so that a configuration belongs to the shift, if
and only if, it does not involve any forbidden finite pattern from F .

A trivial example: Let us take the two letters alphabet that consists, say, of a white
square and a black square, Σ= { , }, and consider configurations over Σ on Z2. Let
the forbidden patterns be all adjacent pairs of squares with the same colors: ,

, , and . Then the configurations avoiding these patterns are the checkerboard

colorings of Z2, as shown in Fig. 2.1. Technically, there are exactly two valid config-
urations, which differ from each other by a translation. These two infinite configu-
rations form a shift.

The notion of a shift is an abstraction that helps us to study how simple local
rules can imply nontrivial global phenomena. Shifts are used in various domains: in
mathematical logic (in problems of decidability of formal languages with very sim-
ple syntax, see, e.g., [39]), in computational complexity (as a computational model
with nice structural properties, [20]), in mathematical physics (as a simplistic model
of quasicrystalline structures, see, e.g., [28]), and so on.

Figure 2.1: A checkerboard configuration.
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Two classes of shift play a prominent role in symbolic dynamics, in language the-
ory, and in the theory of computability: shifts of finite type (obtained by forbidding
a finite number of finite patterns) and effective shifts, otherwise known as effectively
closed shifts (obtained by forbidding a computable set of finite patterns). The class
of shifts of finite type is known to be very rich — even a finite set of simple local
rules can imply rather sophisticated global properties. It is known that some (non-
empty) multi-dimensional shifts of finite type admit only aperiodic (see [4]) or even
only non-computable ([15], [16]) configurations. The value of the combinatorial en-
tropy of a shift of finite type can be any right computable real number h ≥ 0, see
[82]. The projective subdynamics of a shift of finite type of dimension d > 1 can be
any effective shift of a dimension below d (with possibly infinitely many forbidden
patterns), see [80], [j7], [88].

Most proofs of the results mentioned above are based on embedding a computa-
tion in the structure of a shifts of finite type. In this part of the manuscript we discuss
one specific technique of embedding a Turing machine in a shift of finite type. We
refer to this technique as self-simulating or fixed-point tilings. This method com-
bines the idea of geometric self-similarity with the idea of a self-referential program
(in a very general sense). The idea of using a program that manipulates its own
text is by no means new. The first applications of this method arguably date back
to the classic recursion theorems by Kleene and Gödel’s incompleteness theorems.
Nowadays the technique of self-referential programs is very common in computer
science. Writing exotic quines (self-replicating programs that can print a copy of
its own source code) in different programming languages has become a particularly
popular ludic activity for young programmers. And, of course, this idea appears in
various contexts in numerous serious applications.

We use the technique of self-referential programming in a form similar to the
construction of self-reproducing automata by J. von Neumann, [38], and to the self-
correcting cellular automata by P. Gács, [24]. It turns out that the idea of a self-
referential program matches perfectly the idea of a self-similar geometric config-
uration that reproduces similar patterns in different scales. Using this technique we
give new proofs of several classic theorems of symbolic dynamics and then prove
several new results. In what follows we briefly mention the results that we obtain.

Simple local rules can imply complex global behavior.

• For every d ≥ 2 there exists a non-empty SFT of dimension d where all config-
urations are aperiodic. This is a classic result originally proven by Berger in the
seminal paper [4]. The very fact of the existence of aperiodic SFTs is nontrivial
and has important implications. What is even more important, aperiodic SFTs
are used as a basis to construct shifts with various other nontrivial properties.

Berger used an SFT defined in terms of Want tiles (i.e., each letter of the al-
phabet is a square with colored sides, and the matching rules of this SFT re-
quire that every two neighboring squares share the same color on the com-
mon side, see the formal definition below). Berger’s proof involved the idea
of self-similarity: each admissible configuration must be in some non-literal
sense self-similar, and therefore aperiodic.
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The original construction proposed by Berger was very technical. Several sim-
pler proofs of this result have been suggested by other authors in subsequent
works. Some of these proofs were based on simplified versions of Berger’s con-
struction ([9]; see also [39], [62], [63]). An elegant and simple proof based ex-
plicitly on ideas of self-similarity was proposed in [77]. A series of examples
based on the idea hierarchical structures were constructed in [96]. Some other
approaches were based on substitutive polygonal tilings (such as the Penrose
and Ammann tilings; see [25]). A very different construction suggested in [37]
was based on multiplication in a sort of positional number system; this ap-
proach gave a very small aperiodic set of only 14 Wang tiles ([36] presented an
improved version with 13 tiles and [94] with only 11 tiles, which is the minimal
possible set of Wang tiles with the property of aperiodicity).

The known constructions of aperiodic SFT combine in different proportions
geometric and algorithmic ideas. We propose one more construction, which is
in some sense extremal: it is almost purely algorithmic, with minimum of ge-
ometric tricks. Our technique does not help minimize the size of the alphabet
or reduce the number of local constraints in an SFT. However, this construc-
tion gives much more than just another example of an aperiodic SFT. The ad-
vantage of this method is its flexibility. As we explain below, it allows various
modifications and extensions, so we can adjust it to many applications.

• The result on aperiodic SFT can be made stronger: we show that for every
d ≥ 2 there exists a non-empty SFT of dimension d such that for every con-
figuration, every non zero translation changes a constant fraction of points.
(Note that the conventional property of aperiodicity implies only that every
translation changes at least some points of every configuration, and the frac-
tion of the changed points can tend to 0 as the length of the translation vector
goes to infinity).

• We show that for every d ≥ 2 there exists a non-empty SFT where all config-
urations are uncomputable. This is another classic result originally proven in
[15], [16]. We give a new proof of this theorem as an illustration of the flexibil-
ity of our technique.

Multi-dimensional SFTs can have highly complex subdynamics.

• Every effective shift on Zd can be represented as a projection of subdynamics
in an SFT on Zd+1. Originally, a slightly weaker version of this result (for SFT
on Zd+2) was proven by Hochman, [80]. The present version of the theorem
was independently proven in [j7] (with the method of self-simulating tilings)
and with a more conventional technique of Robinson’s tilings in [88].

• For every d ≥ 2 there exists a non-empty SFT of dimension d where for all
configurations each n×n×·· ·×n pattern has Kolmogorov complexityΩ(nd−1).
This statement was originally proven by Durand, Levin, and Shen, [75], with
a technique based on Robinson’s tilings. We prove the same result with self-
simulating tilings.
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Restrictive classes of SFT: quasi-periodic and minimal shifts can have complex
algorithmic and dynamical properties.

• For every d > 1 there exists a non-empty SFT onZd , where each configuration
is at once aperiodic and quasiperiodic (and even minimal). This statement
was originally proven in [78] for an SFT constructed in [77], via a very thorough
analysis of a Robinson-type construction. We suggest a pretty different proof,
based again on self-simulating tilings.

• For every d > 1 there exists a non-empty SFT on Zd where each configuration
is at once non-computable and quasiperiodic. We also prove a stronger re-
sult and characterize the classes of Turing degrees that can correspond to the
configurations of a quasi-periodic SFT. To the best of our knowledge, the only
known proof of these results uses our technique of self-simulating tilings.

Constructions of robust (fault-tolerant) SFTs. We extend several of the results
mentioned above (aperiodic and strongly aperiodic SFT, SFT with patterns with
high Kolmogorov complexity) to a more general type of objects — to so called faulty
tilings. The faulty tilings are the configurations where the local rules are not absolute
anymore: the constraints can be violated on a sparse enough set of “errors” (we give
a formal definition below). We say that a set of local rules is fault-tolerant, if some
global properties of configurations (strong aperiodicity, high complexity) remain
valid despite sparse departures from these local rules. It turns our that the tech-
nique of self-simulating tilings is a perfect method to design fault-tolerant tilings.

Historical remarks. The technique of self-simulating tilings was largely inspired
by the construction of reliable cellular automata with self-organization suggested
by P. Gács. The self-simulating tilings first appeared in the series of work [c9, c7, j7]
(a joint work with Bruno Durand and Alexander Shen), where the principal motiva-
tion was to address the “faulty tilings.” In [c4, c2] (a joint work with Bruno Durand)
this technique was used to study minimal and quasiperiodic SFT; in [e2] the same
method was applied to study transitive SFT. Similar constructions of self-simulating
tilings were used in [101] and [95], [98].

2.2 Notation and basic definitions

In this section we recall several standard definitions from symbolic dynamics and
introduce some notation.

Shifts. Let Σ be a finite set (an alphabet). Fix an integer d > 0. A Σ-configuration
(or just a configuration if Σ is clear from the context) on Zd is a mapping f : Zd →
Σ, i.e., a coloring of Zd by “colors” from Σ. A Zd -shift (or just a shift) is a set of
configurations that is (i) translation invariant (with respect to the translations along

each coordinate axis), and (ii) closed in Cantor’s topology. The entire space ΣZ
d

is
itself a shift, referred to as the full shift.
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A pattern is a mapping from a finite subset of Zd to Σ (a coloring of a finite set of
Zd ); this set is called the support of the pattern. We say that a pattern P appears in
a configuration f(x̄) if for some c̄ ∈Zd the pattern P coincides with the restriction of
the shifted configuration fc̄ (x̄) := f(x̄ + c̄) to the support of this pattern.

Every shift is determined by the corresponding set of forbidden finite patterns
F (a configuration belongs to the shift if and only if no patterns from F appear in
this configuration).

A shift is called effective (or effectively closed) if it can be defined by a computably
enumerable set of forbidden patterns. A shift is called a shift of finite type (SFT) if it
can be defined by a finite set of forbidden patterns.

Wang tilings. A special class of two-dimensional SFTs is defined in terms of Wang
tiles. In this case, we interpret the alphabetΣ as a set of tiles, i.e., a set of unit squares
with colored sides, assuming that all colors belong to some finite set C (we assign
one color to each side of a tile, so technically Σ is a subset of C 4). A (valid) tiling is a
set of all configurations f : Z2 →Σwhere every two neighboring tiles match, i.e., they
share the same color on adjacent sides. Wang tiles are powerful enough to simulate
any SFT in a very strong sense: for each SFT S there exists a set of Wang tiles τ such
that the set of all τ-tilings is isomorphic to S . This definition has a straightforward
generalization for all dimensions d > 2.

In this paper we mainly use the formalism of tilings since Wang tiles are better
adapted for explaining our techniques of self-simulation.

A shift as a dynamical system. Every shift S ⊂ΣZd
can be interpreted as a dynam-

ical system. Indeed, there are d translations along the coordinate axes, and each of
these translations maps S to itself. Therefore, the group Zd naturally acts on S .

Let S be a shift on Zd and L be k-dimensional sub-lattice in Zd (i.e., L must be
an additive subgroup of Zd that is isomorphic to Zk ). Then the L-projective subdy-
namics SL of S is the set of configurations of S restricted on L. The L-projective
subdynamics of aZd -shift can be understood as aZk -shift (note that L naturally acts
on SL). In particular, for every d ′ < d we have a Zd ′

-projective subdynamics on the
shift S , generated by the lattice on the first d ′ coordinate axis.

A configuration x is called recurrent if every pattern that appears in x at least
once, must then appear in this configuration infinitely often.

Subdynamics of a shift. We will prove several results concerning the subdynamics
of an SFT. More specifically, we will prove that SFTs can “simulate” in some sense
any effective shifts in the lower dimensions. By simulation we mean the projective
subdynamics of a shift on Zd+1 that corresponds to the restriction of a shift on the
first d coordinate axis.

Definition 13. We say that a shift A on Zd is simulated by a shift B on Zd+1, if there
exists a projection π : ΣB →ΣA , such that for every configuration

f : Zd+1 →ΣB
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=⇒ π

Figure 2.2: In this example, each cell of a two-dimensional configuration has two
characteristics: the color and the direction of hatching. The color is maintained
unchanged along each vertical line. The projection πmaps each column to its color.

from B and for all i1, . . . , id , j , j ′ we haveπ(f(i1, . . . , id , j )) =π(f(i1, . . . , id , j ′)) (i.e., pro-
jection π takes a constant value along each column (i1, . . . , id ,∗), see Fig. 2.2), and the
resulting d-dimensional configuration

{π(f(i1, . . . , id ,∗))}

belongs to A ; moreover, each configuration of A can be represented in this way by
some configuration of B. Informally, we can say that each configuration from B

encodes a configuration from A , and each configuration from A is encoded by some
configuration from B.

Quasiperiodicity and minimality. A configuration x : Zd → Σ is called quasiperi-
odic (or uniformly recurrent) if every pattern P that appears in x at least once must
appear in every large enough d-dimensional hypercube Q in x. Note that every peri-
odic configuration is also quasiperiodic. A quasiperiodic shift is a shift that contains
only quasiperiodic configurations. By compactness, if a shift is minimal then it is
quasiperiodic (the converse is not true).

Given a configuration x, a function of a quasiperiodicity for x is a mapping ϕ :
N→N∪ {∞} such that every finite pattern of size (diameter) n either never appears
in x or appears in every hypercube of size ϕ(n) in x (see [46]). We assume φ(n) =
∞ if some pattern P of size n appears in x, but there exist arbitrarily large areas in
x that are free of P . By definition, for a quasiperiodic x we have φ(n) < ∞ for all
n. We say that a shift S has a function of quasiperiodicity ϕ if ϕ is a function of
quasiperiodicity for every configuration in S .
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If a shift S is minimal, then all configurations in S have exactly the same finite
patterns and thus the same functions of quasiperiodicity. Every minimal shift S is
quasiperiodic, so its function of quasiperiodicity must therefore be finite (for every
n). Moreover, for an effective minimal shift, the set of all finite patterns (that can ap-
pear in any configuration) is computable, see [80], [81]. From this fact it follows that
every effective and minimal shift contains some computable configuration. Indeed,
with an algorithm that checks whether a given pattern appears in every x ∈ S , we
can incrementally (and algorithmically) increase a finite pattern, maintaining the
property that this pattern appears in every configuration in S .

2.3 General remarks and organization of this part of
the manuscript

In most theorems in this chapter, we claim something about (quasiperiodic, min-
imal, transitive) SFTs. In the proofs we deal mostly with tilings, which are a very
special type of SFT. Since the principal results of the paper are positive statements
(we claim that SFTs with some specific properties do exist), the focus on tilings does
not restrict the generality. On the other hand, the formalism of Wang tiles matches
very well the constructions of self-similar and self-simulating shifts of finite type,
which represent the main technique used in this chapter To simplify the notation
and make the argument more visual, in what follows we focus on the case d = 2. The
proofs extend to any d > 1 in a straightforward way, mutatis mutandis.

The central idea of our arguments is the notion of self-simulation. The technique
of hierarchical self-simulating tilings is quite generic and flexible. The drawback of
this approach is that it is hard to isolate the core technique from features specific
to some particular application. In every specific result we cannot just cite the state-
ment of a previously known theorem about self-simulating tilings: rather, we need
to reemploy the constructions from the proofs of a previously known theorem (em-
bedding some new gadgets in the previously known scheme). This make the proofs
long and somewhat cumbersome. So, in order to help the reader, we made the ex-
position of the main results “hierarchical.” We start with a general perspective of
our technique (illustrating it by proofs of several classic results). and then, in each
succeeding section, we show how to adjust and extend this general construction to
prove this or that particular result.

2.4 The generic framework of self-simulating SFT

In this section, we recall the principal elements of the technique of self-simulating
tile sets. We start with a very basic version of a construction of self-simulating tile
sets from [j7]. This part of the construction will be enough, in particular, to obtain a
proof of the classic Berger Theorem:

Theorem 35 (Berger, [4]). For every d > 1 there exists a non-empty SFT on Zd , where
each configuration is aperiodic.
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Later, we will extend this construction and adapt it to prove much stronger state-
ments.

2.4.1 The simulation relation for tile sets

Let τ be a tile set and N > 1 be an integer. We call a macro-tile an N × N square
tiled by matching tiles from τ. Every side of a τ-macro-tile contains a sequence of N
colors (of tiles from τ); we refer to this sequence as a macro-color. Furthermore, let
T be a set of τ-macro-tiles (of size N ×N ). We say that τ implements T with a zoom
factor N if

• some τ-tilings exist, and

• for every τ-tiling there exists a unique lattice of vertical and horizontal lines
that cuts this tiling into N ×N macro-tiles from ρ.

A tile set τ simulates another tile set ρ, if τ implements a set of macro-tiles T (with a
zoom factor N > 1) that is isomorphic to ρ, i.e., there exists a one-to-one correspon-
dence between ρ and T , such that the matching pairs of ρ-tiles correspond exactly
to the matching pairs of T -macro-tiles. A tile set τ is called self-similar if it simulates
itself.

If a tile set τ is self-similar, then all τ-tilings have a hierarchical structure. Indeed,
each τ-tiling can be uniquely split into N × N macro-tiles from a set T , and these
macro-tiles are isomorphic to the initial tile set τ. Further, the grid of macro-tiles
can be uniquely grouped into blocks of size N 2 ×N 2, where each block is a macro-
tile of rank 2 (again, the set of all macro-tiles of rank 2 is isomorphic to the initial
tile set τ), etc. It is not hard to deduce that a self-similar tile set τ has only aperiodic
tilings (for more details, see [j7]). Below, we discuss the generic construction of self-
similar tile sets.

2.4.2 Simulating a tile set defined by a Turing machine

Let us have a tile set ρ. In what follows, we present a general construction that al-
lows to simulate ρ by some other tile set τ, with a large enough zoom factor N . The
number of tiles in the simulating tile set τ will be O(N 2), and the constant in the
O(·)-notation does not depend on the simulated ρ.

We assume that each color is a string of k bits (i.e., the set of colors C ⊂ {0,1}k )
and the set of tiles ρ ⊂C 4 is presented by a predicate P (c1,c2,c3,c4) (the predicate is
true if and only if the quadruple (c1,c2,c3,c4) corresponds to a tile from ρ). Suppose
we have a Turing machine M that computes P . (It might look wasteful to construct
a Turing machine that computes a predicate with a finite domain, but we shall see
that this kind of abstraction is useful.) Now we construct in parallel a tile set τ and a
set τ-macro-tiles that simulate the given ρ.

When constructing a tile set τ, we keep in mind the desired structure of τ-macro-
tiles (that should simulate the given tile set ρ). We require that each tile in τ “knows”
its coordinates modulo N in the tiling. This information is included in the tile’s col-
ors. More precisely, for a tile that is supposed to have coordinates (i , j ) modulo N ,
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N

N

(i, j)

(i, j + 1)

(i, j) (i+ 1, j)

i

j

Figure 2.3: The basic structure of a macro-tile: A block of size N × N consists of
tiles, the coordinates of which in this block (a pair of integers between 0 and N −1)
are written as “colors” of the left and the bottom side of each tile. On the right and
bottom sides of every tile, one of the coordinates is incremented (modulo N ).

the colors on the left and on the bottom sides should involve (i , j ), the color on
the right side should involve (i +1 mod N , j ), and the color on the top side involve
(i , j +1 mod N ), see Fig. 2.3.

This means that every τ-tiling can be uniquely split into blocks (macro-tiles) of
size N × N , where the coordinates of the cells range from (0,0) in the bottom-left
corner to (N −1, N −1) in top-right corner, as shown in Fig. 2.3. Intuitively, each tile
“knows” its position in the corresponding macro-tile. We will require that in addi-
tion to the coordinates, each tile in τ has some supplementary information encoded
in the colors on its sides. On the border of a macro-tile (where one of the coordinates
is zero) we assign to the colors of tiles one additional bit of information. Thus, for
each macro-tile of size N ×N the corresponding macro-colors can be represented
as strings of N zeros and ones. We assume that N À k. We allocate k positions in
the middle of a macro-tile’s sides and make them represent colors from C ; the other
(N −k) bits on the sides of a macro-tile are set to zero.

We now introduce additional restrictions on the tiles in τ that will guarantee that
the macro-colors on the macro-tiles satisfy the “simulated” relation P . To this end,
we ensure that bits from the macro-tile side are transferred to the central part of the
tile, and the central part of a macro-tile is used to simulate a computation of the
predicate P . We fix which cells in a macro-tile are “communication wires” and then
require that these tiles carry the same (transferred) bit on two sides, see Fig. 2.4.

The central part of a macro-tile (of size, say, m×m, where m ¿ N ) should repre-
sent a space-time diagram of the machine M (the tape is horizontal, and time goes
up), see Fig. 2.5. This Turing machine processes the quadruple of inputs, which are
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(i1, j1)

(i1, j1 + 1)

(i1, j1, b1) (i1 + 1, j1, b1)

(i2, j2, b2)

(i2, j2 + 1)

(i2, j2, b2) (i2 + 1, j2)

Figure 2.4: The tile with coordinates (i1, j1) is a part of a “communication wire” that
transfers the bit b1 (a horizontal part of the wire, the value of the bit b1 is conducted
from the left to the right), and the tile with coordinates (i2, j2) is a part of a “commu-
nication wire” that transfers the bit b2 (a corner of the wire, with the value of the bit
b2 conducted from the left side to the bottom side of the tile). The coordinates and
the values of the transferred bits are embedded in the colors of the tiles’ sides.
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Turing
machine

Figure 2.5: A macro-tile with a space-time diagram of a Turing machine in the mid-
dle part.

the k-bit strings representing the macro-colors of this macro-tile.
Let us explain in more detail how we represent the computation of a Turing ma-

chine in a tiling. Such a representation can be implemented in many different ways,
but for the sequel we should fix one specific version. First of all, we assume that the
machine has a single tape. We understand the space-time diagram of a Turing ma-
chine in a pretty standard way, as a table where each vertical column corresponds to
one cell on the tape of the machine, and each horizontal row of the diagram repre-
sents an instance of a Turing machine configuration. For each row of the diagram,
we

• specify for each cell (within a bounded part of the tape) the letter written in
this position on the tape,

• specify with a special mark the position of the read head, and

• write the index of the internal state of the machine into the cell where the read
head is currently located.

Each next row of the diagram represents the configuration of the machine at the next
step of computation (once again, we assume that time goes up). Thus, the entire
diagram is determined by its bottom line (with the input data of the machine).

The property of being a valid space-time diagram is defined locally, so we can
easily represent such a diagram of a given Turing machine by local matching rules
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for tiles. The details of this representation are not very important in the sequel; we
may take, for example, the representation described in [39]. In what follows, we need
only keep in mind some natural properties of the chosen representation (which hold
trivially for the representations from [39]):

• a correct tiling of a frame m×m represents a space-time diagram of the same1

size m ×m,

• a correct tiling of a frame m×m with some specific bottom line can be formed
if and only if the computation (with the corresponding input data) terminates
in an accepting state in at most m steps and during this computation the read
head never leaves the available finite part of the tape,

• every (k ×k)-fragment2 of a correct tiling can be reconstructed by its border-
line (this is the only property where we need the Turing machine to be deter-
ministic).

The communication of the computation zone with the “outside world” is restricted
to the bottom line (the input data of the computation), which must cohere with the
bits representing the four macro-colors of the macro-tile.

To make all of this construction work, the size of a macro-tile (the integer N )
should be large enough: first, we need enough room to place the “communication
wires” that transfer the bits of macro-colors to the “computation zone”; second, we
need enough time and space in the computation zone of size m ×m so that all ac-
cepting computations of M terminate in time m and on space m.

In this construction, the number of additional bits encoded in the colors of the
tiles depends on the choice of machine M . To avoid this dependency, we replace M

with a fixed universal Turing machine U that runs a program simulating M . More-
over, we prefer to separate the general program of a Turing machine (which involves
a description of the predicate P corresponding to the simulated tile set ρ) from the
zoom factor N .

Technically, we assume that the tape of the universal Turing machine has an ad-
ditional read-only layer. Each cell of this layer carries a bit that never changes during
the computation (so, in the computation zone, the columns carry unchanged bits).
The construction of a tile set guarantees that these bits form two read-only input
fields: (i) the program for M and (ii) the binary expansion of an integer N (which is
interpreted as the zoom factor). Accordingly, the computation zone of a macro-tile
represents a view of an accepting computation for that program given N as one of
the inputs, see Fig. 2.6.

Thus, from now on, we assume that the simulated program is given five inputs:
the binary codes of four macro-colors (that are “transferred” from the sides of this
macro-tile) and the binary expansion of an integer N (interpreted as the zoom fac-
tor).

1In fact, it is enough to assume that a tiling of size m ×m represents a space-time diagram of size
Ω(m)×Ω(m).

2In what follows we use only a restricted version of this property. We need to be able to reconstruct
every (2×2)-block of tiles given the 12 tiles around this block, see Fig. 2.14 below.
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Universal
Turing

machine

π bin(N)

Figure 2.6: The computation zone represents a space-time diagram of the universal
Turing machine. This machine simulates program π, which gets as an input the
binary codes of four macro-colors, the binary expansion of the zoom factor N , and
its own text.
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Without loss of generality, we assume that the positions of the “wires” and the
size of the “computation zone” in a macro-tile are chosen in some simple and nat-
ural way, and can be effectively computed given the size of the macro-tile N . More-
over, we may assume that the “geometry” of a macro-tile (the positions of the com-
munication wires and of the computation zone) can be computed in polynomial
time.

That is, given the binary expansions of integers N , i , j , we can compute in time
poly(log N ) the “role” played by a tile with coordinates (i , j ) in a macro-tile of size
N × N (there are several different “roles” for tiles: some of them are parts of com-
munication wires, some others are parts of a computation zone, the others do not
belong to any particular gadget; besides, for each tiles in a computation zone we can
compute the read-only input fields assigned to the corresponding cell in the tape of
the Turing machine).

In this way, we obtain an explicit construction of a tile set τ that has O(N 2) tiles
and simulates ρ. This construction works for all large enough N . The tile set τ
depends on the program simulated in the computation zone and on the choice of
zoom factor N . However, this dependency is very limited. The simulated program
(and, implicitly, the predicate P ) affects only the rules for the tiles used in the bottom
line of the computation zone. The colors on the sides of all other tiles are generic and
do not depend on the simulated tile set ρ.

2.4.3 Self-simulation with magical Kleene’s recursion trick

We have explained how to implement a given tile set ρ by another tile set τ with a
large enough zoom factor N . Now we want τ be isomorphic to ρ. This can be done
using a trick similar to the proof of Kleene’s recursion theorem. Roughly speaking,
we employ the idea that a program can somehow access its own text and use its bits in
the computation. On first viewing, this might look like a paradox (somehow, we need
to know the code of the program before we write it), but technical implementation
of this method is quite standard. It is especially transparent when we take the Turing
machines as the model of computation.

Note that most steps in the construction of τ do not depend on the program for
M . Let us fix these rules as a part of ρ’s definition and set k = 2log N +O(1), so that
we can encode O(N 2) colors by k bits. From this definition we obtain a program
π that takes N as an input and checks that macro-tiles behave like τ-tiles in this
respect. We are almost done with the program π. The only remaining part of the
rules for τ is the hardwired program. We need to guarantee that the computation
zone in each macro-tile carries the very same program π. But since the program
(the list of instructions interpreted by the universal Turing machine) is written on
the tape of the universal machine, this program can be instructed to access the bits
of its own “text” and check that if a macro-tile belongs to the computation zone, this
macro-tile carries the correct bit of the program.

It remains to choose the parameters N and m. We need them to be large enough
so that the computation described above (which deals with inputs of size O(log N ))
can fit in the computation zone. The computations are rather simple (polynomial
in input size, i.e., polynomial in O(log N )), so they certainly fit in the space and time
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bounded by m = poly(log N ). Thus, we set m(N ) = poly(log N ) for some specific
polynomial that is not too small (e.g., m := (polyN )3 is enough) and choose N large
enough so that m(N ) ¿ N , and the geometry of a macro-tile explained above can be
realized. This completes the construction of a self-similar aperiodic tile set. Now, it
is not hard to verify that the constructed tile sets (i) allow a tiling of the plane, and
(ii) each tiling is self-similar.

The construction described above works well for all large enough zoom factors
N . In other words, for all large enough N we get a self-similar tile set τN , and the
tilings for all of these τN have very similar structure, with macro-tiles as shown in
Fig. 2.6. Technically, program π (simulated by the universal Turing machine) now
takes as its input a tuple of six strings of bits: the bit strings of length k = k(N ) rep-
resenting the four macro-colors of a macro-tile, the binary expansion of the zoom
factor N , and its own text. This program checks whether the given strings are coher-
ent, i.e., whether the given quadruple of macro-colors in fact represents a quadruple
of colors of one tile in our self-similar tile set τN (corresponding to the given value
N of the zoom factor).

The presented construction of a self-simulating tile set provides a proof of The-
orem 35, see a comment at the end of Section 2.4.1 and Fig. 2.7. In what follows, we
extend and generalize this construction step-by-step, and then we apply it to prove
much stronger statements.

Notation. We now introduce some useful terminology. In a hierarchical structure
of macro-tiles, if a k-level macro-tile M is a “cell” in a (k +1)-level macro-tile M ′, we
refer to M ′ as the father of M . We refer to the (k +1)-level macro-tiles neighboring
M ′ as the uncles of M .

2.5 SFT with non-computable configurations

So far we have used the method of self-simulating tilings to enforce the property
of aperiodicity. We now go further and construct an SFT where all configurations
are with non-computability. To this end we introduce two technical tricks: self-
simulating tilings with variable zoom factors and embedding a (non-computable)
sequence of bits in a tiling.

2.5.1 Flexible zoom factors

For a large class of sufficiently “well-behaved” sequences of integers Nk we can con-
struct a family of tile sets τk (i = 0,1, . . .) such that each τk−1 simulates the next τk

with the zoom factor Nk (and, therefore, τ0 simulates each τk with the zoom factor
Lk = N1 ·N2 · · ·Nk ).

The idea is to reuse the basic construction from the previous section and vary the
sizes of the macro-tiles (the zoom factors) on the different levels of the hierarchy.
While in the basic construction the macro-tiles (built of N × N tiles), the macro-
macro-tiles (built of N ×N macro-tiles), the macro-macro-macro-tiles (built of N ×
N macro-macro-tiles), and so on, behave in exactly the same way, in the revised
construction the behavior of a k-level macro-tile depends on k. We want to have
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π bin(N)

Universal
Turing

machine

π bin(N)

Universal
Turing

machine

π bin(N)

a macro-tile on
the grid of tiles

a macro-macro-tile on
the grid of macro-tiles

a macro-macro-macro-tile on
the grid of macro-macro-tiles

Figure 2.7: Hierarchical structure of macro-tiles. The k-level macro-tiles are blocks
in the (k+1)-level macro-tiles, the (k+1)-level macro-tiles are blocks in (k+2)-level
macro-tiles, etc. On all levels of the hierarchy, the structure of the macro-tiles is
pretty much the same.
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macro-tiles built of N1 × N1 ground-level tiles, macro-macro-tiles built of N2 × N2

macro-tiles, macro-macro-macro-tiles built of N3 × N3 macro-macro-tiles, and so
on. In this construction, the k-level macro-tiles will be isomorphic to the tiles of τk ,
and the idea of “self-simulation” should be understood less literally.

To implement this idea, we need only a minor revision of the construction from
the previous section. Similar to our basic self-simulation construction, each tile
of τk “knows” its coordinates modulo Nk in the tiling: the colors on the left and
on the bottom sides should involve (i , j ), the color on the right side should in-
volve (i + 1 mod Nk , j ), and the color on the top side involves (i , j + 1 mod Nk ).
Consequently, every τk -tiling can be uniquely split into blocks (macro-tiles) of size
Nk ×Nk , where the coordinates of the cells range from (0,0) in the bottom-left cor-
ner to (Nk −1, Nk −1) in the top-right corner, similarly to Fig. 2.3. Again, intuitively,
each macro-tile of level k “knows” its position in the corresponding macro-tile of
level (k + 1). For each k, the Nk × Nk -macro-tile (built of tiles τk ) should have the
structure shown in Fig. 2.6, with communication wires, a computation zone, and
auto-referential computation inside.

The difference from the basic construction is that now the computation simu-
lated by a k-level macro-tile gets, as an additional input, the value k, and the zoom
factor Nk is computed as a function of k. In what follows, we always assume that Nk

can be computed easily given the binary expansion of k (say, in time poly(log Nk )).
Technically, we assume now that the first line of the computation zone contains

the following fields of the input data:

(i) the program of a Turing machine π that verifies whether a quadruple of
macro-colors corresponds to a valid macro-color,

(ii) the binary expansion of the integer rank k of this macro-tile (the level in the
hierarchy of macro-tiles),

(iii) the bits encoding the macro-colors: each macro-color involves the position
inside the father macro-tile of rank (k+1) (two coordinates modulo Nk+1) and
O(1) bits of the supplementary information assigned to the macro-colors.

Note that now the zoom factor is not provided explicitly as one of the input fields.
Instead, we have the binary expansion of k, so that a Turing machine can compute
the value of Nk , see Fig. 2.8. The difference with Fig. 2.6 is that the computation in
the macro-tile of rank k gets as an input the index k instead of the universal zoom
factor N .

As before, we require that the simulated computation terminates in an accepting
state if the macro-colors of the macro-tile form a valid quadruple (if not, no correct
tiling can be formed). The simulated computation guarantees that the macro-tiles
of level k are isomorphic to the tiles of τk+1.

Note that on each level k of the hierarchy, we simulate in macro-tiles a com-
putation of one and the same Turing machine π. Only the inputs for this machine
(including the binary expansion of the rank k) vary from level to level.

This construction works well if Nk does not grow too slowly (so that the k-level
macro-tiles have enough room to keep the binary expansion of k) yet not too fast (so
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Figure 2.8: A macro-tile of level k. The computation zone represents the universal
Turing machine that simulates program π, which gets as input the binary codes of
the four macro-colors, the binary expansion of level k, and the text of π itself.
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that the computation zone in the k-level macro-tiles can handle elementary arith-

metic operations with Nk+1). In what follows we assume that Nk = 3C k
for some

large enough constant C .
The growing zoom factor Nk permits to embed some payload in the computa-

tion zone: some “useful” computation that has nothing to do with self-simulation
but affects the properties of a tiling. Since the zoom factor grows with the rank, on
each subsequent level we can allocate more and more space and time to this sec-
ondary computation process.

In the next section, we show that a self-simulating tile set with variable zoom
factors is useful to prove the existence of an SFT where each configuration is non-
computable.

2.5.2 Embedding an infinite sequence in tiling and enforcing the
non-computability of every configuration

In this section, we extend the construction discussed above and give a new proof of
the following theorem.

Theorem 36 ([15], [16]). For every d > 1 there exists a non-empty SFT on Zd where
all configurations are non-computable.

In this proof we extensively use the technique of a self-simulating tiling with vari-
able zoom factors introduced in Section 2.5.1. As mentioned above, we assume that
the size of a macro-tile of rank k is equal to Nk ×Nk , for Nk = 3C k

, k = 1,2, . . ., and
the size of the computation zone mk grows as mk = poly(log Nk ). We will need to
superimpose another trick — a sort of embedding in a tiling of a non-computable
sequence of bits.

We take as the starting point the generic scheme of a quasi-periodic self-simu-
lating tiling explained in the previous section, and then we adjust it with some
new features. From now on we require that all macro-tiles of rank k contain in
their computation zone, the prefix (e.g., of length dlogke) of some infinite sequence
X = x0x1x2 . . . We want that all macro-tiles of rank k contain one and the same pre-
fix x0x1x2 . . . xdlogke, so we will embed these bits in the macro-colors of the k-level
macro-tiles. To make things more pictorial, we require also that these bits be pro-
vided in the bottom line of the computation zone as one supplementary input field,
as shown in Fig. 2.9.

We suppose that the computation embedded in the computational zones of the
macro-tiles verifies whether or not the input data are coherent, i.e., that the bits
embedded in each of the four macro-tiles match the bits x0x1x2 . . .kdlogke given ex-
plicitly in this new input field. Using the usual self-simulation we can guarantee that
the bits of X embedded in a macro-tile of rank k+1 extend the prefix embedded in a
macro-tile of rank k. Since the size of the computation zone increases as a function
of k, the entire tiling of the plane determines an infinite sequence of bits X (whose
prefixes are encoded in the macro-tiles of all ranks).

Remark 20. The new feature allows embedding an infinite sequence X in a tiling.
This embedding is highly distributed in the following sense: we can extract the first
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program π bin(k) x0x1 . . .xlogk

. . . . . . . . . . . .

Figure 2.9: The computation zone of a macro-tile in the revised construction. The
input data consist of the codes of the macro-colors, the simulated program π, the
binary expansion of the rank k, and the first logk bits of the embedded sequence
X = x0x1x2 . . .
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logk bits of the sequence from every k-level macro-tile. Note that the tile set does
not uniquely determine the embedded sequence X (different tilings of the same tile
set can represent different sequences X ). However we are going to control the class
of sequences X that can be embedded in a tiling.

When the class of embedded sequences of X is not restricted, this construction
is of no interest. It becomes meaningful if we can enforce some special properties
of the embedded sequence X . Let us show that we can guarantee that for all valid
tilings the embedded sequence X is not computable. To achieve this property, we
make the machine in the computation zone enumerate two non-separable enumer-
able sets (on each level k we run these two enumerations for the number of steps
that fits the computation zone available in a macro-tile of rank k). Then, let us re-
quire that X is a separator between these two sets. Technically, on each level of the
hierarchy the computation in each macro-tile verifies that these (partially) enumer-
ated sets are indeed separated by the given prefix of X . Such a sequence X must be
non-computable. Combining all elements together, we obtain a tile set τ that en-
joys two nontrivial properties: all τ-tilings are non-computable and quasiperiodic.
Thus, we have proved Theorem 36.

2.6 Quasiperiodic self-simulating SFT

In this section, we revise once again the construction of a self-simulating tiling and
enforce the property of quasi-periodicity or even minimality. In particular, this con-
struction will provide a new proof of Theorem 37. To implement this construction,
we have to superimpose some new properties of a self-simulating tiling.

2.6.1 Preliminary remarks: Supplementary constraints that can
be imposed on a self-simulating tiling

The tiles involved in our self-simulating tiles set (as well as all macro-tiles of each
rank) can be classified into three types:

(a) “skeleton” tiles, which keep no information except for their coordinates in the
father macro-tile (the white area in Fig. 2.8; each of these tiles looks like the
tile shown in Fig. 2.3): these tiles work as building blocks of the hierarchical
structure;

(b) “communication wires,” which transmit the bits of the macro-colors from the
borderline of the macro-tile to the computation zone (the colored lines in
Fig. 2.8; each of these tiles looks like the tiles shown in Fig. 2.4);

(c) tiles of the computation zone (intended to simulate the space-time diagram
of the Universal Turing machine, the gray area in Fig. 2.8).

Each pattern that includes only “skeleton” tiles (or “skeleton” macro-tiles of some
rank k) reappears infinitely often in all homologous positions inside all macro-tiles
of higher rank. Unfortunately, this property is not true for those patterns that involve
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Figure 2.10: The “free” area reserved above the computation zone.

the “communication zone” or the “communication wires.” Thus, the basic construc-
tion of a self-simulating tiling does not imply the property of quasiperiodicity. To
overcome this obstacle, we need several new technical tricks.

First of all, we impose several restrictions on our construction of a self-simu-
lating tiling. These restrictions in themselves do not make the tilings quasiperiodic,
but they do simplify the upcoming revision of the construction. More specifically,
we enforce the following additional properties (p1)–(p4) of a tiling, with only a minor
modification of the construction.

(p1) In our basic construction, each macro-tile contains a computation zone of size
mk , which is much less than the size of the macro-tile Nk . In what follows, we need
to reserve free space in a macro-tile, in order to insert O(1) (some constant number)
copies of each 2× 2 pattern from the computation zone (of this macro-tile), right
above the computation zone. This requirement is easy to meet. We assume that the
size of a k-level macro-tile (measured in blocks that are themselves macro-tiles of
level k −1) is Nk ×Nk , and the computation zone in this macro-tile is mk ×mk for
mk = poly(log Nk ). Therefore, we can reserve an area of size Θ(mk ) right above the
computation zone, which is free of “communication wires” or any other functional
gadgets, see the “empty” hatched area in Fig. 2.10. So far, this area consisted of only
skeleton tiles; in what follows (Section 2.6.2 below), we will use this zone to place
some new nontrivial elements of the construction.
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(p2) We require that the tiling inside the computation zone satisfies the property of
2×2-determinacy. That is, if we know all of the colors on the borderline of a 2×2-
pattern inside the computation zone (i.e., a tuple of 8 colors), then we can recon-
struct the four tiles of this pattern. Again, we do not need any new ideas to imple-
ment this property. It is not hard to see that this requirement is met if we represent
the space-time diagram of a Turing machine in a natural way (see the discussion on
p. 110).

(p3) The communication channels in a macro-tile (the wires that transmit informa-
tion from the macro-color on the borderline of this macro-tile to the bottom line of
its computation zone) must be isolated from each other. The distance between ev-
ery two wires must be greater than two cells, as shown in Fig. 2.11. In other words,
each group of cells of size 2×2 can touch at most one communication wire. Since
the number of wires in a k-level macro-tile is only O(log Nk ), we have enough free
space to lay the “communication cables” maintaining the required safety gap, so this
constraint is easy to satisfy.

(p4) In our construction, the macro-colors of a k-level macro-tile are encoded by bit
strings of length rk =O(log Nk+1). In the previous section, we only assumed that this
encoding was somewhat “natural” and easy to handle. So far, the choice of encoding
has been of little importance: we have only required that some natural manipula-
tions with macro-colors could be implemented in polynomial time.

We now add another (seemingly artificial) condition. We have decided that each
macro-color is encoded in a string of rk bits. We require now that each bit in this
encoding takes both values 0 and 1 quite often. More precisely, we require that for
each i = 1, . . . ,rk there are quite many macro-tiles where the i th bit of encoding of
the top (bottom, left, right) macro-color is equal to 0, and there are quite many other
macro-tiles where the i th bit of this encoding is equal to 1. In what follows we specify
what the words quite often and quite many mean in this context.

Technically, we use the following property: for every position s = 1, . . . ,rk and for
every i = 0, . . . , Nk+1 −1 we require that

• there exists j0, such that the sth bit in the top, left, and right macro-colors of
the k-level macro-tile at the positions (i , j0) in the (k +1)-level father macro-
tile are equal to 0, and

• there exists j1, such that the sth bit in the top, left, and right macro-colors of
the k-level macro-tile at the positions (i , j1) in the (k +1)-level father macro-
tile are equal to 1.

There are many (more or less artificial) ways to implement this constraint. For exam-
ple, we may subdivide the array of rk bits encoding a macro-color into three equal
zones of size rk /3 and require that for each macro-tile only one of these three zones
contains the “meaningful” bits, and the two other zones contain only zeros and ones
respectively; we require then that the “roles” of these three zones cyclically permute
as we go upwards along a column of macro-tiles, see Fig. 2.12.
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machine
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Figure 2.11: The wires in the “communication cables” (shown in red, blue, green,
and gray in the figure) are separated by a gap (shown in white), so that the distance
(measured in tiles) between every two wires is greater than two.
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macro-colors encoded as 000 . . .0︸ ︷︷ ︸
rk/3

111 . . .1︸ ︷︷ ︸
rk/3

[nontrivial part]︸ ︷︷ ︸
rk/3

macro-colors encoded as 111 . . .1︸ ︷︷ ︸
rk/3

[nontrivial part]︸ ︷︷ ︸
rk/3

000 . . .0︸ ︷︷ ︸
rk/3

macro-colors encoded as [nontrivial part]︸ ︷︷ ︸
rk/3

000 . . .0︸ ︷︷ ︸
rk/3

111 . . .1︸ ︷︷ ︸
rk/3

macro-colors encoded as 000 . . .0︸ ︷︷ ︸
rk/3

111 . . .1︸ ︷︷ ︸
rk/3

[nontrivial part]︸ ︷︷ ︸
rk/3

Figure 2.12: Encoding of macro-colors. The rk bits of the code are split into three
blocks of size rk /3. One of them consists of all 0s, another of all 1s, and only the
third one contains a nontrivial binary code. The roles of the three blocks change
cyclically from one macro-tile to another when we move upwards.
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2.6.2 Aperiodicity and minimality

To achieve the property of minimality of an SFT, we should guarantee that every
finite pattern that appears once in at least one tiling must also appear in every large
enough square in every tiling. In a tiling with a hierarchical structure of macro-tiles
each finite pattern can be covered by at most four macro-tiles (by a 2×2-pattern) of
an appropriate rank. Hence, to guarantee minimality, it is enough to show that every
2×2-block of macro-tiles of any rank k that appears in at least one τ-tiling actually
reappears in this tiling in every large enough square. Let us classify all 2×2-block of
macro-tiles (by their position in the father macro-tiles of higher rank) and discuss
what revisions of the construction are required.

Case 1: Skeleton tiles. For a 2×2-block of four “skeleton” macro-tiles of level k,
there is nothing to do. Indeed, in our construction we have exactly the same blocks
with every vertical shift by a multiple of Lk+1 (we have there a similar block of k-level
“skeleton” macro-tiles within another macro-tile of rank (k +1)).

Case 2: Communication wires. Let us consider the case when a 2×2-block of k-
level macro-tiles involves a part of a communication wire. Due to property (p3) we
may assume that only one wire is involved. The bit transmitted by this wire is either
0 or 1; in either case, due to property (p4), we can find another similar 2×2-block of
k-level macro-tiles (at the same position within the father macro-tile of rank (k +1)
and with the same bit included in the communication wire) in every macro-tile of
level (k + 2). In this case we can find a duplicate of the given block with a vertical
shift of size O(Lk+2).

Case 3: Computation zone. We now consider the most difficult case: when a 2×2-
block of k-level macro-tiles touches the computation zone. In this case we cannot
obtain the property of quasiperiodicity for free, and so we have to make one more
modification of our general construction of a self-simulating tiling.

Note that for each 2×2-window that touches the computation zone of a macro-
tile, there are only O(1) ways to tile them correctly. For each possible position of a
2×2-window in the computation zone, and for each possible filling of this window
by tiles, we reserve a special 2×2-slot in a macro-tile, which is essentially a block of
size 2×2 in the “free” zone of a macro-tile. We refer to this gadget as a diversification
slot. These slots will enforce the property of “diversity”: for every small pattern that
could appear in the computation zone, we will guarantee that it must appear in the
corresponding diversity slot in every macro-tile of the same rank.

These diversification slots must be placed far away from the computation zone
and from all communication wires. We prefer to place every diversification slot in
the same vertical stripe as the “original” position of this block, as shown in Fig. 2.13
(this property of vertical alignment will be used in Section 2.8). We have enough free
space to place all necessary diversification slots, due to property (p1). We define the
neighbors around each diversification slot in such a way that only one specific 2×2
pattern can patch it (here we use the property (p2)).

In our construction, the tiles around this slot “know” their real coordinates in
the bigger macro-tile, while the tiles inside the diversification slot do not (they “be-
lieve” they are tiles in the computation zone, while in fact they belong to an artificial
isolated “diversity preserving” slot far outside of any real computation), see Fig. 2.13
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Figure 2.13: Positions of the diversification slots for patterns from the computation
zone.

and Fig. 2.14. The frame of the diversification slot consists of 12 “skeleton” tiles (the
white squares in Fig. 2.14); they form a slot that involves inside a 2×2-pattern ex-
tracted from the computation zone (the gray squares in Fig. 2.14). In the picture,
we show the “coordinates” encoded in the colors on the sides of each tile. Note that
the colors of the bold lines (the blue lines between the white and gray tiles and the
bold black lines between the gray tiles) should contain some information beyond
the coordinates—these colors involve the bits used to simulate a space-time dia-
gram of the universal Turing machine. In this picture, the “real” coordinates of the
bottom-left corner of this slot are (i +1, j +1), while the “natural” coordinates of the
pattern inside the diversification slot (when this pattern appears in the computation
zone) are (s, t ).

We choose the positions of the diversification slots in the macro-tile so that
the coordinates can be computed by some simple algorithm in time polynomial
in log Nk . We require that all diversification slots be detached from each other in
space, so they do not damage the general structure of the “skeleton” tiles building
the macro-tiles.

Now it is not hard to see that for the revised tile set, every pattern that appears
at least once in at least one tiling must in fact appear in every large enough pattern
in every tiling. Thus, the revised construction of a self-simulating tiling guarantees
that

• every tiling is aperiodic (the argument from the previous section remains
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Figure 2.14: A diversification slot for a 2×2-pattern from the computation zone.

valid), and

• every pattern that appears at least once in at least one configuration must ap-
pear in every large enough square in every tiling.

Thus, our construction implies the following theorem.

Theorem 37 (Bailler–Ollinger). For every d > 1 there exists a non-empty SFT on Zd

where each configuration is aperiodic and quasiperiodic (and even minimal).

(This result was originally proven in [78] with a different technique, for a tile set τ
constructed in [77].)

2.7 Quasiperiodicity and non-computability

In this section, we construct an SFT in which all configurations are simultaneously
quasiperiodic and non-computable. To this end we merge together the construc-
tions from Section 2.5.2 and Section 2.6. We start with a self-simulating tile set with
a variable zoom factor and an embedded sequence X , as explained in Section 2.5.2
(in what follows we will restrict the class of the embeddable sequences). Then we
superimpose the features from Section 2.6, which imply quasiperiodicity.

Since the sequence X embedded in a tiling is not uniquely defined by the tile set,
different τ-tilings involve different embedded sequences X and therefore different
finite patterns. Thus, the defined SFT is not minimal. However, it has the property
of quasiperiodicity. Indeed, every valid tiling contains a well-defined embedded se-
quence X . Let us fix one infinite sequence X and restrict ourselves to the class of
tilings T (X ) that represent this specific sequence. Then, all k-level macro-tiles in
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every tiling in T (X ) involve (one and the same) prefix of X . Now the argument from
Section 2.6, repeated word for word gives the following property.

Every 2×2-block of k-level macro-tiles that appears at least once in at least one tiling
in T (X ), must reappear in every large enough pattern of every tiling in T (X ).

Hence, all implied tilings are quasiperiodic.
This construction becomes more interesting if we restrict the class of sequences

X that can be embedded in a tiling. Similarly to the proof of Theorem 36 in Sec-
tion 2.5.2, we require that the computation embedded in each macro-tile enumer-
ates some set of “forbidden factors” and verifies that the embedded X contains non
of these factors. The choice of the (recursively enumerable) class of factors “forbid-
den” for the embedded X will determine the properties of the tiling.

We start with the property of non-computability. As we explained in Sec-
tion 2.5.2, we can choose the set of forbidden factors so that the embedded sequence
X must be not computable. This gives the following result.

Theorem 38. For every d > 1 there exists a non-empty SFT on Zd , where all configu-
rations are non-computable and quasiperiodic.

Thus, we have constructed a tile set τ, such that all τ-tilings are quasiperiodic
and non-computable. Up to now, we could not say much more about the degree
of unsolvability (Turing degrees) of the implied τ-tilings. Now will we enhance this
construction by implementing some more precise control over the class of embed-
dable sequences X , and therefore over the class of possible Turing degrees of τ-
tilings. We start with a proposition that characterizes the no-go zones for this tech-
nique.

Theorem 39. (a) Every SFT is effectively closed. (b) For every infinite minimal SFT S ,
the class of the Turing degrees representable by configurations in S is upper-closed:
if there exists a τ-tiling that has a Turing degree T , then every Turing degree T ′ > T is
also represented by some τ-tiling.

Proof. (a) is trivial, (b) is proven in [89].

Remark 21. Observe that we cannot guarantee that the Turing degrees of all τ-tilings
are very high. More specifically, we cannot guarantee that all τ-tilings are not low or
not hyperimmune-free. Indeed, due to the low basis theorems, for every tile set τ,
some τ-tilings are not low and not hyperimmune-free.

The next theorem essentially claims that a class of Turing degrees which is not
forbidden by Theorem 39 (i.e., a class that is upwards-closed and corresponds to an
effectively closed set) can be implemented by a suitable tile set.

Theorem 40. For every effectively closed set A , and for every d > 1, there exists a non-
empty SFT S in Zd , in which all configurations are quasiperiodic, and the Turing
degrees of all configurations in S form exactly the upper closure of A (defined as the
set of all Turing degrees d, such that d ≥T ω for at least one ω ∈A ).
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Proof of Theorem 40. To prove this theorem, we again employ the idea of embedding
of an infinite sequence X in a tiling, and control more precisely the properties of
the embedded sequence. Similarly to the construction discussed above, we require
that all macro-tiles of rank k involve the same finite sequence of logk bits on their
computation zone, which is understood as a prefix of X . We can guarantee that the
prefix embedded in macro-tiles of rank k is compatible with the prefix available to
the macro-tiles of the next rank (k +1).

Further, since A is in Π0
1, we can enumerate the (potentially infinite) list of pat-

terns that should not appear in X . On each level, the macro-tiles run this enumer-
ation for the available space and time (limited by the size of the computation zone
available on this level), and verify that the discovered forbidden patterns do not ap-
pear in the prefix of X accessible to the macro-tiles of this level. Since the compu-
tation zone becomes increasingly bigger with each level, the enumeration extends
longer and longer. Thus, a sequence X can be embedded in an infinite tiling, if and
only if, this sequence does not contain any forbidden pattern (i.e., if this X belongs
to A ).

What are the Turing degrees of the tilings in the described tile set? In our tile set,
every tiling is defined uniquely by the following information: the sequence X em-
bedded in this tiling, and the sequences of integersσh ,σv that specify the shifts (the
vertical and the horizontal ones) of macro-tiles of each level relative to the origin of
the plane. Indeed, on each level k we split the macro-tiles of the previous rank into
blocks of size Nk×Nk . These blocks make k-level macro-tiles, and there are N 2

k ways
to choose the grid of horizontal and vertical lines that define this split. Given the se-
quencesσh ,σv and an X ∈A , we can reconstruct the entire tiling. It remains to note
that σh and σv can be absolutely arbitrary. Thus, the Turing degree of a tiling is the
Turing degree of (X ,σh ,σv ), which can be an arbitrary degree not less than X . That
is, the set of degrees of tilings is exactly the closure of A , i.e., the set of all Y s that are
not less than some X ∈A . So we get the statement of Theorem 40.

2.8 On the subdynamics of co-dimension 1 for self-si-
mulating SFTs

In Section 2.5.2 and Section 2.7, we used a sort of embedding of one-dimensional
sequences in a two-dimensional SFT. That embedding was highly distributed: the
first logk bits of the sequence embedded in a configuration could be found in every
macro-tile of rank k of this configuration. In this section we discuss a different way
of embedding a (bi-infinite) one-dimensional sequence in two-dimensional con-
figurations of an SFT; this version of embedding is less distributed and more local.
With this technique we will be able to control the subdynamics of a two-dimensional
shift, and as a result we will prove Theorems 41, 44, 45.

In this section we prove the following theorem:

Theorem 41. (a) Let A be an effectiveZd -shift over an alphabetΣA . Then there exists
a quasiperiodic SFT B (over another alphabet ΣB ) of dimension d +1 such that A is
simulated by B in the sense of Definition 13.
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[b, a]

[t, a]

[l] [r]

Figure 2.15: A tile propagating a letter a ∈Σ in the vertical direction. Formally speak-
ing, this tile is a quadruple of colors, the left side has color [l ], the right side has color
[r ], the top and the bottom sides have colors [t , a] and [b, a], respectively. The col-
ors for the top and bottom sides involve a letter from Σ. We allow only tiles where
the colors of the top and bottom sides involve one and the same letter.

(b) Let A be a Zd -shift simulated in the sense of Definition 13 by some SFT B of
dimension d +1. Then A is effectively closed.

Statement (b) of the theorem is simple, so we focus on statement (a). We now
embed a bi-infinite sequence x = (xi ) over an alphabet Σ in our tiling. To this end,
we assume that each individual τ-tile “keeps in mind” a letter from Σ that propa-
gates without change in the vertical direction. Formally speaking, a letter from Σ

should be a part of the top and bottom colors of every τ-tile (the letters assigned to
both sides of a tile must be equal to each other), see Fig. 2.15 and Fig. 2.2. We want
to guarantee that a Σ-sequence can be embedded in a τ-tiling, if and only if, this
sequence belongs to a fixed given effective shift A .

The general plan is to “delegate” the factors of the embedded sequence into the
computation zones of macro-tiles, where these factors can be validated (that is, the
simulated Turing machine can verify whether or not these factors contain any for-
bidden subwords). By using tilings with growing zoom factors, we can guarantee
that the size of the computation zone of a k-rank macro-tile grows with k. So we
have at our disposal the computational resources required to run all necessary val-
idation tests on the embedded sequence. It remains to organize the propagation
of the letters from the embedded sequence to the “conscious memory” (the com-
putation zones) of the macro-tiles of all ranks. In what follows we explain how this
propagation is organized.

The zone of responsibility of a macro-tile. In our construction, a macro-tile of
level k is a square of size Lk ×Lk , with Lk = N1 · N2 · . . . · Nk (where Ni is the zoom
factor on level i of the hierarchy of macro-tiles). We say that a k-level macro-tile is
responsible for the letters of the embedded sequence x assigned to the columns of
the (ground level) tiles of this macro-tile as well as to the columns of macro-tiles of
the same rank on its left and on its right. That is, the zone of responsibility of a k-
level macro-tile is a factor of length 3Lk from the embedded sequence, see Fig. 2.16.
(The zones of responsibility of two vertically aligned macro-tiles are the same; the
zones of responsibility of two horizontally neighboring macro-tiles overlap.)

Letter assignment: The computation zone of a k-level macro-tile (of size mk ×
mk ) is too small to contain all the letters from its zone of responsibility. So we require
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Figure 2.16: The zone of responsibility (the gray vertical stripe) of a macro-tile (the
red square) is three times wider than the macro-tile itself.

that the computation zone obtains as an input a (short enough) chunk of letters
from its zone of responsibility. Let us say that it is a factor of length lk := loglogLk

from the stripe of 3Lk columns constituting the zone of responsibility of this macro-
tile. We will say that this chunk is assigned to this macro-tile.

The infinite stripe of vertically aligned k-level macro-tiles shares the same zone
of responsibility. However, different macro-tiles in such a stripe will obtain differ-
ent assigned chunks. The choice of the assigned chunk varies from 0 to (3Lk − lk ).
Therefore, we need to choose for each k-level macro-tile a position of a factor of
length lk in its zone of responsibility of length 3Lk . This choice is quite arbitrary. Let
us say, for definiteness, that for a macro-tile M of rank k the first position of the as-
signed chunk (in the stripe of length 3Lk ) is defined as the vertical position of M in
the father macro-tile of rank (k +1) (taken modulo (3Lk − lk )).

Remark 22. We have chosen zoom factors Nk growing doubly exponentially in k, so
Nk+1 À 3Lk . Hence, every chunk of length lk from a stripe of width 3Lk is assigned
to some (actually, to infinitely many) of the macro-tiles “responsible” for these 3Lk

letters.

Remark 23. Since the zones of responsibility of neighboring k-level macro-tiles
overlap by more than lk , every finite factor of length lk in the embedded sequence x
is assigned to some k-level macro-tile (even if it does not sit in one macro-tile and
involves columns of two neighboring macro-tiles of level k), see Fig. 2.17.

Implementing the letter assignment by self-simulation. In the letter assignment
paragraph above, we formulated several requirements: how the data should be
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Figure 2.17: The macro-tile of size Lk (shown in red) is responsible for the vertical
stripe of width 3Lk shown in light-gray (three times wider than the macro-tile it-
self). Such a macro-tile can handle a factor of length lk of the embedded sequence
that corresponds to the group of columns that touch this macro-tile as well as its
neighbor on the right or on the left (an example is shown in dark-gray).

propagated from the ground level (individual tiles) to k-level macro-tiles. That is,
for each k-level macro-tile M we specified which chunk of the embedded sequence
should be a part of the data fields in the computation zone of M . So far we have not
explained how this propagation can be implemented, i.e., how the assigned chunks
can arrive at the high-level data fields. Now, we will explain how to implement the
required scheme of letter assignment in a self-simulating tiling. Technically, we ap-
pend to the input data of the computation zones of macro-tiles some supplemen-
tary data fields:

(iv) the block of lk letters from the embedded sequence assigned to this macro-
tile,

(v) three blocks of bits of lk+1 letters of the embedded sequence assigned to this
father macro-tile, and two uncle macro-tiles (the left and the right neighbors
of the father),

(vi) the coordinates of the father macro-tile in the “grandfather” (of rank (k +2)).

(I.e., the first line of the computation zone still looks similar to Fig. 2.9, but now it
contains more input data in the first line of the computation zone). Speaking infor-
mally, the computation in each k-level macro-tile must check the consistency of the
data in fields (iv), (v), and (vi). That is, if some letters from the fields (iv) and (v) cor-
respond to the same vertical column in the zone of responsibility, then these letters
must be equal to each other. Also, if a k-level macro-tile plays the role of a cell in the
computation zone of the (k + 1)-level father, it should check the consistency of its
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(v) and (vi) with the bits displayed in the father’s computation zone. Lastly, we must
ensure the coherence of the fields (v) and (vi) for each pair of neighboring k-level
macro-tiles; so this data should also be a part of the macro-colors.

Note that the data from the uncles’ macro-tiles are necessary to deal with let-
ters from the columns that physically belong to the neighboring macro-tiles. So the
consistency of the fields (v) is imposed also on neighboring k-level macro-tiles that
belong to different (k+1)-level fathers (the borderline between these k-level macro-
tiles is also the borderline between their fathers).

The computations verifying the coherence of the new fields can be performed in
polynomial time, and the required update of the construction fits the general con-
straints on the parameter. (See also the discussion on “letter delegation” in [j7, Sec-
tion 7]).

Concluding remarks: Testing against forbidden factors. To guarantee that the em-
bedded sequence x contains no forbidden patterns, each k-level macro-tile should
allocate some part of its computation zone to enumerating (within the limits of
available space and time) the forbidden pattern, and verify that the block of lk letters
assigned to this macro-tile contains none of the forbidden factors found.

The time and space allocated to enumerating the forbidden words grow as func-
tions of k. To ensure that the embedded sequence contains no forbidden patterns,
it is enough to guarantee that each forbidden pattern is found by macro-tiles of high
enough rank, and every factor in the embedded sequence is compared (on some
level of the hierarchy) with every forbidden factor.

Thus, we get a construction of a two-dimensional tiling that simulates a given
effective one-dimensional shift: for a given effective one-dimensional shift A , we
can construct a tile set τ such that the bi-infinite sequences that can be embedded
in τ-tilings are exactly the sequences of A , which is the statement of Theorem 41 (a).

In Section 2.10, we explain how to make these tilings quasiperiodic when the
simulated one-dimensional shift is also quasiperiodic.

2.9 High Kolmogorov complexity and strongly
aperiodic SFTs

In this section, we prove two strengthenings of Theorem 35: we show that some Z-
SFTs contain only strongly aperiodic configurations (for such a configuration, every
translation must change many letters), and some Z-SFTs contain only patterns of
high Kolmogorov complexity. We start with the latter statement.

Theorem 42 ([75]). There exist a tile set τ and constants c1 > 0 and c2, such that τ-
tilings exist, and in every τ-tiling T every N ×N square has a Kolmogorov complexity
of at least c1N − c2.

Proof. We say that a bi-infinite sequence of bits x = (xi ) has Levin’s property if ev-
ery N -bit factor w of x has complexity Ω(N ). More precisely, there exist constants
c1,c2 > 0, such that for all factors w of x

C (w) ≥ c1|w |− c2.
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Such a bi-infinite sequence exists (see Lemma 1). The class Lc1,c2 of all these se-
quences is an effective Z-shift, since there exists an algorithm that enumerates the
set of all forbidden patterns (i.e., all words w such that C (w) < c1|w |− c2).

Consequently, we can apply Theorem 41 (a) and embed Lc1,c2 in a Z2-tiling. For
the resulting tiling, for every (n×n)-pattern we can effectively reconstruct the n bits
assigned to the columns that intersect this pattern. Hence, the Kolmogorov com-
plexity of every (n ×n)-pattern is at leastΩ(n), and we are done.

Remark 24. Theorem 42 can be strengthened: not only for some c1 > 0 but also for
every c1 > 0 there exists a number c2 and a tile set τ, such that τ-tilings exist, and in
every τ-tiling T every N×N square has a Kolmogorov complexity of at least c1N−c2.
To prove this version of the theorem we need to embed in a tiling the sequences x
with Levin’s property over a large enough alphabet.

Remark 25. A standalone pattern of size n ×n over an alphabet Σ (with at least two
letters) can have a Kolmogorov complexity up to Θ(n2). However, this density of
information cannot be enforced by local rules, because in every SFT on Z2 there
exists a configuration such that the Kolmogorov complexity of all N ×N -patterns is
bounded by O(n), see [75]. Thus, the lower boundΩ(n) in Theorem 42 is optimal in
the class of all Z2-SFTs.

Definition 14. Let α > 0 be a real number and Σ be a finite alphabet. We say that a
configuration f : Z2 → Σ is α-aperiodic if for every non-zero vector (u, v) ∈ Z2, there
exists N , such that in every square whose side is at least N , the fraction of points with
coordinates (x, y), such that f(x, y) 6= f(x +u, y + v), is at least α.

Remark 26. Every α-aperiodic configuration is far from every periodic configura-
tion. More precisely, if a configuration x is α-aperiodic, then the Besicovitch dis-
tance between x and any periodic configuration y is at least α/2. (The Besicovitch
distance between two configurations is defined as

limsup
N

densN (x,y),

where densN is the fraction of points where two configurations differ in the N ×N
centered square. It is easy to see that the Besicovitch distance between every two
configurations is shift-invariant, i.e., does not depend on the choice of the central
point.)

Theorem 43. There exists an α> 0 and a tile set τ, such that τ-tilings exist and every
τ-tiling is α-aperiodic.

Proof. We can deduce this result from Theorem 42. Indeed, due to Theorem 42 we
can construct a tile set such that every tiling embeds a horizontal sequence with
high-complexity substrings, and such a sequence cannot match itself well after a
shift. (If the embedded sequence is binary, we can guarantee that every shift changes
about 50% of its bits, e.g., between 49% and 51% of bits in every large enough factor.)

We take the direct product of this tile set with its own copy rotated by 90◦. Then,
any non-zero translation of a tiling will shift either the vertical or the horizontal em-
bedded sequence, and therefore change a constant fraction of the positions.
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Remark 27. The construction above works with every constant α< 1. We only need
to apply a stronger version of Theorem 42 (with embedded Levin’s sequences with
high enough complexity of factors).

2.10 Subdynamics of quasiperiodic shifts

Theorem 41 can be transposed to the classes of quasiperiodic and minimal shifts:

Theorem 44. (a) Let A be an effective quasiperiodic Zd -shift over some alphabet
ΣA . Then there exists a quasiperiodic SFT B (over another alphabet ΣB ) of dimension
d +1, such that A is simulated by B in the sense of Definition 13.

(b) Let A be a Zd -shift simulated in the sense of Definition 13 by some quasiperi-
odic SFT B of dimension d +1. Then A is also quasiperiodic.

Remark 28. Parts (a) and (b) of Theorem 44 are the if and only if parts of the follow-
ing characterization: an effective shift is quasiperiodic, if and only if, it is simulated
by a quasiperiodic SFT of dimension higher by 1.

Theorem 45. (a) For every effective minimal Zd -shift A there exists a minimal SFT
B in Zd+1 such that A is simulated by B in the sense of Definition 13.

(b) Let A be a Zd -shift simulated in the sense of Definition 13 by some minimal
SFT B of dimension d +1. Then A is minimal.

Remark 29. The only if part of this theorem (Theorem 45 (b)) is due to the fact that
the notion of simulation in Definition 13 is rather restrictive. We should keep in
mind that in general the d-dimensional subdynamics of a minimal Zd+1-shift is not
necessary minimal.

In Section 2.6 we described a very general construction of a self-simulating tile
set, and showed that the corresponding SFT enjoys the properties of quasiperiod-
icity or even minimality. In the previous section we upgraded this construction
and superimposed on the generic scheme of self-simulation a new technique: the
scheme of embedding in a tiling a sequence from some effective one-dimensional
shift. Á priori, the new “upgraded” SFT may lose the property of quasiperiodicity. To
maintain this property, some additional effort is needed. Such a construction was
proposed in [c2]. For more detailed proofs of Theorem 44 and Theorem 45 we refer
the reader to [e2].

Theorem 44 implies the following corollary:

Theorem 46. There exists a quasiperiodic SFT A of dimension 2, such that the Kol-
mogorov complexity of every (N ×N )-pattern in every configuration of A isΩ(N ).

Proof. The proof of this theorem is similar to the proof of Theorem 42. We only need
to combine Theorem 44 with a fact from [68]: there exists a one-dimensional shift S

that is quasiperiodic, and for every configuration x ∈S the Kolmogorov complexity
of all factors is linear, i.e., C (xi xi+1 . . . xi+n) =Ω(n) for all i .
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2.11 Robust shifts

2.11.1 Tilings with random errors: Motivation

In this section, we discuss SFT and tilings with local “errors.” That is, we accept the
configurations where the imposed local rules can be violated. We study “robust” tile
sets that enforce some nontrivial structural properties (such as strong aperiodicity
or high information density) for all configurations with sparse enough faults.

There are two similar approaches to the definition of a faulty tiling τ. The first
approach deals with errors: we can consider configurations

x :Z2 → τ,

where for some neighboring cells inZ2, two neighboring tiles do not match (i.e., two
tile from τ have different colors on adjacent sides). The other approach is to allow
tilings with holes, i.e., configurations where the usual local rules (neighboring tiles
must share the same color on the adjacent sides) apply only to neighboring pairs of
tiles, without restrictions on the tiles neighboring a hole:

Definition 15. For a subset E ⊂Z2 and a tile set τ we call by a (τ,E)-tiling any map-
ping

f : (Z2 \ E) → τ

such that for every two neighbor cells x, y ∈ Z2 \ E, tiles f(x) and f(y) satisfy the tiling
rules (colors on adjacent sides match). We may say that f is a τ-tiling of the plane with
holes at points of E.

These two approaches are essentially equivalent: we can convert a tiling error
into a hole (by deleting one of two non-matching tiles) or convert a one-tile hole into
a small group of errors (by substituting an arbitrary tile at the hole). In the approach
with holes it is natural to assume that we start with a plane with randomly chosen
“gaps” and then try to tile the rest of the plane around the given holes. The approach
with errors looks more natural as a simplistic model of crystallization. Since the
formal difference between these approaches is very small, we can use both of them
as intuitive metaphors.

In all of our constructions of “robust” tilings we show that for some types of tile
set, every configuration with sparse enough errors (or holes) can be “repaired” in
some sense and converted into a valid tiling without errors. We use the idea of hier-
archical hole patching that goes back to Peter Gács, who applied it in a more com-
plicated situation in [24]. The procedure of hierarchical patching means that at first
we “repair” small holes that are not too close to each other. This “patching” proce-
dure involves changing a small neighborhood around each of the small holes. This
stage of patching typically makes the larger (and not patched yet) holes more iso-
lated, since we eliminated small holes around them. We can then patch some of the
larger holes (those that are still not too large and not too close to each other). After
that, we repeat the same procedure for even larger holes, etc.

This procedure succeeds (we repair all holes, and only a small fraction of tiles
has to be changed during this procedure), assuming that holes are sparse enough
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in the first place. Below, we specify the technical definition of sparsity. This defini-
tion is general enough: we can prove that if the set of holes is generated at random
(each position becoming a hole independently of other positions with small enough
probability ε), then the resulting set is sparse with probability 1.

From the physics viewpoint, this formalism looks rather weak. Indeed, if we
think of a physical process of crystallization, then local errors in different positions
seem non-independent. However, our approach can be considered as a first simple
approximation to the notion of “faulty tilings,” until a more adequate formalism is
developed.

Holes patching and percolation. The procedure of holes patching in a tiling can be
viewed as a generalization of the notion of percolation (which is the central concept
of percolation theory). Let us consider a very simple tile set that consists of only two
tiles: one with all black sides and the other with all white sides. In this example the
usual local rules for tilings can be rephrased as follows: each connected component
in the complement to the set of holes is either all black or all white.

The procedure of “holes patching” means that we want to make small changes in
the tiling that will “patch” the holes and therefore convert the entire plane into black
or white. This means that initially, we have either only very few small black island
in a white ocean or vice versa, which is a well-known fact from percolation theory:
if “errors” are generated at random independently with small probability, then with
probability 1 the non-erroneous cells form one giant connected component plus
many small islands.

We see from this example that a suitable definition of sparseness cannot be too
simple. It is not enough to require low density (in the Besicovitch sense) of the set of
holes. Indeed, a regular grid of thin lines can have tiny density but still cut the plane
into many non-connected squares; if half of these squares are black and another half
are white, then we cannot patch the holes with only a small correction.

An appropriate notion of a sparse set can be defined in the framework of algo-
rithmic randomness (Martin-Löf definition of randomness). More specifically, we
can define the sparse sets as all individual Martin-Löf random sets with respect to
the Bernoulli distribution Bε and all subsets of these random sets. This algorith-
mic notion of “sparseness” was studied in [c21]. It can be proven that every set that
is sparse in this sense satisfies the conditions required to implement the iterative
procedure of patching the holes. In the present text we do prefer a more direct prob-
abilistic approach.

The formalism of probabilistic quantifiers. Our main results are stated with the
help of the probabilistic quantifiers “for almost all” (i.e., with probability 1). The
order of quantifiers (existential, universal, and probabilistic) is crucial. Denote with
(τ,E)-tiling a tiling of the complement of E , i.e., a configuration

f : (Z2 \ E) → τ,

where all pairs of neighboring tiles in Z2 \ E match (i.e., have the same color on the
adjacent sides). The statement “a tile set τ is robust” means that there exists some ε>
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0 such that for almost all E (with probability 1 with respect to the distribution where
each point belongs independently to E with probability ε) the following property is
true:

For every (τ,E)-tiling U there exists a τ-tiling U ′ (of the entire plane) that is “close
enough” to U .

In the next section we proceed with several lemmas concerning the structural
properties of sparse sets, which are true for almost all randomly chosen sets of er-
rors.

2.11.2 A technical tool for robust tilings (1):
hierarchical islands of errors

In this section we develop the notion of “sparsity” of subsets of Z2. We extensively
use the (pretty known) idea of stratification of the set of random errors into isolated
“islands” of different size. For a clear explanation of this technique in the context of
faulty cellular automata we recommend [50] (a detailed comment on the P. Gács pa-
per [24]). In the subsequent text we follow the exposition in [j7]. A similar argument
was used, e.g., in [c22].

Notation: The diameter of a finite set in Z2 is the maximal distance between its el-
ements. Distance d(v, w) is defined as the maximum of distances along both co-
ordinates of v, w ∈ Z2. The r -neighborhood of X is a set of all points y such that
d(y, x) ≤ r for at least one x ∈ X .

The iterative cleaning procedure and islands of errors. Let E ⊂ Z2 be a set of
points; we say that points in E are dirty, and the points in Z2 \ E are clean. Let α
and β (β≥α> 0) be two integers.

Definition 16. We say that a non-empty set X ⊂ E is an (α,β)-island in E, if

• the diameter of X does not exceed α, and

• in the β-neighborhood of X there is no other point from E.

Let us note that every two islands are disjoint and the distance between their
points is greater than β.

Let (α1,β1), (α2,β2), . . . be a sequence of pairs of integers such that αi ≤βi for all
i . We define an iterative “cleaning” procedure as follows. At the first step, we find
all (α1,β1)-islands (rank 1 islands) and remove all their elements from E (denote the
set of all remaining points by E1). Then, we find all (α2,β2)-islands in E1 (rank 2
islands), remove them, and denote the set of remaining points by E2 ⊂ E1, etc. We
say that the cleaning process is successful, if every dirty point is removed at some
stage.

At the i th step, we also keep in mind theβi -neighborhoods of the islands deleted
during this step. We say that a point x ∈Z2 is affected during the i th step, if x belongs
to one of these neighborhoods.
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En

En−1

En−2

x

x0 x1

x00 x01 x10 x11

. . .

Figure 2.18: Explanation tree; vertical lines connect different names for the same
points.

The set E is called sparse (for a given sequence of parametersαi ,βi ), if the clean-
ing process is successful, and, moreover, every point x ∈Z2 is affected at only finitely
many steps (in other words, every x is far from islands of sufficiently large ranks).

In what follows we choose the values of αi and βi in such a way that for suffi-
ciently small ε > 0, a Bε-random set is sparse with probability 1. The next lemma
provides sufficient conditions for a reasonable choice of parameters.

Lemma 7. Assume that

for every n 8
∑

k<n
βk <αn ≤βn and

∑
i

logβi

2i
<∞.

Then, for all sufficiently small ε> 0 a Bε-random set is sparse with probability 1.

Proof. Let us estimate the probability of the event “x is not cleaned after n steps” for
a given point x in Z2. (Obviously, the probability of this event does not depend on
x.)

Assume that x ∈ En . Then, x belongs to En−1 and is not cleaned during the nth
step (when (αn ,βn)-islands in En−1 are removed; by definition we let E0 = E). Then,
x ∈ En−1 and, moreover, there exists some other point x1 ∈ En−1 such that

αn/2 < d(x, x1) ≤βn +αn/2

(note that βn +αn/2 < 2βn). Indeed, if there is no such x1 in En−1, then the (αn/2)-
neighborhood of x in En−1 is an (αn ,βn)-island in En−1 and x must be removed at
the n-th step of the cleaning procedure.

Further, we apply the same argument on level (n −1). Each of the points x1 and
x (we use notation x0 for x, to make the notation more uniform) belongs to En−1;
therefore, it belongs to En−2 together with some other point (at a distance greater
thanαn−1/2 but not exceeding 2βn−1). Denote these two other points in En−2 by x01

(which exists because x0 ∈ En−1) and x11 (which exists because x1 ∈ En−1) respec-
tively. Thus, we have at least four points denoted by x00 = x0 = x, x01, x10 = x1, and
x11 in En−2. Then, we repeat the same argument for levels (n −2), (n −3), etc. This
way we obtain a tree that “explains” why x belongs to En , see Fig. 2.18.
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The distance between x0 and x1 in this tree is at least αn/2, whereas the diam-
eter of the subtrees starting at x0 and x1 does not exceed

∑
i<n 2βi . Therefore, the

lemma’s assumption guarantees that these subtrees cannot intersect. Since it is true
on all levels, all the leaves of the tree are distinct. All 2n leaves of the tree belong
to E = E0. Since each point appears in E independently of other points, every “ex-
planation tree” is valid with probability ε2n

. It remains to estimate the number of
possible explanation trees for a given point x.

To specify x1 we need to specify the difference (in both coordinates) between x0

and x1. The distance cannot exceed 2βn ; therefore we need about 2log(4βn) bits to
specify the difference between these points (including the sign bits). Then, we need
to specify the difference between x00 and x01 as well as the difference between x10

and x11; this requires at most 4log(4βn−1) bits. To specify the entire tree we therefore
need

2log(4βn)+4log(4βn−1)+8log(4βn−2)+·· ·+2n log(4β1)

bits, which rewrites to
2n(log(4β1)+ log(4β2)/2+·· · ).

Since the series
∑

logβn/2n converges by assumption, we can say that the Kolmogo-
rov complexity of an explanatory tree for x is at most O(2n). Or, in other terms, the
total number of explanation trees for a given point (and given n) does not exceed
2O(2n ). Hence, the probability for a given point x to be in En for a Bε-random E does
not exceed ε2n

2O(2n ), which tends to 0 (even super-exponentially fast) as n →∞, as-
suming that ε is small enough.

We conclude that for a given point x the event “x is not cleaned” has the proba-
bility zero. From the countable additivity it follows that with probability 1 all points
in Z2 are cleaned.

It remains to show that every point with probability 1 is affected at only finitely
many steps. We note that if x is affected at step n, then some point in its βn-neigh-
borhood belongs to En , and the probability of this event is at most

O(β2
n)ε2n

2O(2n ) = 22logβn+O(2n )−log(1/ε)2n
;

the convergence conditions guarantee that logβn = o(2n), so the first term is negli-
gible compared to the others. For small enough ε the probability series converges,
and the Borel–Cantelli lemma implies the desired result.

By definition, a sparse set is split into a union of islands of different ranks. We
now prove that these islands collectively occupy only a small part of the plane. To
formalize this statement, we use the notion of Besicovitch density.

Definition 17. Fix a point O of the plane and consider squares of increasing size cen-
tered at O. For each square count the fraction of points in this square that belong to
E. The limsup of these frequencies is called the Besicovitch density of E. (The choice
of the center point O does not affect the resulting limit, since for any two points O1

and O2, two large squares of the same size centered at O1 and O2 share most of their
points.)
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By definition, the distance between every two islands rank k is at leastβk . There-
fore, the (βk /2)-neighborhoods of these islands are disjoint. Each of the islands con-
tains at most α2

k points (since an island can be placed in a rectangle with sides αk ).
Each neighborhood has at leastβ2

k points (since it contains aβk×βk square centered
at any point of the island). Therefore, the union of all rank k islands has Besicovitch
density at most (αk /βk )2. Indeed, for a large square the islands near its border can
be ignored, and all other islands are surrounded disjoint neighborhoods whose den-
sity is bounded by (αk /βk )2, see Fig. 2.19.

βk/2

βk/2

Figure 2.19: Rank k islands form a set of low density. (In this picture each island is
shown as a rectangle, which is not always the case.)

We cannot conclude immediately that the overall density of all islands of all
ranks does not exceed

∑
k (αk /βk )2, since the Besicovitch density is not countably

subadditive. However, we can prove a slightly weaker bound on the joint density of
all islands, if we use the second condition of the definition of a sparse set, which
claims that every point of the plane is covered by only finitely many neighborhoods
of islands.

Lemma 8. If E is a sparse set for a given family of αk and βk , then the Besicovitch
density of E is O(

∑
(αk /βk )2).

Proof. Let O be a center point used in the definition of Besicovitch density. By the
definition of sparsity, this point is not covered by βk -neighborhoods of rank k is-
lands for k greater than some K . We now split the set E into two parts: one part
(E≤K ) consists of all islands of a rank at most K and the other part (E>K ) consists of
all islands of bigger ranks.

As seen above, in every large enough square the share of E≤K is bounded by∑
k≤K (αk /βk )2 up to a minor boundary effect (here we consider each k ≤ K sepa-

rately and then sum over all k ≤ K ).
A similar bound is valid for every rank k islands with k > K , though in this case

the argument is different. Indeed, we know that the βk -neighborhood of every is-
land I does not contain the center point O. Hence, any square S centered at O that
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intersects the island, must also contain a significant part of its (βk /2)-neighborhood
N . More precisely, the intersection of N and S contains at least (βk /2)2 elements,
see Fig. 2.20. Therefore, the share of E>K in S is bounded by 4

∑
k>K (αk /βk )2.

βk/2

O

S

part of the βk/2-neighborhood

of an island

part of the βk/2-neighborhood

of the island that is guaranteed
to be inside S

Figure 2.20: Together with a point in a rank k island, every square S contains at least
(βk /2)2 points of its (βk /2)-neighborhood.

We need a slightly stronger version of Lemma 8. In fact we are interested not only
in the Besicovitch density of a sparse set E but also in the Besicovitch density of the
union of γk -neighborhoods of rank k islands in E . Here γk are some parameters;
in most applications we set γk = cαk for some constant c. The same argument as
above gives the bound 4

∑
((αk +2γk )/βk )2. Assuming that γk ≥ αk , we can rewrite

this bound as O(
∑

(γk /βk )2). So we obtain the following statement:

Lemma 9. If E is a sparse set for a given family of αk and βk , and γk ≥ αk , then the
union of γk -neighborhoods of level k islands (over all k and all islands) has Besicov-
itch density O(

∑
(γk /βk )2).

2.11.3 A technical tool for robust tilings (2):
Bi-islands of errors

In Section 2.11.6 we will need a more delicate version of the definition of islands. In
fact, we need a counterpart of Lemma 7 that applies even if logβn grows much faster
than 2n (e.g., for βn = c(2.5)n

). To this end we define bi-islands (a generalization of
the notion of an island from the previous section) and prove for the bi-island some
versions of Lemmas 7, 8, and 9.
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The revised cleaning procedure and bi-islands of errors. Let E ⊂ Z2 be a set of
points. As in Section 2.11.2, we say that points in E are dirty, and the other points
are clean. Let β≥α> 0 be integers.

Definition 18. A non-empty set X ⊂ E is called an (α,β)-bi-island in E if X can be
represented as the union of some sets X0, X1 such that

• in the β-neighborhood of X = X0 ∪X1 there are no points from E \ X ;

• the diameters of X0 and X1 do not exceed α, and

• the distance between X0 and X1 does not exceed β,

see Fig. 2.21.

≤ α

≤ α

≤ α

≤ α

β

β

β

Figure 2.21: A bi-island, a union of two “islands” that are close to each other.

In particular, an (α,β)-island is a special case of an (α,β)-bi-island (we may let
X1 be empty). Note that one and the same bi-island X may be split into X0 and X1

in many different ways.
Obviously, every two different bi-islands in E must be disjoint. Moreover, the

distance between them must be greater than β. The diameter of every bi-island is at
most (2α+β).

Let (α1,β1), (α2,β2), . . . be a sequence of pairs of integers, and αi ≤ βi for all i .
We define an iterative cleaning procedure for bi-islands. At the first step we find
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all (α1,β1)-bi-islands and remove all their elements from E ; denote the remaining
points by E1 ⊂ E) Then, we find in E1 all (α2,β2)-bi-islands, remove them and denote
the remaining points by E2 ⊂ E1, etc. We say that the cleaning process is successful if
every dirty point is removed at some stage.

Similarly to the case of islands, we say that a point x ∈Z2 is affected during step
i , if x belongs to the βi -neighborhood of one of the bi-islands of rank i .

The set E is called bi-sparse (for given sequences ofαi ,βi ), if the cleaning process
defined above is successful, and, moreover, every point x ∈ Z2 is affected at only
finitely many steps (which means that x is far from all bi-islands of sufficiently large
ranks).

We choose the values of αi and βi in such a way that for sufficiently small ε> 0 a
Bε-random set is bi-sparse with probability 1. The sufficient condition for a success-
ful cleaning procedure becomes weaker than it was in the corresponding statement
for islands (Lemma 7):

Lemma 10. Assume that

for every n 12
∑

k<n
βk <αn ≤βn , and

∑
i

logβi

3i
<∞.

Then, for all sufficiently small ε> 0, a Bε-random set is bi-sparse with probability 1.

Proof. The proof of Lemma 10 is very similar to the proof of Lemma 7. At first, we
estimate the probability of the event “x is not cleaned after n steps” for a given point
x. If x ∈ En , then x belongs to En−1 and is not cleaned during the nth step, when
(αn ,βn)-bi-islands in En−1 are removed. Therefore, x ∈ En−1. Moreover, we show
that there exist two other points x1, x2 ∈ En−1 such that the three distances d(x, x1),
d(x, x2), and d(x1, x2) are all greater than αn/2 but not greater than 2βn +2(αn/2) <
3βn .

Indeed, let X0 be the (αn/2)-neighborhood of x in E . If X0 were an island, it
would be removed. Since this does not occur, there is a point x1 outside X0 but in
the βn-neighborhood of X0.

Let X1 be the (αn/2)-neighborhood of x1 in E . Again, the union of X0 and X1 is
not a bi-island. Both sets X0 and X1 have a diameter at most αn , and the distance
between them is at most βn . So the only reason why they do not form a bi-island
is that there exists a point x2 ∈ E outside X0 ∪ X1 but in its βn-neighborhood. The
points x1 and x2 have the required properties (the distances d(x, x1), d(x, x2), and
d(x1, x2) are greater than αn/2 but not greater than 3βn).

To make the notation uniform, we denote x by x0. Each of the points x0, x1, x2

belongs to En−1. This means that each of them belongs to En−2 together with a pair
of other points (at a distance greater than αn−1/2 but not exceeding 3βn−1). By con-
tinuing this argument we obtain a ternary tree that “explains” why x belongs to En .

The distance between every two points among x0, x1, and x2 in this tree is at
least αn/2 whereas the diameters of the subtrees, starting at x0, x1, and x2, do not
exceed

∑
i<n 3βi . Thus, the assumption of the lemma guarantees that these subtrees

do not intersect and that all the leaves of the tree are different.
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The number of leaves in this ternary tree is 3n , and they all belong to E . Ev-
ery point appears in E independently of other points; hence, one such “explanation
tree” is valid with probability ε3n

. It remains to count the number of all explanation
trees for a given point x.

To specify x1 and x2 we need to specify the difference in coordinates between x0

and x1, x2. These differences do not exceed 3βn . Therefore we need about 4log(6βn)
bits to specify them. We then need to specify the differences between x00 and x01, x02

as well as the distances between x10 and x11, x12 and between x20 and x21, x22. This
requires at most 12log(6βn−1) bits. To specify the entire tree we therefore need at
most

4log(6βn)+12log(6βn−1)+36log(6βn−2)+·· ·+4 ·3n−1 log(6β1)

bits, which is equal to

4 ·3n−1(log(6β1)+ log(6β2)/3+·· · ).

The series
∑

logβn/3n converges by the assumption of the lemma. We can conclude
that the Kolmogorov complexity of the explanatory tree is O(3n). Or, more precisely,
the total number of explanation trees for a given point (and given n) does not exceed
2O(3n ). Thus, the probability for a given point x to be in En for a Bε-random E does
not exceed ε3n

2O(3n ). This values tends to 0 as n →∞ if ε is small enough.
We conclude that the event “x is not cleaned” (for a given point x) has zero prob-

ability; hence, with probability 1 all points in Z2 are cleaned.
It remains to show that every point with probability 1 is affected by only

finitely many steps. Indeed, if x is affected at step n, then some point in its βn-
neighborhood belongs to En . The probability of this event is at most

O(β2
n)ε3n

2O(3n ) = 22logβn+O(3n )−log(1/ε)3n
.

From the convergence conditions we have logβn = o(3n), so the first term in the
exponent is negligible compared to the others. For small enough ε the probability
series converges, and the Borel–Cantelli lemma implies our statement.

We claim that a bi-sparse set occupies only a small part of the plane:

Lemma 11. Let E be a bi-sparse set for a given family of αk and βk . Then, the Besi-
covitch density of E is O(

∑
(αk /βk )2).

Proof. Similar to the proofs of Lemma 8.

Let γk be a sequence of reals. Similar to Lemma 9, we may easily prove that the
Besicovitch density of the union of γk -neighborhoods of rank k bi-islands (for all k
and for all islands) is bounded by O(

∑
(γk /βk )2). However, in the sequel we need

a stronger statement. In Section 2.11.6 we will need a kind of “closure” of the γk -
neighborhood of a bi-island:

Definition 19. Let S be a k-level bi-island. We say that (x, y) ∈ Z2 belongs to the
extended γ-neighborhood of S, if there exist two points

(x, y ′), (x, y ′′) ∈Z2
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(with the same first coordinate) such that dist(S, (x, y ′)) ≤ γ, dist(S, (x, y ′′)) ≤ γ, and
y ′ ≤ y ≤ y ′′ (see Fig. 2.22).

γ

γ

Figure 2.22: An extended neighborhood of a bi-island consists of the neighborhoods
of its two parts and a zone between them.

The intuitive meaning of the last definition is quite simple. We take not only the
points that are close to a bi-island S but also those points that are placed somehow
between the neighborhoods of two parts of S.

Lemma 12. Let E be a bi-sparse set for a given family of αk and βk satisfying the
conditions of Lemma 10. Let γk be a sequence of numbers, such that αk < γk , and
the series

∑
(γk /βk ) converges. Then, the Besicovitch density of the union of extended

γk -neighborhoods of all rank k bi-islands in E is bounded by O(
∑

(γk /βk )).

Proof. The argument is similar to the proof of Lemma 9. The extended γk -neigh-
borhood of a k-level island can be covered by a rectangle of width O(γk ) and height
O(βk +γk ). So its area is O(γkβk ) (since γk ≤ βk ). The distance between any two
bi-islands of rank k is at least βk . Hence, the extended γk -neighborhoods of islands
cover the fraction O(

∑
γk /βk ) of the plane (cf. the bound O(

∑
(γk /βk )2), which holds

for the simple γn-neighborhoods).
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The notion a bi-sparse set is used in Section 2.11.6. We apply the definition of
a bi-sparse set with parameters αk ,βk such that logαk ∼ qk for q > 2, βk ∼ αk+1,
and γk = O(αk ) or γk = O(α2

k ). Note that we cannot apply Lemmas 7 and 8 (about

islands) for these parameters since logβk grows faster than 2k .

Remark 30. In the definition of sparse sets in Section 2.11.2, each single island of
rank k must be isolated from other islands of rank k. In this section, we extended
this definition and introduced the notion of a bi-island. In a similar way, we could
define s-islands for any s ≥ 2 by admitting clusters of s islands of rank k. A set repre-
sented as a union of s-islands of different ranks can be called “s-sparse,” and a gen-
eralization of Lemmas 10 applies to the case of s-islands: a random set is s-sparse

with probability 1, if the series
∑
i

logβi

(s+1)i converges.

We do not develop here the general theory of s-sparse sets, since the concepts of
bi-islands and bi-sparsity (i.e., the case s = 2) are enough for all of our applications
in Section 2.11.6.

2.11.4 A technical tool for robust tilings (3):
A self-simulating tiling tolerant to isolated islands of error

In this section we show that there exists an aperiodic tile set where an isolated defect
of any size can be healed.

Definition 20. Let c1,c2 be positive integers (c1 < c2). We say that a tile set τ is (c1,c2)-
robust if for every ∆ and for every τ-tiling U of the (c2∆)-neighborhood of a square
∆×∆ excluding the square itself there exists a tiling V of the entire (c2∆)-neighborhood
of the square (including the square itself ) that coincides with U outside of the (c1∆)-
neighborhood of the square, see Fig. 2.23.

∆

c1∆ c2∆

Figure 2.23: Patching a hole of size ∆×∆ given a tiling of the c2∆-neighborhood
around the hole.

Remark 31. We have already used a similar property of robustness for a part of
the tiling representing the space-time diagram of a Turing machine, see p. 110 and
p. 121.
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Theorem 47. There exists a self-similar tile set that is (c1,c2)-robust for some c1 and
c2.

Proof. For every tile set τ, we can construct a “robustified” version τ′ of τ, i.e., a tile
set τ′ and a mapping π : τ′ → τ, such that

(a) π-images of τ′-tilings are exactly τ-tilings and

(b) τ′ is “4-robust”: Every τ′-tiling of a 4×4 square minus the 2×2 hole in the mid-
dle (see Fig. 2.24) can be uniquely extended to the tiling of the entire square of
size 4×4.

Figure 2.24: A 2×2 hole within a safety border.

To this end we keep in one τ′-tile the information about the 4×4 square in a τ-
tiling. Matching rules guarantee that the information contained in every two neigh-
bor τ′-tiles (i.e., the information about a τ-tiling in a rectangle of size 3×4) is con-
sistent. Then, a 2× 2 hole is repairable. The tiles at its border (shown in gray in
the figure) are consistent and contain all the information that should be held by the
missing tiles.

It is not hard to see that this robustification can be combined with the fixed-
point construction. That is, we can construct a “4-robust” self-similar tile set τ if the
zoom factor N is large enough. It remains to explain that property of 4-robustness
implies also (c1,c2)-robust for some c1 and c2. (The values of c1 and c2 depend on
N .)

Assume that we are given a tiling of a large enough neighborhood around a∆×∆
hole. Denote by k the minimal integer such that N k ≥ ∆, and the k-level macro-
tiles are greater than the hole under consideration. Note that the size of the k-level
macro-tiles is only O(∆) since N k ≤ N ·∆.

In the tiling around the hole the structure of N ×N blocks is correct except for
the N -neighborhood of the central hole of size ∆×∆ hole. Indeed, the colors of tiles
encode coordinates modulo N , so in every connected tiled region the coordinates
must be consistent. For a similar reason the structure of blocks of size N 2 × N 2 is
correct except for the (N +N 2)-neighborhood of the hole, etc. Hence, for the value
of k chosen above, we have the structure of k-level macro-tiles that is correct except
for (at most) 4 = 2 × 2 squares of level k. We can delete everything in these four
squares and use the property of 4-robustness to replace them with macro-tiles that
make a valid patch.
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To implement this procedure and patch the hole, we need a correct tiling only
in the O(N k ) neighborhood of the hole. (More precisely, we need to have a correct
tiling in the (2N k )-neighborhood around the hole; as 2N k ≤ 2N∆, we set c2 := 2N .)
The correction procedure involves changes in another O(N k )-neighborhood of the
hole. (More precisely, the changes involve only the (N k )-neighborhood of the hole;
N k ≤ N∆, so we can set c1 = N .)

2.11.5 Robust self-simulating tilings with variable zoom factors

The construction from the previous section works only for self-similar tilings with a
fixed zoom factor. It works fine for simple applications. But in more involved cases
we will need self-simulating tilings with variable zoom factors. So now we will ex-
plain how to get robust self-simulating tilings with variable zoom factors N1, N2, . . .

As well as in the case of a fixed zoom factor, the crucial idea is that the k-level
macro-tiles are “responsible” for repairing holes of size comparable to these macro-
tiles. Let ∆0 ≤ ∆1 ≤ ∆2 ≤ . . . be a sequence of integers, and let c1,c2 (c1 < c2) be
positive integers.

Definition 21. We say that a tile set τ is (c1,c2)-robust against holes of size ∆0,∆1, . . .
if for every n and for every τ-tiling U of the c2∆k neighborhood around a square of
size ∆k ×∆k excluding the square itself there exists a tiling V of the entire c2∆k neigh-
borhood of the square (including the square itself ) that coincides with U outside of
the c1∆k neighborhood of the square.

The difference from the definition of Section 2.11.4 is that we take into consider-
ation only holes of sizes ∆ ∈ {∆0,∆1, . . .} instead of holes of arbitrary size.

Lemma 13. Assume a sequence of zoom factors Nk grows not too fast and not too
slow (it is enough to assume that Nk ≥C logk and C log Nk+1 < Nk for a large enough
C ; cf. the discussion in Section 2.5.1). Then, there exists a self-simulating tile set with
variable zoom factors Nk (k-level macro-tiles of size Lk = N0 · · ·Nk−1) that is (c1,c2)-
robust (for some c1 and c2) against holes of size L0,L1, . . .

Proof. We start with the construction from Section 2.5.1, which gives a self-simu-
lating tile set with variable zoom factors N1, N2, . . . Denote by τk the set of k-level
macro-tiles corresponding to this tile set.

Further we construct a robustified version of this tile set. To this end we basi-
cally repeat the arguments from the proof of Theorem 47. The only difference in the
argument is that we now deal with variable zoom factors, and the sizes of holes are
taken from the sequence L0,L1, . . .

Denote by τ′k the set of all k-level macro-tiles for the new tiling. We need to find
a mapping π : τ′k → τk such that

(a) π-images of τ′k -tilings are exactly the τk -tilings, and

(b) τ′k is 4-robust, i.e., every τ′k -tiling of a 4×4 square minus the 2×2 hole in the
middle can be uniquely extended to the tiling of the entire 4× 4 square (see
again Fig. 2.24) .
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To obtain such a robustification, it is enough to keep in every τ′k -macro-tile the
information about a 4× 4 square in the τk -tiling and use the macro-colors on the
borders to guarantee that this information contained in neighboring macro-tiles is
coherent.

As usual, this robustification can be combined with the construction of a self-
simulating tile set. We get 4-robust macro-tiles for all levels of the construction,
and we obtain the required property of generalized robustness. Indeed, assume that
a tiling of a large enough neighborhood around a ∆×∆ hole is given, and ∆ ≤ Lk

for some k. In the tiling around the hole, the structure of blocks of size (L1 × L1)
is correct everywhere except only for the L1 neighborhood of the hole. Similarly,
the structure of (L2 ×L2) blocks is correct except for the (L1 +L2) neighborhood of
the hole, etc. So we get a k-level structure that is correct except for only 4 = 2× 2
squares of size Lk ×Lk . Due to 4-robustness, this hole can be filled with four k-level
macro-tiles. Note that we can reconstruct uniquely the ground-level tiles inside a
high-level macro-tile when we know he latter’s “conscious known” information, i.e.,
the content of the tape of the Turing machine simulated on the computation zone of
this macro-tile. This information can be reconstructed from the consciously known
information of the neighboring macro-tiles of the same rank.

To repair the hole, we need only a correct tiling in the O(Lk ) neighborhood
around this hole. The repairing procedure involves changes in another O(Lk ) neigh-
borhood of the hole. More technically, we need to have a correct tiling in the (2Lk )-
neighborhood of a hole of size Lk , so we can set c2 = 2. Since the correction proce-
dure involves changes in the Lk -neighborhood of the hole, we can set c1 = 1.

We can make a tiling robust not only against holes, but also against pairs of holes.
To this end we should slightly modify our definition of robustness. Let

∆0 ≤∆1 ≤∆2 ≤ . . .

be an increasing sequence of integers, and let c1 < c2 be positive integers.

Definition 22. We say that a tile set τ is (c1,c2)-robust against pairs of holes of size
∆0,∆1, . . ., if the following holds. Let us have two sets H1, H2 ⊂ Z2, each of which of
diameter at most ∆k (for some k > 0). For every τ-tiling U of the c2∆k neighbor-
hood of the union (H1 ∪H2), excluding H1 and H2 themselves, there exists a tiling V
of the entire c2∆k neighborhood of (H1 ∪H2) (including H1 and H2 themselves) that
coincides with U outside of the c1∆k neighborhood of (H1 ∪H2).

Robustification against pairs of holes is done in the same way as the robustifica-
tion against a single isolated hole. If two given holes are far apart from each other,
we can patch them independently; if they are rather close to each other, we patch
them as one hole of (roughly) doubled size. So we can use the same robustification
technique as before, and we need only to take a large enough “radius of multipli-
cation” D (and use D-robustness instead of 4-robustness). In this way we get the
following lemma.

Lemma 14. Assume a sequence of zoom factors Nk grows not too fast and not too
slow (e.g., Nk ≥ C logk and C log Nk+1 < Nk for a large enough C ). Then, there exists

149



a self-simulating tile set with zoom factors Nk (i.e., with k-level macro-tiles of size
Lk = N0 · · ·Nk−1) that is (c1,c2)-robust (for some c1 and c2) against pairs of holes of
size L0,L1, . . .

2.11.6 Robust tilings with high Kolmogorov complexity

In this section we construct a tile set that is robust with respect to random errors
and admits only configurations with Kolmogorov complexityΩ(n) for every pattern
of size n ×n.

Theorem 48. There exists a tile set τ and constants c1,c2 > 0 with the following prop-
erties:

(1) a τ-tiling of Z2 exists;

(2) in every τ-tiling of the plane every pattern of size N ×N has Kolmogorov com-
plexity at least c1N −C2;

(3) for all sufficiently small ε for almost every (with respect to the Bernoulli distri-
bution Bε) subset E ⊂ Z2, every (τ,E)-tiling is at most 1/10 Besicovitch apart
from some τ-tiling of the entire plane Z2;

(4) for all sufficiently small ε, for almost every Bε-random subset E ⊂Z2, for every
(τ,E)-tiling the Kolmogorov complexity of the centered square of size N ×N in
this tiling isΩ(N ).

Preliminary remarks

The main tools of the proof. The rest of the section is devoted to the proof of The-
orem 48. It combines the techniques form Section 2.9 and Section 2.11.5. We take
a tile set with high complexity tilings from Section 2.9 and then robustify it. The ar-
gument is based on the idea of robustness against holes of some sequence of sizes
∆0,∆1,∆2, . . ., explained in Section 2.11.5. First of all, we split the set of random er-
rors into bi-islands of different ranks. Then, we eliminate these bi-islands one by
one, starting from lower ranks. Each time we correct an isolated bi-island of rank k,
we assume that in a large enough neighborhood of this bi-island there are no other
errors. Elimination of a k-level bi-island involves corrections in its extended O(∆k )-
neighborhood (with all parameters as specified below).

The main difficulties and ways to circumvent them. We suggest to combine the
construction from Section 2.9 with error-correcting methods based on the idea of
islands of errors. There are two main difficulties in this plan: fast growing zoom
factors and gaps in vertical columns. Let us discuss these two problems in some
detail.

The first problem is that our construction of tiling with high Kolmogorov com-
plexity from Section 2.9 requires variable zoom factors. What is even worse is that
zoom factors Nk must increase very fast (with logarithms growing faster than 2k ).
Hence, we cannot directly apply the technique of islands from Section 2.11.2 since
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it works only when
∑ logβk

2k <∞ (βk must be of the same order as the size of k-level
macro-tiles). To overcome this obstacle, we replace the islands with the bi-islands
defined in Section 2.11.3.

The second problem is that now we cannot reconstruct a macro-tile from the
information “consciously known” to this macro-tile. The missing information is the
sequence of bits assigned to the vertical columns (with each vertical column of tiles
carrying one bit of an embedded high-complexity sequence). Random errors make
gaps in vertical columns, so now the columns are split into disconnected parts, and
these parts a priori can carry different bits. To overcome this problem, we organize
additional information flows between macro-tiles, to guarantee that each infinite
vertical column carries in most of its tiles one and the same bit value.

The general scheme of the construction

Let us sketch the general scheme of the construction and fix the values of the main
parameters. Our construction combines the techniques from Sections 2.5.1, 2.9,
and 2.11.3.

Self-simulating tilings with variable zoom factors (the techniques discussed in Sec-
tion 2.5.1). We start with the construction of a self-simulating tile set with variable

zoom factors Nk =Qb2.5k c (for a large enough integer Q > 0). This means that every
k-level macro-tile is an (Nk−1 × Nk−1) array of (k − 1)-level macro-tiles. The width
and the height of a k-level macro-tile measured in tiles are Lk = N0 · · ·Nk−1, and
Lk < Nk . (The constant 2.5 in our construction can be replaced with any rational
number between 2 and 3.)

Tilings with high-complexity patterns (techniques from Section 2.9). To guarantee
that the valid tilings contain only patterns with high Kolmogorov complexity, we
reemploy the construction from Section 2.9 (proof of Theorem 42). Recall that in
every valid tiling for this tile set, in the i th column all tiles keep a bit xi , and the
Kolmogorov complexity of every N -bit factor of x = (xi ) is Ω(N ). This property is
guaranteed by computations embedded into the macro-tiles of all levels.

Hierarchical structure of random errors and incremental error correction (techniques
from from Section 2.11.3). When we introduce random errors, the construction from
Section 2.9 is broken. Indeed, vertical columns can now be split by islands of er-
rors into unconnected parts, and the proof of Theorem 42 does not apply. To make
this construction tolerant to errors, we should guarantee that copies of the embed-
ded bits xi consciously kept by different macro-tiles are coherent, at least for macro-
tiles that are not seriously damaged by local errors. To this end, we introduce into the
construction checksums, which guarantee that neighboring macro-tiles keep coher-
ent conscious and subconscious information, as we explain in the next section.

To deal with random errors, we use the technique of bi-islands from Sec-
tion 2.11.3. Our argument works if the diameter of a k-level bi-island is compara-
ble with the size of k-level macro-tiles. More specifically, we let αk = 26Lk−1 and
βk = 2Lk . (The parameters are chosen so that Lemmas 10 and 11 apply.)
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The new construction of the tile set

We start with the construction introduced in Section 2.9 (a tile set that guarantees
high Kolmogorov complexity for all admissible patterns) and superimpose on k-
level macro-tiles some new structures. We define these new structures in four steps.

First step (introducing checksums). For the tile set from Section 2.9 with which we
start, every k-level macro-tile M is an Nk−1 ×Nk−1 array of (k −1)-level macro-tiles;
each of these (k −1)-level macro-tiles keeps one delegated bit from the embedded
sequence. Let us focus on one horizontal row in M in this two-dimensional array of
size Nk−1 ×Nk−1 (and on the bits assigned to the Nk−1 macro-tiles of level k −1 in
this row). Denote the corresponding sequence of bits by η1, . . . ,ηNk−1 . We introduce
a sort of erasure code and calculate some checksums for this string of bits. We choose
these checksums so that we can reconstruct all bits η1, . . . ,ηNk−1 if at most D of these
bits are erased (i.e., if we know values ηi for only Nk−1−D positions); here, D > 0 is a
constant (to be fixed later). Besides this combinatorial property of error-correction,
we want the checksums to be easily computable. The required checksums can be
defined in many ways; we prefer to use one of the most standard and the classic
solution from coding theory: the checksums of the Reed–Solomon code.

Let us go into more detail. For every k we fix a finite field Fk with at least Nk−1+D
elements. Then, we calculate a polynomial of degree less than Nk−1 that takes val-
ues η1, . . . ,ηNk−1 at some specific Nk−1 points of the field. Further, we take as check-
sums the values of this polynomial at some other D points from the field. (These
(Nk−1 +D) points of the field must be fixed in advance). Two different polynomi-
als of degree less than Nk−1 can coincide in at most (Nk−1 −1) points. Hence, if D
bits from the sequence η1, . . . ,ηNk−1 are erased, we can reconstruct them, given the
remaining (non-erased) bits η j and the checksums defined above.

The defined checksums contain O(log Nk−1) bits of information. In what follows
we discuss how to compute them.

Second step (calculating checksums). We can compute the checksums while go-
ing from left to right along the sequence η1, . . . ,ηNk−1 in a rather standard way as fol-
lows. Indeed, let η1, . . . ,ηNk−1 be the values of a polynomial p(x) (of degree less than
Nk−1) at points x1, . . . , xNk−1 . Assume we want to reconstruct all coefficients of this
polynomial. We can do this by the following iterative procedure. For i = 1, . . . , Nk−1

we calculate polynomials (as a list of coefficients) pi (x) and qi (x) (of degree ≤ (i −1)
and i , respectively) such that

pi (x j ) = η j for j = 1, . . . , i

and
qi (x) = (x −x1) · · · (x −xi ).

It is not hard to see that for each i , polynomials pi+1 and qi+1 can be derived from
polynomials pi and qi , and the values xi+1 and ηi+1.

In fact, computing the entire polynomials is wasteful, since we need as the final
result only the checksums (which are values of p = pNk−1 (x) at D points of the field).
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If we only want to get the value p(a) at some particular point a, then we can perform
the same calculations modulo (x − a), which is much cheaper. To obtain the value
of p(x) at D different points, we run in parallel D copies of this process. At each
step of the computation we need to keep in memory only O(1) elements of Fk , i.e.,
only O(log Nk−1) bits of temporary data (the multiplicative constant in these O(·)
notations depends on D).

We now embed the above procedure into the computation zones of (k −1)-level
macro-tiles. In each row of length Nk−1 in a k-level macro-tile, the partial results
of the calculation are transferred from one (k − 1)-level macro-tile to another one,
from the left to the right. For each row, the final result of this computation is em-
bedded in the conscious information (bits on the tape of the Turing machine in the
computation zone) of the rightmost (k −1)-level macro-tile of the row.

To make this work, we include into the conscious memory of (k−1)-level macro-
tiles additional O(log Nk−1) bits of information and add the same number of bits to
their macro-colors. This fits easily the construction of a self-simulating tiling, since
zoom factors Nk grow fast and we have enough room in the computation zone.

Third step (consistency of checksums between macro-tiles). So far, we have mod-
ified our tile set so that each row in a k-level macro-tile contains O(log Nk−1) bits of
checksums. We now want to guarantee that these checksums are the same for ev-
ery two vertically neighboring macro-tiles. This property is automatically true for
a valid tiling of the plane: the checksums are computed from the delegated bits
(which come from the sequence of bits encoded into tiles of the ground level), and
so the corresponding checksums for all vertically aligned macro-tiles are equal to
each other. Nonetheless, this property can fail for a tiling with errors. To make it
error-resistant, we must revise again the data embedded in macro-tiles.

It is inconvenient to keep the checksums for each row only in the rightmost cell
of this row. We spread this information across many cells, by propagating the check-
sums of the i th row in a k-level macro-tile M (i = 1, . . . , Nk−1) along the entire i th
row and along the entire i th column of M . In other words, these checksums must be
“consciously” known to all (k −1)-level macro-tiles in the i th row and in the i th col-
umn of M . In Fig. 2.25 we show the area of propagation of checksums for two rows
(the i th and the j th rows).

On the border between two neighboring k-level macro-tiles (one above another)
we check that in each column i = 1, . . . , Nk−1 the checksums computed in both
macro-tiles match. These sanity checks are redundant if there are no errors in the
tiling; but they are useful to resist errors, as we explain below.

Fourth step (robustification). The explained above features arranged in every k-
level macro-tile (bits delegating, computing and propagating checksums, and all
other computations simulated in the computation zone of a macro-tile) are sim-
ulated by means of bits kept in the “consciousness” (i.e., in the computation zone)
of (k − 1)-level macro-tiles. We now fix some constant C and “robustify” this con-
struction in the following sense. We require that each (k − 1)-level macro-tile M
keeps in its consciousness not only “its own” data, but also the bits previously as-
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Figure 2.25: Propagation of checksums inside a macro-tile.

signed to all (k − 1)-level macro-tiles from its (C · Lk−1)-neighborhood (i.e., to the
(2C +1)× (2C +1) array of (k −1)-level macro-tiles centered at M). Note that this re-
vision requires multiplying the size of the conscious memory of each macro-tile by
only a constant factor. We embed the new conscious memory of macro-tiles in their
macro-colors: neighboring macro-tiles check that the data in their consciousness
are coherent.

We choose the constant C so that every k-level bi-island (which consist of two
parts of size αk ) and even the γk = O(αk )-neighborhood of every k-level bi-island
(we specify γk below) can involve only a small part of the (C Lk−1)-neighborhood of
any (k−1)-level macro-tile. (Here we talk about neighborhoods, not about extended
neighborhoods of bi-islands.)

For the revised tile set, we can reconstruct the conscious memory of a k-level
macro-tile and of its (k − 1)-level sons when this macro-tile is damaged by one k-
level bi-island (assuming there are no other errors).

The last remark (the number of bits in the consciousness of a macro-tile). In the
revised construction we put into the computation zones of every (k−1)-level macro-
tile only poly(log Nk−1) bits of data. We note again that this requirement fits well our
construction of a self-simulating tiling, since poly(log Nk−1) is much less than Nk−2,
and we have enough room to keep and process all these data.

The tile set τ is now defined. Clearly, τ-tilings exist. Since every τ-tiling involves
a sequence x = (x0) with Levin’s property, it follows that every N ×N pattern of every
τ-tiling has Kolmogorov complexity Ω(N ). In what follows we prove that this τ also
satisfies Claim (3) of Theorem 48.
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Error-correcting procedure

Let τ be the tile set described in Section 2.11.6, and let ε> 0 be a small enough real.
Lemma 2.21 implies that a Bε-random set with probability 1 is bi-sparse. We fix a
bi-sparse set E ⊂ Z2 (for the values of αi and βi chosen above), and a τ-tiling T of
Z2 \ E . In this section we explain how to convert T into a tiling T ′ of the entire plane
so that T ′ remains close enough to T .

Since E is bi-sparse, it can be represented as a union of isolated bi-islands of
different ranks. We now correct these bi-islands one by one, starting from bi-islands
of low ranks. To prove that this process converges, we need to understand the basic
step of this procedure, i.e., the correction of one bi-island S of rank k (assuming that
the βk -neighborhood of this bi-island is free of other errors).

By definition every k-level bi-island S is a union of two clusters S0,S1, and the
diameters of both S0 and S1 are at most αk = O(Lk−1). These clusters touch only
O(1) macro-tiles of level (k−1). The distance between S0 and S1 is at mostβk , and we
assume that the βk -neighborhood of S has already been cleaned of other errors. In
what follows we perform a correction procedure around S that involves only points
in the extended γk -neighborhood of S, where γk = 2αk .

Let M be a k-level macro-tile intersecting the extended γk -neighborhood of S.
We want to find a repaired version of M . Basically, we need to reconstruct the “cor-
rect” versions of all (k − 1)-level macro-tiles inside M damaged by S. We start by
reconstructing the conscious information in all (k −1)-level macro-tiles in M . This
is enough to get all bits of the embedded sequence x from the “zone of responsibil-
ity” of M . Next, we consistently reconstruct all n-level macro-tiles inside M for all
n < k.

The consciousness memory (the data in the computation zone) of every (k −1)-
level macro-tile M ′ consists of several data fields (see Section 2.8):

[A] the binary representation of the number (k −1) and of the coordinates of M ′
in the father macro-tile M ;

[B] the bits used to simulate a Turing machine on the computation zone of M and
the bits used to implement the communication wires of M ;

[C] the bit (from the embedded sequence x) delegated to M ′;

[D] the bit (from x) delegated to M ;

[E] the bits used to calculate and communicate the checksums for the corre-
sponding row of (k −1)-level macro-tiles in M ; and

[F] a factor from x to be checked; M ′ verifies on its computation zone that this
factor does not contain any subword of low Kolmogorov complexity.

The corrected version of [A] can be reconstructed from the surrounding macro-tiles
of the same level. Fields [B], [C], [D], and [E] can be reconstructed, due to robusti-
fication on the level of (k −1)-level macro-tiles. (We can consistently recover these
fields for any C ×C group of missing or corrupt (k −1)-level macro-tiles.)
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A trickier task is recovering of [F]. To this end, we need to reconstruct the bits of
the embedded sequence x from the zone of responsibility of M . We recover these
bits given the neighbor k-level macro-tiles above or below M . (We known that S
touches only O(1) k-level macro-tiles, and around them there is a clean area of k-
level macro-tiles that are free of errors.) However, we must prove that the bits of the
embedded sequence remain consistent above M , below M , and inside M . This is
the stage where we use the checksums.

Denote by Mu and Md (the “up” and “down” neighbors) the k-level macro-tiles
just above and below S, see Fig. 2.26. Both Mu and Md must be free of errors, since
the distance between S and other k-level bi-islands is greater thanβk = 2Lk . In what
follows we discuss the case shown in to Fig. 2.26, where bi-island S touches only
one k-level macro-tile. (If S touches several k-level macro-tiles, substantially the
same arguments work.) It is enough to prove that the embedded bits of x assigned
to the columns of Mu and in Md match each other (for each i , the i -th column of
Mu carries the same embedded bit as the i -th column of Md ).

macro-tile Mu without errors

macro-tile Md without errors

macro-tile M with an error bi-island

Figure 2.26: Bi-island of errors in a macro-tile.

The macro-tiles Mu and Md are error-free; therefore, the sequences of Lk bits xi

assigned to the columns of these macro-tiles are well defined. Since there are no er-
rors, the conscious information (including checksums) in all macro-tiles of all levels
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inside Mu and Md is consistent with these bits. Hence, these bits xi are correctly
delegated to the corresponding (k − 1)-level macro-tiles inside Mu and Md . How-
ever, it is not evident that the sequences of Lk bits embedded in Mu and in Md are
equal to each other.

We start with an observation that bit sequences for Mu and Md coincide with
each other at most positions. Indeed, they match for all columns (from the range
0, . . . ,Lk − 1) that do not intersect bi-island S (if a column of tiles is not damaged
on the ground level, then the assigned bit spreads correctly though macro-tiles Mu ,
M , and Md ). Thus, the bits delegated to the corresponding (k −1)-level macro-tiles
inside Mu and Md are equal to each other except for only (k −1)-level macro-tiles
in the “gray zone” in Fig. 2.26, which contains the vertical stripe of columns that go
through the (k − 1)-level macro-tiles involved in the correction of S. The width of
this stripe is O(1) macro-tiles of level (k − 1). Hence, for i = 0, . . . , (Nk−1 − 1), if we
compare the i th rows of (k −1)-level macro-tiles in Mu and in Md , we see that the
sequences of delegated bits are equal to each other except possibly for only O(1) bits
(delegated to (k −1)-level macro-tiles in the gray zone).

Due robustness, the checksums are correctly transmitted through M . Hence, for
every i , the checksums computed for the i -th rows in Mu and in Md must be equal
to each other. Thus, for the i -th rows of (k −1)-level macro-tiles in Mu and in Md

we know that (a) all except O(1) delegated bits match, and (b) the checksums match.
From the property of the chosen erasure code it follows that in fact all delegated bits
in these rows match without any exceptions. Therefore, the bits of x embedded in
Mu and in Md (on the ground level) are the same. So we can use these bits to repair
M and obtain a consistent tiling around it.

We are almost done. Bi-island S is corrected; we reconstructed conscious infor-
mation for the k-level macro-tile M and for all its (k − 1)-level sons. We now can
reconstruct fields [F] in the damaged (k −1)-level macro-tiles inside M . To this end,
we just take the corresponding bits xi from the zone of responsibility (shared by M ,
Mu , and Md ). It remains to explain why the checking procedure does not fail for
these groups of bits (i.e., (k −1)-level macro-tiles do not discover in these bit strings
any factors of low Kolmogorov complexity). But this is true because the macro-tiles
of levels (k −1) (and below) inside M apply exactly the very same checks to the very
same factors of x as their homologue macro-tiles in Mu and Md . Since there are no
errors in Mu and Md , these checks are all successful.

Let us inspect again the correction procedure explained above and observe
which tiles are involved in the error-correcting process around S. We do not change
the (k −1)-level macro-tiles outside the gray zone in Fig. 2.26. In the gray zone only
the part between two clusters of S (and their small neighborhoods) is affected. In-
deed, for the tiles of M above S, the assigned bits xi are the same as in the corre-
sponding columns of Mu ; in the tiles of M below S the assigned bits xi are the same
as in the corresponding columns of Md . Hence, we do not need to modify the sub-
conscious information of (k −1)-level macro-tiles that are above or below S. Thus,
the area involved in the correction procedure is covered by the extended neighbor-
hood of S. (In fact, this argument is the motivation of our definition of extended
neighborhood.)

We conclude that the incremental correction procedure eliminates all bi-islands
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of errors and only the extended γk -neighborhoods of k-level bi-islands are involved
in this process. Thus, Claim (3) of Theorem 48 follows from Lemma 12.

Lower bound of complexity for a tiling with random errors

It remains to prove Claim (4) of Theorem 48. We have shown above that if the set of
errors E is bi-sparse, then every (τ,E)-tiling T can be converted into a τ-tiling T ′ of
the entire plane, and the difference between T and T ′ is covered by the extended γk

neighbors of k-level bi-islands from E (k = 0,1, . . .). We want to prove now that in the
initial tiling T the Kolmogorov complexity of the centered squares of size N ×N was
alsoΩ(N ).

Fix a point O in the plane. Since E is bi-sparse, O is covered byβk -neighborhoods
of only finitely many bi-islands. We conclude that for all large enough ∆, if the ∆×∆
squares Q∆ centered at O intersect the extended γk -neighborhoods of a k-level bi-
island, then βk < ∆. (If the extended γk -neighborhood of a bi-island intersects Q∆

and βk ≥ ∆, then βk −γk > ∆/2, and O is covered by the βk -neighborhood of this
bi-island.) Therefore, to reconstruct T ′ in Q∆ from the original tiling from T , it is
enough to correct in T the bi-islands of level k such that βk <∆.

To reconstruct T ′ in Q∆ we need to know the original tiling T in Q∆ and in some
neighborhood around Q∆ (i.e., in a centered O(∆)×O(∆) square Q∆′ , which is greater
than Q∆ by only a constant factor). Indeed, given the tiling T restricted on Q∆′ , we
can locally correct in this part of the tiling all bi-islands of levels 1,2, . . . ,k (such that
βk < ∆) one by one. The local correction of a bi-island of errors restricted on Q∆′
gives the same results as we would obtain in the error-correcting procedure on the
entire plane Z2, unless this bi-island is too close to the border of Q∆′ (in this excep-
tional case the local correction procedure should involve the information outside
Q∆′ ). Thus, given tiling T inside Q∆′ we can reconstruct T ′ not in the entire Q∆′ but
at all points that are far enough away from the border of this square. If ∆′ = c∆ for
a large enough c, then the original tiling in Q∆′ provides enough information to re-
construct T ′ in Q∆.

We know that the Kolmogorov complexity of error-free tiling T ′ in Q∆ is Ω(∆).
Therefore, the Kolmogorov complexity of the original T -tiling in the greater square
Q∆′ is alsoΩ(∆). Since∆′ is greater than∆by only a constant factor, we conclude that
the Kolmogorov complexity of the (τ,E)-tiling T , restricted to the centered (∆′×∆′)
square, isΩ(∆′). This concludes the proof of Theorem 48.

2.11.7 Robust strongly aperiodic tilings

We now can construct a robust strongly aperiodic tile set (a robustified version of
Theorem 43).

Theorem 49. There exist a constant α> 0 and a tile set τ with the following proper-
ties:

(1) τ-tilings of Z2 exist and
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(2) for all sufficiently small ε for almost every (with respect to Bε) subset E ⊂ Z2

every (τ,E)-tiling is at least 1/10 Besicovitch apart from every periodic mapping
F : Z2 → τ.

Remark 32. Since the tiling contains holes, we need to specify how we treat these
holes when defining the Besicovitch distance. We do not count points in E as points
where two mappings differ; this makes our statement stronger.

Proof. Similar to the proof of Theorem 43, we deduce strong aperiodicity from high
Kolmogorov complexity. Indeed, due to Theorem 48, we have tile set ρ that is robust
with respect to random errors; we known also that for every ρ-tiling every horizontal
row of tiles embeds a sequence of bits (one and the same for each row) whose factors
have high Kolmogorov complexity. Such a sequence cannot match itself well after a
non-zero translation. Technically, we can claim that 49% of bits must be changed by
a non-zero translation.

We now combine this tile set ρ with a similar 90◦-rotated construction. For the
new tile set τ, any non-zero translation shifts either a vertical or a horizontal se-
quence embedded in a tiling, and therefore it changes a constant fraction (at least
49%) of the positions.

For almost all Bε-random sets E ⊂Z2, every (ρ,E)-tiling is at most 1/10 Besicov-
itch apart from some ρ-tiling of the entire plane Z2. The same property is true for
the version of ρ rotated by 90◦. Hence, for the obtained tile set τ a (ρ,E)-tiling is at
most 1/5 Besicovitch apart from some τ-tiling of the entire plane. As we observed
above, in a tiling of the plane every translation changes at least 49% of tiles. Hence,
every translation changes changes a constant fraction of tiles in a (ρ,E)-tiling (be-
fore repairing the errors).

Remark 33. The claim of the theorem could be made stronger: its claim is true for
any constant α< 1. To this end, we should embed in a tiling a sequence with Levin’s
property over a large enough alphabet.
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Perspectives and Future Work

In this section we briefly discuss possible directions for the future work. We men-
tion three types of problems: information inequalities and their applications, com-
binatorial properties of random and pseudo-random objects, and algorithmic tech-
niques in questions concerning multidimensional shifts.

1. Information inequalities We propose to proceed with the research of non-clas-
sical information inequalities, focusing on information inequalities with applica-
tions in network coding, combinatorics, and communication complexity.

1.1. The geometry of the cones of the universal linear inequalities for Shannon’s en-
tropies of n ≥ 4 random variables is still not well understood. It is known that these
cones are non-polyhedral (F. Matúš), however we still have no satisfactory under-
standing of their structure and the geometric properties of their surfaces. From this
perspective, the further study of conditional information inequalities seems to be
promising.

1.2. As of now, there are two general techniques of deducing non-Shannon-type
information inequalities: the method of vanishing the conditional mutual informa-
tion (which appeared in works by Z. Zhang and R.W. Yeung, and was later devel-
oped by L. Csirmaz, F. Matúš, and others) and the method of common information
based on the Ahlswede–Körner lemma (this technique was suggested in our work
with K. Makarychev, Yu. Makarychev, and N. Vereshchagin). Both techniques can be
pretty well formalized, they both lead to efficient computer-aided procedures help-
ing to search for new information inequalities.

Until now, the known applications of non-Shannon-type information inequal-
ities followed a two step scheme: firstly, an extensive search of new inequalities
(using one of the techniques mentioned above), and then another search over all
found inequalities and their combinations to achieve the best result in the desired
application. This approach usually involves extremely heavy computations, and in
most applications in question the limits of the modern computers are about to be
reached. However, we could use another strategy of computer-aided proofs with
information inequalities: it seems to be possible to merge both stages of the brute-
force search and adjust the procedure of inference of new inequalities, so that only
inequalities helpful for this specific application are involved. This approach requires
a better understanding of the “physical meaning” of new inequalities and more so-
phisticated ad hoc search algorithms for every specific problem. We believe that
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these techniques would extend the area of applications of information inequalities.
The promising targets for this approach are problems of secret sharing and network
coding.

1.3. We propose to study more elaborately the information inequalities for resource-
bounded versions of Kolmogorov complexity. There is no hope for progress with
programs that run in polynomial time; L. Longpré and S. Mocas showed that under
plausible assumptions from computational complexity even the property of sym-
metry of the mutual information fails for poly-time bounded Kolmogorov complex-
ity. At the same time, natural counterparts of all basic information inequalities hold
true for exp-time and poly-space bounded variants of Kolmogorov complexity. The
question of non-Shannon-type inequalities for these complexity measures remain
widely open. Filling this lacuna and exploring possible applications of information
inequalities in computational complexity is an interesting direction of research.

1.4. It seems to be interesting to proceed with the research of combinatorial appli-
cations of constraint information inequalities. Recent results suggest that a suitable
domain of these applications is graph theory and, more specifically, clique covers
and biclique covers for different classes of graphs. The purpose of this research is to
better understand the relation between the information-based arguments and more
conventional bounds for the sizes of clique covers. We also expect that the clique
cover bounds based on information inequalities can be applied in communication
complexity (for randomized and non-deterministic communication protocols).

2. Pseudo-random objects The study of random graphs is a large and well devel-
oped branch of graph theory. It deals with the “typical” properties that hold with
high probability for a randomly chosen graph. For example, it is known that the vast
majority of graphs of fixed degree are expanders (the graphs with properties of high
expansion, strong connectivity, fast mixing, and so on). Graphs of this type have
many important applications in computer science and coding theory. The difficulty
is that, though almost any randomly chosen graph is an expander, it is rather hard
to produce such a graph explicitly and deterministically.

We propose to study an intermediate approach that combines the usual deter-
ministic and probabilistic paradigms; we suggest to produce graphs using (more or
less conventional) pseudo-random number generators. The idea is to compare the
properties (expansion rate, spectral gap) of pseudo-random graphs with the typi-
cal properties of truly random graphs. Both positive and negative results would be
interesting; either we obtain efficient constructions that produces pseudo-random
graphs with nice combinatorial properties (useful for applications), or we discover
new tests to distinguish truly random sequences from pseudo-random ones.

3. Multidimensional shifts Here, we outline possible directions of future work
concerning multidimensional shifts (the questions of information density and the
problem of robustness).

3.1. We suggest to proceed with the research of different versions of the informa-
tion density in shifts of finite type and related questions of symbolic dynamics. In
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particular, we believe that time-bounded Kolmogorov complexity is a suitable mea-
sure of information density to discern the elusive edge between sofic and non-sofic
effective shifts.

3.2. It seems to be interesting to study mathematical models of origins and stability
of non-periodic structures. The model of “faulty tilings” explored in our joint work
with B. Durand and A. Shen is apparently not suitable to describe physical phenom-
ena. We suggest to study the models of “robust” and “self-correcting” tilings that
are more relevant to mathematical physics (e.g., the models based on Gibbs mea-
sures). This area remains pretty much uncharted waters, and the implied questions
are probably very difficult. Nevertheless, we suggest to try to apply our algorithmic
techniques to this domain.
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