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1Introduction

„Premature optimization is the root of all evil (or at
least most of it) in programming.

— Donald Knuth
Turing award conference 1974

Polynomial and matrices are mathematical objects that are central in various domains
which use mathematics to solve problems. Our main interest in these objects falls down
in the domain of computer algebra. There, the original goal is to provide effectiveness
of algebra, meaning that we do want to provide computer programs that manipulate
and compute with these objects. In particular, our work mainly focuses on a central part
of computer algebra, namely exact linear algebra.

Numerical linear algebra usually serves as a key tool for applications coming mostly from
continuous problems. It therefore relies on approximated computation through floating
point numbers. At the opposite, exact linear algebra aims to solve problems without
any approximation and then relies on more complex algebraic structures, e.g. integers,
rational numbers, finite fields, etc. One of the most notorious success of exact linear
algebra has been the use of Number Field Sieve algorithm [LH93] or Function Field
Sieve algorithm [Adl94] that tackle the integer factorization problem or the discrete
logarithm problem. Those serve as the foundation for the most famous asymmetric
cryptographic protocols: Diffie-Hellman, RSA or El Gamal [RSA78; DH76; El 85]. In
this context, a major breakthrough arose in 1986 with the work of Wiedemann [Wie86]
who provides a novel way to solve a sparse linear system over a finite field with less
operations than the classical Gaussian elimination. The technique, closed to the iterative
methods in numerical linear algebra using Krylov subspaces [GO89], is to replace any
factorization of the original matrix by its minimal polynomial. The salient idea of
Wiedemann is to recover the minimal polynomial of the original matrix A from the one
of the linearly generated sequence uAi v for random vectors u and v. The method is of
course probabilistic since both polynomials might differ, but for a given set of parameters
it is proven unlikely. Later, in 1994 Coppersmith adapted in [Cop94] the latter method
to incorporate parallelism by taking many random vectors at the same time and using
a minimal generator of the linear generated matrix sequence UAiV for U , V random
matrices. This method is nowadays known as the block Wiedemann method.

Sketch of block Wiedemann method: For a field K and a matrix A∈ KN×N , the block
Wiedemann algorithm aims at computing the matrix power series S(X ) =

∑

i≥1 UAiV X i ∈
K[[X ]]n×n for random matrices U T , V ∈ KN×n and to find a polynomial matrix Π ∈
K[X ]n×n such that S(X )Π(X ) = R(X ) +O(X 2N/n) where degΠ, deg R< N/n= d. Note
that Π can be computed through Hermite-Padé approximation [Vil97b], block Toeplitz
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linear system [Kal94] or generalized matrix version of Berlekamp-Massey algorithm
[Cop94; Tho02a]. It is called the minimal matrix generating polynomial of S(X ) in
[Vil97a]. Let g(X ) = g0+ g1X + · · ·+ gd ∈ K[X ]n be a column of Π, for 0≤ i < N/n the
following relation holds with high probability

Ai+1V gd + Ai+2V gd−1 + · · ·+ Ai+d+1V g0 = 0n ∈ Kn.

In particular, we have

A(V gd + AV gd−1 + A2V gd−2 + · · ·+ Ad V g0) = 0n

which thus gives the expression of a right kernel vector of A as a linear combination
of the powers of A projected on vectors V . In his original paper [Cop94], Coppersmith
proved that linear combination is non-zero with a good probability only in the case of
sufficiently large field. A few years later Villard provided a complete proof for any field,
especially for the interesting case F2 [Vil97b; Vil97a].

As for Wiedemann’s algorithm, the magic of this method is that A is never modified
(no triangularization/diagonalization) and thus no filling of the matrix arises contrary
to Gaussian elimination. Therefore, the cost is mostly dominated by the matrix-vector
products with A. When A is sparse with O(N) non zero-elements and assuming n = O(1)
this yields a method with a complexity of O(N2) operations in K improving upon the
O(N3) complexity of Gaussian elimination. Note this complexity can be decreased
by a factor of n when using parallelism, making it more suitable than Wiedemann
for challenging computation. Yet another advantage of block Wiedemann is its space
complexity of O(N) while the fill-in of Gaussian elimination can possibly get the matrix
to O(N2) non-zero entries. This lower memory requirement has democratized the use
of such a method with sieving algorithms in cryptography which are known to generate
huge matrices (few billions of rows/columns) with only few entries per rows (i.e. few
hundreds) [Kle+12]. Of course, such matrices are out of reach with direct methods.

Note that this presentation of block Wiedemann is rather simplified and hides a lot of
technical details, the objective being to provide a general idea of the method. A more
complete description can be found in the original paper of Coppersmith [Cop94] or in
the following references [Vil97b; Kal95; Tho02a].

1.1 Motivation

Since my thesis work in 2004, the block Wiedemann method inspired most of my research
activity as it embraces a diversity of fundamental problems that are quite motivating
and interesting by themselves. Of course, besides the goal of providing efficient software
to solve sparse linear systems of equations over any field using this method, as we do in
the LinBox project (https://github.com/linbox-team), we also looked at some of
the main ingredients under the hood. These works have been conducted with or without
correlation with the initial context of block Wiedemann. This for instance concerns:

• polynomial arithmetic: mainly for the basic operations such as multiplication,
division, gcd; and its usage in the computation of minimal generators of a linearly
generated sequences (i.e. Hermite-Padé approximants),
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• elementary matrix operations: such as multiplication or factorization which are
basic building blocks for matrix adaptation of the Berlekamp-Massey algorithm
[Mas69],

• integer arithmetic: it serves commonly as a foundation for computing with prime
fields on computers; typically the matrix coefficients involved within the block
Wiedemann algorithm over large prime fields;

• practical consideration for improving algorithms: incorporating more parallelism,
reducing constants in the complexities, reducing memory footprint;

• providing tools to efficiently verify computations or check provided implementa-
tions;

• and last but not least: efficient software implementations.

This manuscript intends to give a quick overview on what has been done so far, focusing
on the salient ideas that make our contributions original and interesting. In particular,
we will try to provide as much as possible of the context for every detailed part in the
chapters 2 to 4 that cover some of our main interesting contributions. Besides, this
first chapter will review in a more general way all my contributions since I’ve been an
assistant professor at the University of Montpellier in 2007.

1.2 Useful notations and definitions

In this manuscript, we use the notation Fp to define the finite field with p elements for
a given prime integer p. When dealing with generic fields, we will use the notation K,
while we will use the notation R for commutative rings.

Time complexity As usual in computer algebra, we shall mainly focus on the number
of arithmetic operations performed by our algorithms. To be more formal, the estimate
of the complexity of algorithms will mainly fit the word Random Access Memory model
(word-RAM) [Hag98] and we use an algebraic RAM complexity estimate, where each
algebraic operations are assumed to have a cost of O(1). We will extensively use in this
manuscript the classical complexity function M(n). Let R be a ring, we will denote M(n)
the time function for the multiplication of univariate polynomials of degree less than
n, meaning that one can multiply two polynomials of R[X ] of degree less than n using
at most M(n) operations in R. Note that throughout the manuscript we will use n-size
polynomial to refer to polynomials of degree less than n.

When dealing with integers, we will use a computation model similar to the one described
in [GG13, Chapter 2] or [BZ10, Chapter 1.1]: we fix a base β , that can typically be
a power of two such as 2,216 or 232, and we assume that all non-zero integers are
written in this basis: such an integer a is represented by its coefficients (a0, . . . , as−1),
where each ai in {0, . . . ,β − 1} and as−1 is non-zero, together with a sign bit, such
that a = ±(a0 + a1β + · · ·+ as−1β

s−1). The coefficients ai are referred to as words; the
integer s is called the length of a, and denoted by λ(a). Our complexity statements are
then given in terms of the number of operations on words, counting each operation
at unit cost (for the details of which operations are used, see [GG13, Chapter 2]). For
simplicity, we assume that all words can also be read or written in time O(1) such that
our complexity estimates fit the standard word RAM model. We let I : N→ N be such
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that two integers a, b of length at most n can be multiplied in I(n) word operations,
assuming the base-β expansions of a and b are given.

For both M(n) and I(n), it is assumed that they satisfy the super-linearity assumptions
of [GG13, Chapter 8], that is M(n)/n and I(n)/n are non-decreasing. When necessary,
we might use the time function M(m, n) and I(m, n) to express the time complexity
of unbalanced multiplication of polynomials of size m and n, or integers of m and n
words. In particular, assuming m> n we have that M(m, n)≤ dm/neM(n) and similarly
I(m, n)≤ dm/ne I(n).

Similarly, we will use MM(n) to denote the time function for the multiplication of
matrices in Rn×n, meaning that one can multiply two matrices in Rn×n with at most
MM(n) operations in R. A common assumption is to say that ω ∈ R is an acceptable
exponent for matrix multiplication problem if MM(n) = O(nω). It is clear that 2≤ω< 3.
We also use MM(m, n, k) to refer to the cost of matrix multiplication of m× k by k× n
matrices, which is of course bounded by O(mnk min(m, n, k)ω−3).

Another classical notation used in this manuscript is the Soft-Oh notation used to hide
logarithmic factors in the complexity estimates, that is O (̃n) = O(n(log n)O(1)). As an
abuse of notation we will use log(n) as the logarithm of n in base two.

Space complexity Another important notion we will use is the space complexity of an
algorithm. For this purpose, we use a model that divides the memory registers into three
categories: the input space is made of the (algebraic) registers that store the inputs, the
output space is made of the (algebraic) registers where the output must be written, and
the work space is made of (algebraic and non-algebraic) registers that are used as extra
space during the computation. The space complexity is then the maximum number of
work registers used simultaneously during the computation. An algorithm is said to be
"in-place" if its space complexity is O(1), and "out-of-place" otherwise.

One can then distinguish different models depending on the read/write permissions on
the input and output registers:

1. Input space is read-only, output space write-only;
2. Input space is read-only, output space is read/write;
3. Input and output spaces are both read/write.

While the first model is classical in computational complexity [AB09], it does not reflect
low-level computation where output is typically in some Digital RAM or Flash memory
on which reading is no more costly than writing. Therefore, we will mainly study space
complexity of algorithms using either the second or third model, since they are more
appropriate to our desire: efficiency in practice.

1.3 Main contributions

The following sections intend to give only a brief overview of our research approaches
and the achieved contributions. We hope this short overview will provide a guideline
through the different areas we’ve explored. We will provide further details on some of
the contribution in the next chapters.
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1.3.1 Reduction to efficient core algorithms

In computer algebra, the two main ingredients that are used by almost every fast algo-
rithms are either fast arithmetic on polynomials or integers and fast matrix multiplication.
Since the seminal work of Karatsuba in 1962 [KO63] who has shown that integer multi-
plication, as well as polynomial multiplication, can be done in subquadratic time, many
other results lowered this complexity down to M(n) = O (̃n) and I(n) = O (̃n) [SS71;
Sch77; CK91; HH19a; HH19b]. The same history can be found on the problem of matrix
multiplication that has been proven for the first time to be subcubic time complexity in
1969 by Strassen [Str69]. Nowadays, the best result on matrix multiplication is given by
Le Gall [Le 14] who proved MM(n) = O(nω) with ω< 2.3729.

Following these important results many other problems have been reduced to polynomial
(or integer) multiplication in order to improve their complexity. This is for instance
the case with polynomial gcd or its integral analogue that are proven to have a cost of
respectively O(M(n) log(n)) and O(I(n) log(n)) [Knu70; Sch71]. This kind of algorithmic
reduction is even more relevant for linear algebra where most problems over a field
are reduced to matrix multiplication, some of them being even equivalent to it: e.g.
matrix inversion [Str69] or determinant [BS83]. One major difficulty for linear algebra
in the last two decades has been to properly control expression swell over principal
rings, e.g. ring of integers or univariate polynomials over a field. Indeed, the classical
algebraic complexity model counts only operations on ring elements. However, such
elements could be either a polynomial of degree n or a constant one. Hence, it is usual
to require a finer complexity model where every operation on a word or on a coefficient
counts. For a long time, it has been thought that finer complexity estimates for linear
algebra would always incur a penalty that is linear in matrix dimension, compared to the
pure algebraic version. In 2002, Storjohann broke this belief by providing algorithms
for linear systems, integrality certification and determinant over K[X ] with the same
complexity as for matrix multiplication [Sto03]. Three years later, he extended these
results to the integer case [Sto05]. Following this breakthrough, the last decades have
seen a lot of improvements for linear algebra over integers or univariate polynomials. To
do so, the problems have been reduced to matrix multiplication mostly with probabilistic
algorithms. Some recent efforts have been made to make these reductions deterministic
[LNZ17; ZLS15; Gup+12]. We refer to the following books and PhD or HDR manuscripts
to learn more about this effective reductions in exact arithmetic and exact linear algebra
[GG13; BZ10; Bos+17; Per14; Vil03; Zho12].

During my PhD thesis, we proved with Jeannerod and Villard [Cpub-GJV03] that the
computation of minimal approximant bases (also called sigma bases), that are minimal
basis of the K[X ]-moduleA =

�

p ∈ K[X ]1×m | pF= 0 mod X d
	

for F ∈ K[X ]m×m and
d ∈ N>0, reduces to matrix multiplication over K[X ], meaning a complexity of O (̃mωd)
operations in K. This result improved the important work of Beckerman and Labahn on
fast computation for matrix-type Padé approximation [BL94] for some specific cases.
Using [Vil97b; Kal95], our work makes it possible to compute minimal matrix generating
polynomial in block Wiedemann within polynomial matrix multiplication cost, improving
upon any other known methods [Cop94; Tho02a; Kal94]. We also provide in [Cpub-
GJV03] a probabilistic algorithm for matrix row reduction over K[X ] that reduces to
matrix multiplication, extending the list of problems started by Storjohann in [Sto03].
This result has been fundamental as it still serves today as foundation for many fast
algorithms in linear algebra over K[X ], see Figure 1.1 below.
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Fig. 1.1: Overview of algorithmic reductions in dense linear algebra over K[X ]
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Since then, our research has been to make fast minimal approximant basis practicable and
available in the software library LinBox (https://github.com/linbox-team). The
LinBox library has been created in 1997 from an international effort between Canada,
France and USA, under the impulse of T. Gautier, J.-L Roch, E. Kaltofen, B.D. Saunders
and G. Villard. At the beginning, the aim of the project was to provide a generic library
to solve exact linear algebra problems using blackbox method, as Wiedemann’s one.
From these early developments, the project evolved a lot and it has investigated many
different areas of exact linear algebra, leading both to more efficient algorithms and to
several libraries: FFLAS-FFPACK for dense linear algebra, Givaro for basic arithmetic
and representation of the algebraic objects (prime fields, integers, rationals, polynomial
rings, ...) and LinBox providing the main "generic/dedicated" solutions to dense, sparse
and blackbox linear algebra problems: determinant, rank, Smith form, linear system
solving, ...

In order to develop efficient code for minimal approximant basis, we first investigated
with Dumas and Pernet, the effectiveness of the reduction to matrix multiplication for
linear algebra problems over finite fields. For this purpose, we based our work on the
LQUP matrix factorization [IMH82], a generalization of the classical LU factorization.
In [Jpub-DGP08], we provide a detailed analysis of the constants in the reductions to

6 Chapter 1 Introduction

https://github.com/linbox-team


matrix multiplication for basic dense linear algebra problems over finite field: LQUP,
determinant, rank, inverse; and demonstrate that these reductions can be in practice as
efficient as expected. Following the work in [DGP02] that uses numerical BLAS1 libraries
for speeding-up matrix multiplications over half word-size prime field, we provide in
[Jpub-DGP08] the foundation of the FFLAS-FFPACK library to provide efficient dense
linear algebra over that specific fields. In particular, our implementation relies on fast
Strassen-Winograd [Str69] and it establishes its practical benefit even for matrices of
moderate sizes. A side effect of this development has been to learn that floating point
numbers operations have usually a better peak performance than its integer counterpart
on current processors, see our slides at SIAM conference PP’14 [Ppub-Gio14]. The FFLAS-
FFPACK library has been built following this remark and mainly focuses on primes up to
26-bits to ensure exact computing within the mantissa of floating point numbers. This
library, available at (https://github.com/linbox-team/fflas-ffpack), serves to-
day as an international reference for these specific computations. Software such as
MAPLE, NTL, SAGE, FLINT, MATHEMAGIX have followed up on our work and either re-
implement our solution or build a similar approach using integer ( see NTL benchmarks
explanations 2). Section 4.2 presents the main ideas behind our contribution and the
development that has been achieved so far.

In order to reach a larger class of prime fields, in particular the ones that are larger
than a word-size, we study later the use of multi-modular approach and the Chinese
Remainder theorem [GG13, Section 5.4] for integer matrix multiplication. Our approach
was motivated by the performances on moderate size integers, i.e. few tens or hundreds
of words, that could appear in discrete logarithm computation over finite fields or elliptic
curves. In [MB72] it is shown that multi-modular reduction and reconstruction of an
n-words integer with n moduli fitting a single word cost O(I(n) log(n)) word operations.
Hence, one can reach a quasi-linear time complexity of O (̃n) using fast integer mul-
tiplication. However, such fast algorithms are not relevant for moderate sizes as the
hidden logarithmic factors incur too much overhead in practice, and the naive quadratic
approach remains preferred. For matrix multiplication, the fact that simultaneous re-
ductions or reconstructions are to be done leaves some room for doing precomputations
and then improving the time complexity of the naive approach. In [Jpub-Dol+18], we
propose an algorithm using precomputation that reduces the complexity from O(n3)
word operations to O(nω), when n integers of n-words are considered to be converted
to n single word moduli. Besides its theoretical interest, our method enables to benefit
from efficiency of matrix multiplication libraries that optimally re-use data and minimize
cache effect, allowing to reach almost the peak performance of the processors [GG08;
Int07]. Section 3.3 presents the detail of our algorithm together with some experiments
showing its superiority against few major libraries in computer algebra for integers of
bit length up to 217.

Going back to minimal approximant basis, we’ve been asked by George Labahn in
2005 if it would be possible to provide an iterative variant of our PM-Basis algorithm
given in [Cpub-GJV03]. We answered this question only in 2014 when supervising
the postdoctoral studies of Romain Lebreton within the ANR project HPAC. There, our
motivation was to design a fast online algorithm for minimal approximant basis. Online
algorithms fit a computational model where inputs are discovered partially during the
course of the algorithm. For instance when multiplying two polynomials f and g, only

1Basic Linear Algebra Subroutines defined in [Law+79]
2https://www.shoup.net/ntl/benchmarks.pdf
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the first k coefficients of f and g are needed to compute the first k coefficients of f g.
Basically, when writing the k-th coefficient of the output, online algorithms only have
access to the first k coefficients of the inputs. When computing with polynomial series,
this model implicitly allows the precision of the inputs to be increased as soon as a larger
precision is required for the output, see [Leb12] for a more complete description. With
block Wiedemann algorithm it appears that the matrix power series S(X ) =

∑

i≤1 UAiV X i

is usually precomputed to the maximal precision to be able to retrieve the minimal
polynomial matrix Π. For generic matrices with low rank deficiency, as in cryptography,
the general a priori bound of 2N/n + O(1) given in [Cop94] is tight and almost no
superfluous coefficients of S(X ) are computed. However a significant rank deficiency
makes this bound loose, which introduces a computational overhead. As observed in
[KL99], when several zero discrepancies appeared consecutively in the matrix Berlekamp-
Massey algorithm, it is with good probability that the computed Π is already correct. Of
course this remark remains heuristic but it has been proved useful for early termination
within the BenOr-Tiwari sparse interpolation algorithm [KL03]. Remark that similar
early termination technique has been proven for the Lanczos algorithm over large field
[EK97]. With Lebreton, we propose in [Cpub-GL14a] to exploit this early termination
process and then to design an online algorithm for minimal approximant basis. Our
goal was to design an algorithm that computes the minimal number of coefficients
of the matrix power series when using early termination. Every prior work on fast
variants for matrix Berlekamp-Massey algorithm uses a recursive divide-and-conquer
scheme that needs to double the length of the sequence before to further pursue the last
recursive branch. In that context, early termination can overestimate by a factor of two
the precision of the series. Our online algorithm in [Cpub-GL14a] completely removes
this overshooting. For doing this, we first provide an iterative variant of PM-Basis and
then we describe an half-line3 algorithm for polynomial middle product. There, we
get an online algorithm oPM-Basis that achieves minimal precision for the series and
having complexity similar to PM-Basis up to the extra logarithmic factor classical with
the online model [Leb12]. Note this extra logarithmic factor is not problematic in block
Wiedemann as the cost remains dominated by the computation of the series S(X ) itself.
Our experimentation with oPM-Basis in the LinBox library demonstrated the complete
removal of the staircase effect when early termination is used in block Wiedemann.
Section 4.3 describes in more details this contribution.

1.3.2 Certification of results

In [Cpub-Dum+07] we have computed the rank of very large sparse matrices arising
in algebraic K-theory in order to provide more credibility to a conjecture in number
theory [Sou99]. Our approach was based on a block Wiedemann’s rank algorithm
[KS91; Tur06] and the computation extensively used PM-Basis code from LinBox. The
larger matrix we could reach at that time was a 1 911 130 × 1 955 309 matrix whose
rank is 1 033 568 over F65537 and the computation took 1050 CPU days. Note that
we used only shell task parallelism for computing the sequence, not for the minimal
approximant basis that have been run sequentially. The fact that block Wiedemann’s
rank algorithm was Monte-Carlo over finite fields [SSV04] raised the natural question
to trust or not the computed result. Although the algorithm may have succeeded, our
implementation could have been unsafe. Beside providing a Las Vegas algorithm for the

3A variant of the online model that assumes one operand to be known completely in advance.
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rank over finite field, we were more generally interested to find a verification procedure
for block Wiedemann and then for approximant bases computation.

Linear algebra operations are good candidates for designing fast verification algorithms
since they often have a cost related to matrix multiplication while their input only uses
quadratic space. This is also true with sparse matrices as time complexity is often an
order of magnitude larger that the input size. The first example one may think of is linear
system solving. Indeed, given a solution vector x ∈ Kn to a system Ax = b defined by
A∈ Kn×n and b ∈ Kn, one can directly verify the correctness by checking the equations
at a cost of O(n2) operations in K, or O(n) is matrix A is sparse. Comparatively, solving
the system with the fastest known algorithm costs O(nω) operations in K or O(n2) if A is
sparse. Another famous result, due to Freivalds [Fre79], gives a method to verify matrix
multiplication. Given matrices A, B, C ∈ Kn×n, the idea is to check uC = (uA)B for a
random row vector u ∈ {0, 1}1×n, rather than C = AB. This verification algorithm costs
O(n2) and is false-biased one-sided Monte-Carlo (it is always correct when it answers
“false”); the probability of error can be made arbitrarily small by picking several random
vectors. In some cases, one may require an additional piece of data to be produced
together with the output in order to prove the correctness of the result. For example,
Farkas’ lemma [Far02] certifies the infeasibility of a linear program thanks to an extra
vector. Although the verification is deterministic in this example, the design of certificates
that are verified by probabilistic algorithms opened a line of work for faster verification
methods in linear algebra [KNS11; Kal+12; DK14; Dum+16b]. In this context, one of
the main challenges is to design optimal certificates, that are the ones leading to a linear
time verification. Furthermore, the time and space needed to produce the certificate
must remain negligible. For instance, [DK14] provides an optimal certificate for the
rank over finite fields, making all probabilistic iterative methods of Las Vegas type.

In fact, mots of these results extend the seminal work of Goldwasser, Kalai, Rothblum in
2008 on delegating computation [GKR08]. Indeed, Goldwasser et. al describe a generic
method that automatically produces certificates that are verifiable in almost linear time
for any problem (using a boolean circuit model) that belongs to the complexity class NC.
One main drawback of their result is that generating the certificate is quite costly: cubic
in the original time. In [Tha13], Thaler removes this time blow up when the problem is
described with a sufficiently regular boolean circuit. He then achieves optimal certificates
in our sense. While this last result applies for almost every problems in linear algebra,
it carries some extra constant in the time complexity that are not satisfactory from a
practical perspective. Another downside of these automatic verifications is that they
only certify that a program runs properly. Therefore, if the description of the program
is erroneous, they would fail to detect it. Our main interest here is twofold: first, to
provide a verification procedure that minimizes the constant overhead from the original
time complexity; second, to provide a way to check if an implementation of an algorithm
returns the desired answer. In particular, we are interested in avoiding if possible the
use of interactive proof as it might not satisfy our last need. Note that most dedicated
certificates in linear algebra extensively use that concept, see [DK14; Dum+16b].

In this context, we have been able to prove in [Jpub-Gio18] that one can verify, without
any certificate, the truncated and the middle product of two univariate polynomials. Our
approach is based on expressing these operations as linear maps and to use a verification
à la Freivalds as in [KS93]. Based on this result, we have been able with Neiger in
[Cpub-GN18] to extend this result to polynomial matrices and to use it to provide an
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optimal certificate for verifying minimal approximant basis computation. Section 2.2
presents our result on polynomial products while Section 4.3.3 presents in more details
our result for minimal approximant. One should notice that several advances for the
certification of Wiedemann’s algorithm has been done in [DKT15; Dum+16b] and its
block variant should be reachable following our result.

1.3.3 Memory efficiency

Another difficulty arising with the block Wiedemann algorithm is its memory requirement.
While using a block of n vectors allows a n-fold parallelism, its memory requirement is
increased by a factor n. This increase can really become a bottleneck when attacking
computational challenges in cryptography that exhibit huge matrices and then need
to use as much parallelism as possible. For instance, the world record for factoring a
768-bits RSA modulus [Kle+12] used a value of n = 8, incurring a memory peak in RAM
of 1TB for computing the minimal matrix polynomial Π. Besides, the world record for
discrete logarithm computation in a 768-bits prime field [Kle+17], used a value of n = 16
and it required an impressive amount of 8TB of memory. One of the main reason is due to
the use of algorithms that rely on fast fast Fourier transform [CT65] or similar transforms
to achieve quasi-linear time complexity. There, classical implementations only focus on
performance and usually do not really care about minimizing memory. For instance,
when a prime field does not contain a primitive root of unity, it is common to rather
consider the problem over the integer and then use three-prime FFT [GG13, Section
8.3] to achieve the computation with a quasi-linear time complexity. Unfortunately, this
approach could increase the memory requirement by a factor of 3. In order to decrease
the memory pressure, new fast algorithms must be designed to explicitly manage their
data in a more clever way. Few results have been proposed to improve the memory
requirement for the products of size-n polynomials. In particular, [Tho02b] proposes a
description of Karatsuba algorithm using only a temporary space of n. This has been
improved later in [Roc09] where a new variant achieves only a space complexity of
O(log(n)). The latter article from Roche also provides a description of a FFT-based
algorithm that is in-place, meaning only O(1) extra-memory. Similar result have been
proved in [HR10] for the more general variant of FFT that is call TFT "Truncated Fourier
Transform" and that does not require polynomials to have their size to be a power of two.
Note in both results it is assumed that the ring of coefficient embeds a proper primitive
root of unity.

In order to progress on minimizing block Wiedemann memory, we have investigated
the core operations that are used by our PM-Basis algorithm. From our previous
work on dense linear algebra [Jpub-DGP08] and some refinement on memory for fast
matrix multiplication [Boy+09], it is known that most dense linear operations can
be done in-place, at least using Strassen-Winograd algorithm. Hence, we have rather
investigated the polynomial operations of PM-Basis that are polynomial multiplication
and polynomial middle product [HQZ04].

Following the work of Roche [Roc09], we have then sought to strengthen memory
efficiency for these two operations. In order to provide more general results on memory
efficiency we adopt the framework of algorithmic reductions. In particular, with Grenet
and Roche, we propose in [Cpub-GGR19] to use self-reduction techniques to decrease
the temporary space of any polynomial product algorithms. Our general idea is similar
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to the one in [Boy+09] for matrix multiplication, and it decomposes the problem in
two sub-problems having their result not overlapping in the output space. There, we
can solve the first sub-problem with classical algorithm using unused output space as
temporary, and then use tail recursion to solve the second one. Thanks to this idea, we
prove that any algorithm requiring a linear amount of extra memory can be turned into
an algorithm that needs only O(1) extra memory. Our results also show these reductions
preserve the asymptotic time complexity for both classical multiplication and its truncated
variant. In particular, we have that in-place full product costs (2c + 7)M(n) + o(M(n))
operations in K assuming the space complexity of the original out-of-place algorithm in
less than cn. For the truncated product the cost is (2c + 5)M(n) + o(M(n)) operations
in K using the same assumption. For the middle product our in-place variant incurs a
logarithmic increase on the time complexity when quasi-linear algorithms are used, still
using the same assumption on their space complexity. Finally, we further exhibit that
the latter operation is more complex by investigating some kind of time/space efficiency
equivalence between the main univariate polynomial product operations. In section 2.3,
we first begin with a study of the classical algorithms for polynomial multiplication to
exhibit their time and space complexity, our aim being to give explicitly all the constants.
We think this presentation is highly relevant as it is not usually presented clearly in the
literature. The end of this section is then devoted to providing a quick overview of our
space-reducing and space-preserving algorithms for the short, middle and full product
of univariate polynomials.

From a more practical point of view, we also investigated the possibility to reach a lower
space storage for multi-precision integers that are usually based on the GMP library
[Gt16]. The latter library is nowadays the standard for general purpose multi-precision
integer computations. However, its versatility makes it not appropriate to represent
integers with only few words, e.g. less than 512 bits. During the ANR HPAC, we have
strengthen our LinBox block Wiedemann implementation in order to develop some cryp-
tography attack for breaking ECDLP over a 116-bit binary field. Even if this computation
was a toy challenge, it exhibited some bottleneck of our implementation: memory. In
particular, relying on GMP for dealing with 232-bit integers was not a good idea: at
least 128-bits of overhead are needed for the multi-precision structure _mpz_struct.
We then propose in [Cpub-Bre+16] a new fixed precision arithmetic package whose
aim is to minimize memory while offering good performance for classical operations.
This package has been integrated in the LinBox project through the Givaro library
(https://github.com/linbox-team/givaro). Our approach here is orthogonal to
GMP as it targets fixed precision and it can avoid any structural information, providing
an optimal memory usage. Our main idea is to use a recursive structure allocated on
the stack and let the compiler do the rest. For this purpose, we rely on template meta
programming [Ale01] to express the data and the algorithms. In particular, a 2k-bit
integer is represented recursively with two 2k−1-bit integers stopping the recursion
on native 64-bit integers. Figure 1.2 below emphasizes this design. One asset of this
structure is to be really designed for recursive algorithms and especially for Karatsuba
multiplication: i.e. the splitting of the operands being already given. Efficiency of the
code is ensured by the compiler that enables to flatten the recursivity at compile time
and then apply some classical optimizations: i.e. vectorization. In [Cpub-Bre+16], the
experiments showed that our approach reveals more efficient than GMP below 1024 bits
for integer addition and below 256 bits for integer multiplication. We also showed that
for a 256-bits integer p, our package allows to speed-up the dense matrix-vector product
modulo p by a factor of 4 compared to a GMP-based code (using mpz_t). Using this
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Fig. 1.2: Template recursive structure of fixed precision integers in Givaro library.
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new package, we were able to reduce the memory footprint of block Wiedemann within
LinBox and then we managed to compute the discrete logarithm on a machine with 1TB
of memory, while our previous code did not succeed by lack of memory resources. An
alternative of our approach would be to use automatically generated code for a given
precision as done within the MPFQ library [GT07]. We think that our method here is
rather simple and easy to maintain in a mainstream library as Givaro. However, the
performances reached with MPFQ’s approach might be clearly superior but the time
efficiency was not our main purpose.

1.3.4 Using parallelism in practice

In the last past decade parallel computing regained attention due to the emergence
of multi-core processors and programmable graphic processor units (GPGPU). Those
cheap and easy access devices allow to use parallelism without requiring the access to
large infrastructure and then avoiding complicated communication management. As our
main motivation remains practical performance, we have investigated some work on this
axis. In particular, we co-supervised two PhD students working mainly in this context:
Thomas Izard (2008–2011) and Bastien Vialla (2012–2015). We also participated from
2012 to 2017 in the ANR project "HPAC: High Performance Algebraic Computing" that
aims to design a DSL (Domain Specific Language) for parallel exact computing and use
it to speeds up the LinBox library.

During Izard’s PhD, we studied the possibility to use GPGPU to improve the performance
of modular integer arithmetic that arises in elliptic curve cryptography, meaning integers
of only few words. At that time, not much work had been done in this direction. Our
work in [Cpub-GIT09] provided one of the first tweaks to optimize modular arithmetic
on GPU using Montgomery reduction [Mon85]. In particular, one major difficulty was
to map multi-precision integers into GPU’s memory, and to minimize load and store
between the different memory regions of the GPU (registers, share and global memory).
Indeed, these memory movements are quite penalizing in practice, and their optimization
is mandatory to exploit all the computing power of GPUs. In fact, we used a similar
structure as for our previous recursive integer given in Figure 1.2. However, this prior
version was designed with an unbalanced splitting that isolates each word: meaning a
k-word integer is a leading word plus a (k− 1)-word integer. Thanks again to template
meta programming, we demonstrated that we could design templatized loop to express
classic quadratic integer arithmetic on GPU with such a structure. The only difficulty
with that approach was the ability of the GPU compiler, here the Nvidia one (nvcc), to
do a good job on optimizing the mapping of variables into the registers. Nonetheless,
our early benchmarks in [Cpub-GIT09] demonstrated that our GPU implementation was
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already competitive with the MPFQ library [GT07] that is the best library on CPU for that
kind of computation. The conducted experiments and their specifications can be found
in [Cpub-GIT09]. It makes no sense to provide more details here as the performance
and the features of both CPU and GPU evolved a lot since then. Nevertheless, this
preliminary work opened a breach for using such devices in exact computing. Many
other persons have continued to explore this direction but embracing more complex
operations over finite field to fully exploit the power of GPU. In particular, GPU has been
used for block Wiedemann implementation in the context of FFS algorithm for breaking
DLP over F2809 [Bar+14]. The GPU have been essentially used to optimize the sparse
matrix vector product.

Our experience with GPU being mitigated, the ratio development/performances being
too high, we decided to study integer modular multiplication in the framework of multi-
core processors. There, one obstacle was that modular multiplication is intrinsically
sequential, indeed ab mod p for n-words integers a, b and p is computed in at least
two rounds: compute the 2n-words integers ab then compute its residue modulo p.
As proposed by Montgomery [Mon85] and Barrett [Bar86] the latter reduction can
be done without any division and can be reduced roughly to two other sequential
integer multiplications of the same wordsize, here n-words. The complexity of modular
multiplication is then 3M(n). The main difference between these two methods is that
Montgomery treats integer from the trailing word to the leading one while Barrett
is doing the opposite way, see [BZ10, Section 2] for a discussion on this similarity.
[KT08] proved that both reductions can be used at the same time to exhibit a two fold
parallelism for modular multiplication, yielding a parallel complexity of O(M(n/2) +
2M(n, n/2)) word operations. We provide in [Cpub-GII13] a generalization of this
approach yielding more parallelism. While our method does not improve the parallel
complexity of [KT08], we demonstrate that it reduces at least by two the number of
thread synchronizations. In practice, for integers of moderate bit length, e.g. less than
214, thread synchronization remains costly compared to operations on integer machine
words. We have provided experiments in [Cpub-GII13] that emphasize clearly this
phenomenon on modern multi-core processor which makes our method of interest.
Thanks to the reduction of synchronizations our approach yields a faster method for
parallel modular multiplication with moderate size integers. The main idea of this
contribution is detailed in section 3.2 together with the results of our experiments.

Our first experience with parallel computation with block Wiedemann was conducted in
[Cpub-Dum+07] for matrix rank but using only a very limited amount of parallelism. In
[Cpub-BDG10], we further extended our experiments. In particular, we provide hybrid
formats for storing sparse matrix: mixing idea from sparse linear algebra community
and introducing some specificity of exact computing. In particular, many matrices
from the applications, e.g. in cryptography, have a bunch of ±1 as coefficients that
indeed require neither multiplication nor a real storage. Splitting these matrices into
three different storage location, with apart the ones, the minus ones and the other
values allows to significantly improve the performances of sparse matrix-vector product
(SpMV for short). Similarly to the dense case, delaying modular arithmetic allows to
minimize the number of calls of modular reduction. Thanks to these optimizations
and to a first naive parallelization of our PM-Basis algorithm on multi-core machine,
we were able to improve by 50% the performance of our first implementation [Cpub-
Dum+07]. Few years later, during Vialla’s PhD and ANR project "CaTREL: Cribles :
Améliorations Théoriques et Résolution Effective du Logarithme discret", we pursued the
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optimization of SpMV operation [Cpub-GV14]. In particular, we enforced hand-made
SIMD vectorization together with a compile time generation tool for choosing the most
suited format and optimization techniques to apply for a given matrix. This extends
similar idea mentioned in [Cpub-BDG10] and already exploited in the numerical context
but optimizations being calculated at run time [VDY05]. Here, our approach is to run a
pre-processing phase to automatically generate a file that encodes best tuned parameters
for SpMV with the given matrix. With this new tool, we were able to again reach
another speed-up of 50% on average, on a set of matrices representing some of the
applications using exact linear algebra, see the sparse matrix collection from Dumas at
https://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html. From these
experiments we’ve learned that SpMV optimization is a rather more complicated task than
its dense counterpart. It is mainly affected by the specificity of the given sparse matrices
and then generic optimization technique would fail to provide good performances on
most cases. Since our main purpose remains to provide generic code in the LinBox
library, we did not further pursue this activity. Separately, many progress have been
already done on SpMV for cryptography applications within the CADO-NFS software
(http://cado-nfs.gforge.inria.fr), especially within Jeljeli’s PhD [Jel15].

1.3.5 On some particular arithmetic operations.

During the supervision of Izard’s PhD, we were interested by optimizing arithmetic
operations for elliptic curve. In particular, our goal was to provide better formulas to
describe scalar multiplication for elliptic curves with specific multipliers, e.g. 3, 5. The
major advantage of having such specific formula is to provide more efficient algorithms
for scalar multiplication than the one relying on classical double-and-add algorithm:
the latter algorithm is only a variant of fast exponentiation for additive groups [Knu97].
Indeed, using tripling or quintupling can help to reduce the overall arithmetic count
[DIM05]. In order to find better formulas for small scalars we suggested to express
this operation trough a "minimal weight" direct acyclic graph. By definition, such a
structure would automatically provide some kind of minimal formula. Of course finding
such a DAG seems to be a hard problem [BU11]. We then use a simple heuristic in
order to minimize as much as possible its weight. In [Cpub-GII09] we develop this
approach and we propose to use basic arithmetic transforms based on the formula
(a± b)2 that potentially allow to trade multiplications with cheaper squares. Using this
simple heuristic we have been able to improve the best known formula for quintupling
using Jacobian coordinate [MD07].

As a different topic, we have been interested in a nice problem that is useful for some
numerical applications. This concerns polynomial multiplication but when the coeffi-
cients are not expressed in the classical monomial basis. Such a problem is motivated
from some application in approximation theory. There, the objective is to approximate
functions with series that converge rapidly in order to reduce numerical errors. A clas-
sical way of obtaining rapid convergence is then to calculate the truncated series as a
polynomial in Chebyshev basis. We shall mention that Chebyshev polynomials belongs
to the large family of orthogonal polynomials. A natural question that has received
less attention than the monomial basis is whether using such bases could change the
difficulty of polynomial multiplication. More precisely, would it be possible to have
multiplication algorithm with complexity O(M(n)) for size-n polynomials expressed in
Chebyshev basis.
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In fact, [BSS10; BSS08] provides fast algorithms for conversions between the monomial
and the Chebyshev basis, and more generally between the monomial and any orthogonal
polynomial basis. For Chebyshev the cost is O(M(n)), while for other orthogonal polyno-
mial bases the cost is either O(M(n)) or O(M(n) log(n)), depending on the family of the
polynomial. From this result it is immediate to have an algorithm of complexity O(M(n))
for multiplication in Chebyshev basis: simply use fast conversions. In [Jpub-Gio12], we
study the effectiveness of this reduction for the classical algorithms. In particular, we
demonstrate that we can improve the reduction by a constant factor. Our new approach
does not rely on any basis conversion, and it rather uses the structure of Chebyshev poly-
nomials. Using reversal operator on polynomials we are able to directly use algorithms
from the monomial basis without any conversion. In particular, we show that our reduc-
tion leads to a complexity of 2M(n) +O(n) in general for any multiplication algorithm,
improving the result using [BSS10] for that specific case. The latter complexity can even
be further reduced to only M(n) +O(n) when FFT approach is used. Both reductions
provide evidence that make them practicable. With several experiments, we further
emphasize the benefit of our reduction compared to the state of the art (fast) algorithm
for Chebyshev polynomial multiplication using DCT transforms [BT97]. Finally, we
give some evidence on the numerical stability of the proposed reduction through some
experimental verification. These results and our main idea are further developed in
section 2.4.
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2Contributions to polynomial arithmetic

2.1 Introduction

Polynomial arithmetic has been intensively studied in the past decades, in particular
following the work in 1962 of Karatsuba and Ofmann [KO63] who have shown that one
can multiply integers, and then polynomials, in a subquadratic number of operations.
Let two size-n univariate polynomials over a ring R be given in monomial basis, one can
compute their product using Karatsuba’s algorithm in O(nlog2 3) operations in R. Since
this seminal work, many other algorithms have been invented in order to asymptotically
reduce the cost of the multiplication. In particular, one can go down to O(nlogr+1(2r+1))
operations in R with the generalized Toom-Cook method [Too63; Coo66] for any integer
r > 0. One can even achieve a quasi-linear time complexity of O(n log n) using techniques
based on the so-called FFT [CT65] when the base ring R contains a 2n-th primitive root
of unity [GS66]. When no such properly exists, the methods of Cantor-Kalfoten [CK91]
leads to a complexity of O(n log n log log n) operations in R for any ring R. Note that
this method works for any algebra and can be seen as an algebraic counterpart of the
well known fast integer multiplication of Schönage-Strassen [SS71]. One can read the
book [BZ10, Section 8] for further details on these discoveries.

We shall mention that in the setting of bit complexity the situation of polynomial
multiplication is somewhat different. Indeed, since operations in the base ring R come
to the game the pure algebraic algorithms may not lead to the best complexity estimates.
There, the use of Kronecker substitution together with fast integer multiplication turns
out to be the best alternative [GG13, Section 8.4]. Following the improvement of
integer multiplication by Fürer in [Für07] and its refinement [HHL16], it has been
showed by Harvey, Hoeven and Lecerf [HHL17] that one can reach a bit complexity of
O(n log p log(n log p)8log∗(n log p)) for polynomial multiplication over Fp[X ] for any prime
field Fp. In particular, this result reduces the gap between the bit complexity of integers
and polynomials multiplications over finite fields. Very recently, multiplication problem
on both integers [HH19a] and polynomials [HH19b] have been further improved with
the complete removal of the log∗ exponent in the complexity, yielding a bit complexity
of O(n log p log(n log p)) for polynomial multiplication over Fp[X ]. We shall remark that
the superiority of all the later approaches are purely theoretical and it will not be visible
for any practicable application in the foreseeable future.

Besides improving the time complexity of classical polynomial multiplication, several
variants of this problem are of interest in computer algebra. For instance, when com-
puting with series of R[[X ]], it is classical to work at a given precision d and there it
amounts to dealing with polynomials of R[X ]<d . In this setting, the multiplication is
exactly the short product operation [Mul00]. Recalling that M(n) is the complexity of
the full product of polynomials, it is not yet known if the short product operations (high
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and low) can be done in time strictly less M(n). Some results by Mulderd [Mul00] and
Hanrot, Zimmerman [HZ04] illustrate that one can reach a complexity below of M(n)
for some prescribed M(n), in particular in the Karatsuba regime, but this is not yet true
in general.

The situation of the middle product operation is more favorable. Indeed, in the classical
case where we compute the n-middle terms of the product of two polynomials of sizes
respectively n and 2n−1, one can reduce the complexity of the naive approach that costs
2M(n). In fact [BLS03] pointed out that the middle product operation is the transposed
operation of the full product operation. There, applying the transposition principle they
show that the complexity of middle product is exactly M(n)+n−1 operations in R. First
results on this transposition appeared in [HQZ04] where the improvement by almost a
factor of two is used to speed up power series inversion, square root and division.

Besides the complexity relations between the full product and these two variants (short
and middle product), few other problems around multiplication do not exhibit similar
relations and our work has been to improve this situation.

Useful definitions: Let F =
∑n−1

i=0 fiX
i and G =

∑n−1
i=0 giX

i be two size-n polynomials
over R[X ]. Their product H = FG is a polynomial of size 2n− 1, that we call a balanced
full product. More generally, if F has size m and G has size n, their product has size
m+n−1. We call this case the unbalanced full product of F and G. The low short product
of F and G is the size-n polynomial defined as

SPlo(F, G) = (F · G)mod X n

and their high short product is the size-(n− 1) polynomial defined as

SPhi(F, G) = (F · G) quo X n.

The low short product is actually the meaningful notion of product for truncated power
series. Note also that the definition of the high short product that we use implies that
the result does not depend on all the coefficients of F and G. The rationale for this
choice is to have the identity FG = SPlo(F, G) + X nSPhi(F, G). In the following, we will
abusively use full product or product to refer to the balanced full product operation, and
short product to refer to the low short product operation.

Another classical operation on two polynomials is the middle product operation intro-
duced in [HQZ04; BLS03]. Let F and G be two polynomials of sizes n+m− 1 and n,
respectively, their middle product is the size-m polynomial made of the central coefficients
of the product FG, that is

MP(F, G) =
�

(F · G) quo X n−1
�

mod X m.

One may remark that middle product can be also computed by mean of short products:

MP(F, G) = SPlo(F quo X n−1, G) + SPhi((X (F mod X n−1), G). (2.1)
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A useful operation on polynomials is to take its reversal, sometimes called mirror. The
size-n reversal of a polynomial F is defined by revn(F) = X n−1F(1/X ). Thanks to this
operation, it is immediate that we have the following relation on short products:

SPhi(F, G) = revn−1(SPlo(revn−1(F quo X ), revn−1(G quo X ))) (2.2)

In particular, this means that any algorithm for the low short product can be turned into
an algorithm for the high short product, and conversely. Note this is also a consequence
of the principle of transposition [BLS03].

2.2 Verifying truncated polynomial products

While it is easy to probabilistically check that a product of two polynomials is correct
over K[X ] 1, by just checking the equality at a random point, it seems more complicated
to have a similar test for short and middle product. The difficult here comes from the
reduction mod X d that makes random evaluation not applicable. Indeed, verifying
that H = FG mod X d by a single evaluation at α ∈ K implies to know in advance the
evaluation of FG quo X d at α: H(α) = F(α)G(α)− (FG quo X d)(α). It seems unlikely
to try to check this equality without knowing (FG quo X d)(α). We have recently shown
that it is possible to perform such verification in linear time without having to know
in advance the remaining part of the product. Similarly, we have also proved that our
approach remains valid for the verification of the middle product operation and any
operations that compute a consecutive chunk of a product. The results provided in this
section are based on [Jpub-Gio18] and [Cpub-GN18].

2.2.1 Scalar coefficients

Let F, G ∈ K[X ] where F = f0+ f1X + · · ·+ fm−1X m−1 and G = g0+ g1X + · · ·+ gn−1X n−1.
The product of polynomials FG is a bilinear application using the mapping Km ×Kn→
Km+n, It can be turned into a linear application by fixing one of the operands and using
either the mapping Km→ Km+n or Kn→ Km+n . There, fixing F , the polynomial product
FG corresponds to the following matrix-vector product :





















f0

f1
. . .

...
. . . f0

fm−1 f1
. . .

...
fm−1





















︸ ︷︷ ︸

MFP( f )

×









g0
g1
...

gn−1









︸ ︷︷ ︸

vG

=





















h0

h1

...

hm+n−2





















︸ ︷︷ ︸

vH

(2.3)

where MFP( f ) ∈ K(m+n−1)×n is a Toeplitz matrix, vG ∈ Kn and vH ∈ Km+n−1 are the
vectors of coefficients of G and H = FG given in the canonical basis (X i)i≥0.

1Here, we place ourselves in a field without any further assumptions on its structure that could ease the
verification of the product.
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Choosing a random α from a finite subset S ⊂ K and checking that H(α) = F(α)G(α)
can be done in O(m+ n) operations in K and the probability that H is equal to FG is
greater than 1− deg H

#S [Zip79; Sch80; DL78]. Our main observation here is that approach
is equivalent to multiplying both parts of the equation (2.3) on the left by the row vector
~α = [1,α,α2, . . . ,αm+n−2]. By definition of vH , we clearly have ~α · vH = H(α). Using the
Toeplitz structure of the matrix MFP( f ) we have ~αMFP( f ) = F(α)[1,α, . . . ,αn−1], which
gives (~αMFP( f )) · vG = F(α)G(α). The probability estimates can be retrieved with the
specific Freivalds certificate for matrix multiplication given in [KS93].

From there, we build up a similar procedure for the short product operations SPlo(F, G) =
FG mod X n and SPhi(F, G) = FG quo X n by simply keeping the meaningful rows in
equation (2.3).

For the sake of clarity, we assume than n = m. Let ~αk = (1,α, . . . ,αk−1) ∈ K1×k for
α ∈ K and k ∈ N∗. The verification of the low short product of two size-n polynomials,
SPlo(F, G) = H, amounts to checking the following identify

~αn ·











f0

f1
. . .

...
. . . . . .

fn−1 f1 f0











︸ ︷︷ ︸

MSPlo( f )

×









g0
g1
...

gn−1









= ~αn ·









h0
h1
...

hn−1









(2.4)

while for the high short product, SPhi(F, G) = H, the identity becomes

~αn−1 ·











fn−1 fn−2 . . . f1
. . . . . .

...
. . . fn−2

fn−1











︸ ︷︷ ︸

MSPhi( f )

×









g1
g2
...

gn−1









= ~αn−1 ·









h0
h1
...

hn−2









. (2.5)

Lemma 2.2.1. Let TU and TL be two Toeplitz matrices from Kn×n being respectively upper
and lower triangular. The matrix-vector products ~αnTU and ~αnTL can be computed in O(n)
operations in K.

The previous lemma relies on the fact that the coefficients of these matrix-vector products
are given during the course of Horner’s algorithm on the polynomial given by the
coefficients of the Toeplitz matrix. Indeed, each entry v[i] of the vector v = ~αn−1·MSPhi( f )
is such that v[i] = α·v[i−1]+ fn−i , for 2≤ i ≤ n−1 where v[1] = fn−1. By transposition
one has a similar approach for MSPlo( f ): let w= ~αn ·MSPlo( f ), then each entry w[i] is
such that w[n− i] = α−1 ·w[n− i + 1] +αn−1 fi , for 1≤ i ≤ n− 1 where w[n] = αn−1 f0.
Therefore, the complexity of these operations is O(n) and so for the whole verification
procedure given by Equations (2.4) and (2.5). In fact the remaining operations are
only dot products and polynomial evaluations of sizes O(n) and one comparison of two
elements of K.
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The following corollary establishes a similar complexity for a full Toeplitz matrix as it is
a sum of a lower and an upper triangular Toeplitz matrices.

Corollary 2.2.2. Let T ∈ Kn×n being a Toeplitz matrix and ~αn = (1,α, . . . ,αn−1) ∈ Kn.
The matrix-vector product ~αnT and T ~αn can be computed in O(n) operations in K.

Using the Schwartz-Zippel lemma for univariate polynomials [Zip79; Sch80; DL78], the
following lemma shows that our verification protocol has the same probability of success
as the classical polynomial product verification.

Lemma 2.2.3. Let α ∈ K be chosen uniformly at random from S ⊂ K, the probability
that equation (2.4) is correct while H 6= SPlo(F, G) or that equation (2.5) is correct while
H 6= SPhi(F, G) is less than n

#S .

2.2.2 Generalization to matrix coefficients

It turns out that all the previous results hold also if we consider polynomial matrices
rather than polynomials with scalars. However, while for the scalar case our veri-
fication procedure is optimal, this is not true for polynomial matrices. Indeed, let
F ∈ K[X ]m×k

<d , G ∈ K[X ]k×n
<d . Our verification protocol for either FG, SPlo(F, G) and

SPhi(F, G) will cost O(dMM(m, k, n)) while the amount of data involved in these com-
putation is in O(d(mk+ kn+mn)).

In a recent work with Neiger [Cpub-GN18], we have shown that we can make this
protocol optimal even for polynomial matrices. Our observation here is classical and
makes use of the Freivalds technique [Fre79], the idea being to verify a matrix equation
by projection on a random vector: let u ∈ K1×m with entries chosen uniformly and
independently from S ⊂ K, the verification amounts to checking uH = SPlo(uF, G), or
similarly for the other operations. Incorporating this approach within our truncated
product leads to verify the following equation:

~αd ·











u× F0

u× F1
. . .

...
. . . . . .

u× Fd−1 u× F1 u× F0











×









G0
G1
...

Gd−1









= ~αd ·









u×H0
u×H1

...
u×Hd−1









(2.6)

The cost of evaluating equation (2.6) is O(d(mk+ kn+mn)) operation in K by applying
a Horner scheme that is similar to the one used in the scalar case. The difference here is
that coefficients are just row vectors and the final comparison is made component-wise.
The same approach remains valid for other products: full product and short products.

Note that the probability of error is given by the probability that either α is a root of at
least one coefficient in the polynomial matrix ∆= (FG −H)mod X d , or it is not and u
is in the kernel of ∆(α). Hence, we obtain a probability of error that is less than d/#S
with S ⊂ K from where α and the coefficients of u are chosen uniformly at random.
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Unbalanced degree. In order to capture a more general setting that is useful in the
framework of linear algebra on polynomial matrices [Zho12; Nei16a] , it is classical to
adapt the low short product on polynomial matrices to the case where the truncation
order is not identical on all columns. We denote the column degree of a polynomial
matrix P ∈ K[X ]m×n as cdeg(P) = (c1, . . . , cn) where c j = deg(P∗, j) is the degree of the
column j of P for 1≤ j ≤ n. The row degree rdeg(P) is defined similarly for the rows
of P.

Let us consider the tuple t= (t1, . . . , tn) ∈ Zn
≥0 called truncation order. In what follows,

given a matrix A∈ K[X ]m×n and a truncation order t ∈ Zn
≥0, we write A rem X t for the

unique matrix B ∈ K[X ]m×n such that B = A mod X t and cdeg(B)< t.

We can now define the following truncated polynomial matrix product problem. Given a
truncation order t ∈ Zn

≥0 and the polynomial matrices F ∈ K[X ]m×m and G ∈ K[X ]m×n

with cdeg(G) < t compute the unique matrix H ∈ K[X ]m×n such that FG = H rem X t.
We remark that taking t = (d, . . . , d) allows us to describe the classical problem with
balanced degrees. In that case, assuming n ∈ O(m) it is clear that the complexity is
O (̃mω−1nd).

Let us now denote |t| =
∑n

i=1 t i. Assuming |rdeg(F)| ∈ O(|t|), it has been shown in
[Jea+17; Zho12; ZLS12] that the more general case of unbalanced degree polynomial
matrix multiplication can be done in O (̃mω−1|t|). Consequently, this complexity remains
the best estimate we have for truncated polynomial matrix products.

Our problem now is to provide an optimal verification algorithm that has linear com-
plexity in the size of F, G and H. More formally, by size of a matrix we mean the number
of field elements used for its dense representation. Hence, we define the quantity

Size(P) = m2 +
∑

1≤i, j≤m

max(0,deg(pi, j))

for a matrix P = (pi, j) ∈ K[X ]m×m.

For the full product or the truncated product of polynomial matrices, it is hard in general
to pin down in advance the size of the result and take this into account. The more we
can do, as described above, is to use the column (or row) degree to estimate an upper
bound on degrees of the result. When dealing with the verification problem, we do
not have similar issue as we already know the output and its size. Therefore, using
equation (2.6) we can tackle the verification problem with an optimal complexity that
is in O(Size(F) + Size(G) + Size(H)). In particular, according to the previous setting,
one can verify a truncated polynomial matrix product in O(m|t|) while the product itself
costs O (̃mω−1|t|).

The algorithm for verifying truncated polynomial matrix product is given in [Cpub-GN18,
Section 3, Algorithm 2] and its complexity estimate has resulted in the following precise
bound: 2Size(P) + (6m+ 1)|t|+ 2n log(δ) ∈ O(Size(P) +m|t|+ n log(δ)) operations in
K where δ = max(t). In that specific case, the probability of error is less than δ/#S,
with S ⊂ K is the set from which random element are chosen.
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2.2.3 Generalization to the middle product

Going back to the problem of middle product, as shown in [Jpub-Gio18], it is straightfor-
ward from the result of the section 2.2.1 that one can reach a probabilistic linear time
verification algorithm. Indeed, by definition the middle product operation MP(F, G)
corresponds to the middle part of the full product FG. In the most common case, when
F is of size 2n − 1 while G is of size n [HQZ04], we have that the middle product
corresponds to two short products, see equation (2.1).

Therefore, by applying our previous result on low and high short products we can design
a similar procedure to verify a middle product. Let F =

∑2n−2
i=0 fiX

i and G =
∑n−1

i=0 giX
i

and define the Toeplitz matrix T ∈ Kn×n as follow:

T =











fn−1 fn−2 . . . f0

fn
. . . . . .

...
...

. . . . . . fn−2
f2n−2 . . . fn fn−1











.

The linear map corresponding to the middle product of F by any size-n polynomial
G is given by the matrix T . Let H ∈ K[X ]n, the following method allows to verify
H =MP(F, G):

1. choose α ∈ K uniformly at random from S ⊂ K and set ~αn = (1,α, . . . ,αn−1).
2. y ← (~αnT ) · (g0, . . . , gn−1)T

3. return true if H(α) = y , false otherwise.

Using Lemma 2.2.3 and Corollary 2.2.2 one can demonstrate that this procedure costs
O(n) and its probability of success is more than 1− n

#S .

Extension to any partial product computation Without loss of generality, we assume
that deg F = m≥ deg G = n and s | n. We define a partial product operation on F and
G as PPs(F, G, i) = (FG quo X i)mod X s. This operation corresponds to extracting the
s consecutive terms of the product FG starting from the monomial X i. Assuming F is
fixed, this operation is a linear application from Kn→ Ks where its matrix has the form

CF =
�

TF̄0
TF̄1

. . . TF̄n/s−1

�

∈ Ks×n (2.7)

such that each TF̄k
∈ Ks×s for k ∈ [0, . . . , n/s− 1] is a Toeplitz matrix formed from the

coefficients of the polynomial
∑m

i=0 fiX
i . More precisely, we have

TF̄k
=











fi−ks fi−ks−1 . . . fi−(k+1)s+1

fi−ks+1
. . . . . .

...
...

. . . . . . fi−ks−1
fi−(k−1)s−1 . . . fi−ks+1 fi−ks











with f j = 0 when j < 0 or j > m. Let H = PPs(F, G, i) and vG, vH be the vector of the
coefficients of the polynomials G and H. By definition of CF we have vH = CF · vG.
Here again, applying the vector ~αs to this equality provides us a way to certify the
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partial product operation. Let H ∈ K[X ], the following method allows to verify H =
PPs(F, G, i):

1. choose α ∈ K uniformly at random from S ⊂ K and set ~αs = (1,α, . . . ,αs−1).
2. for k from 0 to n/s

yk← (~αsTF̄k
) · [gks, . . . , g(k+1)s−1]T

3. return true if H(α) =
∑n/s−1

k=0 yk, false otherwise

Lemma 2.2.4. The previous algorithm ensures that H = PPs(F, G, i) with a probability
greater or equal to 1− s/#S and it uses O(n) operations in K.

For some specific cases, one is able to reduce the complexity of PPs(F, G, i). Indeed,
depending on the value of i some Toeplitz matrices TF̄k

will be zero. Using the structure
of CF , one can prove that the number of non zero matrices is given by d i

s e if i < n and
dm−i

s e if i > m. For such cases, the complexity drops down to O(sd i
s e) and O(sdm−i

s e)
which are below O(n).

2.3 In-place polynomial multiplications

As for time, space complexity is another measure of efficiency of algorithms. In particular,
optimizing the space complexity of an algorithm while keeping its original time complex-
ity is relevant for challenging computations requiring huge resources: e.g. breaking DLP
or RSA [Kle+12; Bar+14]. As mentioned in the book of Brent and Zimmermann [BZ10,
Section 1.3.2], "The efficiency of an implementation of Karatsuba’s algorithm depends
heavily on memory usage." Of course, this assertion remains valid for any multiplication
algorithm. Many attempts have been done to improve the space complexity of the main
practicable algorithms for polynomial or integer multiplication: Karatsuba on polynomi-
als [Tho02b; Roc09]; Karatsuba on integers [Che16]; FFT/TFT on polynomials [Roc09;
HR10]. From these works, one now is able to perform almost2 "in-place" multiplication,
meaning that no more than O(1) temporary space is needed apart from the input and
output spaces. While these results are only valid for a particular set of algorithms, the
large zoology of multiplication algorithms implies to design a more general result. In
a recent work with Grenet and Roche we tackle this more general question for both
the full product and its variants (short and middle product). In particular we provide
generic algorithmic reductions that can turn any polynomial multiplication algorithm
using O(n) temporary space into an algorithm with only O(1) temporary space while
keeping its original asymptotic time complexity. Furthermore, we also extend this result
to the cases of the short and the middle product which seems harder as the output
space is more constrained. The results of this section are based on [Cpub-GGR19] and
on-going works with Grenet and Roche.

2.3.1 Revisiting existing full product algorithms

Apart from the quadratic naive algorithm that is explicitly using only O(1) temporary
space, the other existing algorithms are basically using O(n) temporary space for multi-
plying two size-n polynomials. In this section, we recall all the results that improved

2This is not yet true for Karatsuba since extra space for the call stack is necessary

24 Chapter 2 Contributions to polynomial arithmetic



this space complexity and we give their exact time complexity together with the exact
number of temporary registers that they require. Note that these complexity bounds
were never provided explicitly and we thought this manuscript is a good place to provide
this overview. Furthermore, we provide a discussion on Toom-3 method where we give
a new description that minimizes the number of additions and which allows to reach
a better space complexity than the one used for integer multiplication in GMP library
[Gt16].

Karatusba’s method. This method invented by A. Karatsuba and Y. Ofman [KO63]
uses the bilinearity of the multiplication to compute

h= f · g = fl · gl + (( fl + fh) · (gl + gh)− fl · gl − fh · gh)X
n
2 + fh · ghX n (2.8)

where f = fl + x
n
2 fh ∈ K[X ] and g = gl + x

n
2 ghK[X ] are size-n polynomials. Hence, the

complexity of this algorithm is given by T(n) = 3T( n
2 ) +O(n) = O(nlog2(3)). Deriving

the constant of this complexity is given by the exact number of additions hidden behind
the O(n) and also the value of the last step of the recursion. The approach remains valid
for odd n using unbalanced splitting of f and g. We refer to [BZ10, Section 1.3.2] for
a more general description. Here, we mainly consider the case where n is a power of
two.

Following the original description above, the number of additions in the recurrence is
4n−4, yielding a complexity of T (n) = 7nlog2(3)−8n+2. As remarked by several authors
[Roc09; GG13], this number can be reduced to 7n/2− 3 yielding a total complexity of
exactly 6.5nlog2(3) − 7n+ 1.5. Indeed, let k = n

2 and define

α= α0 + X kα1 = fl · gl ,

β = β0 + X kβ1 = fh · gh,

γ= γ0 + X kγ1 = ( f0 + fl) · (g0 + gl).

We have from Equation (2.8) that

h= α0 + X k(γ0 −α0 + (α1 − β0)) + X 2k(γ1 − β1 − (α1 − β0)) + X 3kβ1 (2.9)

and the term (α1 − β0) needs to be computed only once. The extra space needed in this
formula corresponds to the storage of α1 and β0 since all other values can be stored in the
output space before to be summed up properly. There, the space complexity is given by
S(n) = S(n/2)+ n−1 = 2n−1− log(n). Thomé proves in [Tho02b] that Equation (2.8)
can be evaluated with only n−1+(n mod 2) extra registers. Since Thomé’s approach uses
more operations than Equation (2.9), one can use the latter to improve it further. Indeed,
using Equation (2.9) and computing first α1 then adding it to the output and do the same
thing for β0. This yields a space complexity of S(n) = S(n/2)+ n/2−1 = n−1− log(n).
When n is odd, following the analysis of Thomé [Tho02b] one can derive a space
complexity of respectively 2n for Equation (2.9) and n for Equation (2.8). Remark all
these space complexities do not take into account the management of the stack which
incurs a penalty of at most 5 log(n): 4 for the inputs/output/temporary pointers and 1
for the degree.

Roche provides in [Roc09] a better space complexity by designing a version that allows
to be half-additive, meaning that the main operation is h= hl + f · g where hl already
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occupied half of the output space. In particular, he obtains a space complexity that is no
more than 5 log(n): this corresponds only to the management of the stack. The downside
is that the time complexity is increased to T (n) = 10nlog2(3)−10n− n

4 log(n)(1+log(n)).

Toom-Cook variant Another well known method improving the complexity from Karat-
suba’s idea is due to Toom in [Too63] and is also discussed in Cook’s PhD thesis
[Coo66]. It is basically a generalization of Karatsuba’s idea where each polynomial
input is split in more than two pieces: f = f0 + f1X k + · · ·+ fr−1X (r−1)k ∈ K[X ] and
g = g0 + g1X k + · · · + gr−1X (r−1)k ∈ K[X ] where n = k × r and deg fi , deg gi < k.
Defining F(X , Y ) =

∑r−1
i=0 fiY

i ∈ K[X , Y ] and G(X , Y ) =
∑r−1

i=0 giY
i ∈ K[X , Y ] such

that f = F(X , X k) and g = G(X , X k), we have f · g = H(X , X k) where H(X , Y ) =
F(X , Y )× G(X , Y ). The latter polynomial multiplication can be done through evalua-
tion/interpolation on Y at 2r − 1 points. Applying this method recursively provides an
algorithm of time complexity O(nlogr (2r−1)). To have more details on this general result,
one may look at [BZ10].

In the case of r = 3, the Toom-3 method can use the five points: 0, 1,−1, 2,∞. Hence,
evaluation and interpolation are linear maps defined by Vandermonde matrices ∆ and Γ .
As described in [BZ10, Section 1.3.3], by using the factorization of these two matrices,
given below, one can minimize the number of operations required for the interpolation
and evaluation steps.

• evaluation matrix:

∆=











1 0 0
1 1 1
1 −1 1
1 2 4
0 0 1











=











1 0 0 0
0 1 0 1
0 −1 0 1
1 2 4 0
0 0 1 0

















1 0 0
0 1 0
0 0 1
1 0 1






(2.10)

• Interpolation matrix:

Γ =











1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16
0 0 0 0 1











−1

=











1 0 0 0 0
0 1 0 −1 0
−1 0 −1 0 1
0 0 0 1 −1
0 0 1 0 0











︸ ︷︷ ︸

Γ1













1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
3
6 0 2

6
1
6 −2

0 1
2

1
2 0 0













︸ ︷︷ ︸

Γ2

.

(2.11)

Let us assume that n= 3k and that deg f , deg g < n. Using Equation (2.10) to evaluate
F(X , Y ) and G(X , Y ) requires 10 additions and 4 multiplications by a constant with poly-
nomials of sizes 3k−1. Then the five products F(X ,α) ·G(X ,α) with α ∈ {0, 1,−1, 2,∞}
are done through recursive calls. Finally, the coefficients of f · g are recovered by inter-
polation on H(X ,α) using the matrix Γ and evaluating the result at Y = X 3k−1

. Using
Equation (2.11) for interpolation leads to a cost of 8 additions, 3 multiplications by a
constant and 2 divisions by a constant with polynomials of sizes 2× 3k−1 − 1. For the
evaluation of H(X , X 3k−1

), this amounts to adding 5 polynomials that overlap at most
on 3k−1 − 1 positions. This leads to a cost of 4× 3k−1 − 4 addition in K.
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The presentation given above is classical and one can achieve even better complexities.
Bodrato and Zanoni provide in [BZ07] optimal factorization for the matrix Γ according
to different cost models for the operations in K, for instance when K= GF(2k). Using
one of these factorizations, given below, one can obtain a better complexity since the
interpolation costs only 8 additions, 1 multiplication by a constant and 3 divisions by a
constant with polynomials of sizes 2× 3k−1 − 1.

Γ =











1 0 0 0 0
0 0 1 −1 0
0 1 0 0 −1
0 0 0 1 0
0 0 0 0 1











︸ ︷︷ ︸

Γ ′1











1 0 0 0 0
0 1 −1 0 0
0 0 1 0 0
0 −1

2 0 1
2 −2

0 0 0 0 1











︸ ︷︷ ︸

Γ ′2













1 0 0 0 0
−1 1 0 0 0
0 1

2 −1
2 0 0

0 0 −1
3

1
3 0

0 0 0 0 1













︸ ︷︷ ︸

Γ ′3

(2.12)

Using this description, we separate the interpolation and the last recombination phase
which we can be merged together for saving redundant operations, as seen previously for
Karatsuba. Surprisingly, we haven’t found any references in the literature that provides
similar improvement for Toom-3. Looking deeply in the code of GMP library [Gt16], we
find out that the Toom-3 interpolation given by Equation (2.12) plus the recombination
phase has been optimized in that way. Below, we recall briefly this optimization. Let us
define

H ′ =













α0 + X
n
3α1

β0 + X
n
3β1

γ0 + X
n
3γ1

δ0 + X
n
3δ1

ζ0 + X
n
3ζ1













= Γ ′2 × Γ
′
3 ×











F(X , 0) · G(X , 0)
F(X , 1) · G(X , 1)

F(X ,−1) · G(X ,−1)
F(X , 2) · G(X , 2)

F(X ,∞) · G(X ,∞)











.

Then, we have that f · g = [1, x
n
3 , X

2n
3 , X n, X

4n
3 ]× Γ ′1 ×H ′ which can be rewritten as

f · g = α0 + X
n
3 (α1 + γ0 −δ0) + X

2n
3 (β0 + γ1 − (ζ0 +δ1))

+ X n(β1 +δ0 − ζ1) + X
4n
3 (ζ0 +δ1) + X

5n
3 ζ1. (2.13)

There, we can see that ζ0 +δ1 is calculated twice and thus 3k−1 − 1 additions in K can
be discarded. In particular, this gives a total number of 6 additions, 3 divisions by a
constant and 1 multiplication by a constant with polynomials of sizes 2× 3k−1 − 1 for
computing H ′; and 7× 3k−1 − 5 additions in K for computing Equation (2.13).

One may remark that a similar approach can be done for the interpolation using the
original Equation (2.11) from [BZ10]. Indeed, let H be such that

H =













α0 + X
n
3α1

β0 + X
n
3β1

γ0 + X
n
3γ1

δ0 + X
n
3δ1

ζ0 + X
n
3ζ1













= Γ2 ×











F(X , 0) · G(X , 0)
F(X , 1) · G(X , 1)

F(X ,−1) · G(X ,−1)
F(X , 2) · G(X , 2)

F(X ,∞) · G(X ,∞)











.
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Then, we have that f · g = [1, x
n
3 , X

2n
3 , X n, X

4n
3 ]× Γ1 ×H which can be rewritten as

f · g = α0 + X
n
3 (α1 −δ0 + β0) + X

2n
3 (ζ0 + β1 −α0 − (γ0 +δ1))

+ X n(ζ1 + ζ0 + γ1 − (α1 −δ0)) + X
4n
3 (ζ1 + γ0 +δ1) + X

5n
3 (γ1). (2.14)

In that case, the gain is even better since both α1 −δ0 and γ0 +δ1 are computed twice.
Therefore, 2× 3k−1 − 2 additions in K can be discarded. In particular, this gives a total
number of 4 additions, 3 multiplication by a constant and 2 divisions by a constant with
polynomials of sizes 2× 3k−1 − 1 for computing H; and 10× 3k−1 − 6 additions in K
for computing Equation (2.14). Comparing with the optimized version using Equation
(2.13), this does not improve the total number of operations. However, the number of
additions has been reduced and this might effect the overall count when addition over
K is twice more costly than the other ones. We summarize all the complexities we have
seen for TOOM-3 method in the table below:

Tab. 2.1: Detailed time complexity of Toom-3 variants

Toom-3 version # additions in K # mul. by cst in K # div. by cst in K
original [BZ10] 30× 3k−1 − 12 10× 3k−1 − 3 4× 3k−1 − 2

optimized eq. (2.14) 28× 3k−1 − 10 10× 3k−1 − 3 4× 3k−1 − 2
original [BZ07] 30× 3k−1 − 12 6× 3k−1 − 1 6× 3k−1 − 3

optimized eq. (2.13) 29× 3k−1 − 11 6× 3k−1 − 1 6× 3k−1 − 3

To the best of our knowledge, we haven’t found any references in the literature that try
to optimize the space complexity of Toom-3. The only relevant information has been
extracted again from the GMP library, where the size of the temporary buffer for Toom-3
n-words integers multiplication is expected to be 2.5n+ 10 log(n) words. As a matter
of comparison, we provide below an estimate of the complexity of our method using
(2.14) for the case of polynomials. Let us denote S(n) this complexity.

First, it is easy to remark that the evaluations of the inputs using matrix-vector product
with ∆ (Equation (2.10)) does not require more space than the results from all the
recursive calls. Thus, we need space for each result from recursive call: 5×(2×3k−1−1).
Using Equation (2.11), we have that the matrix/vector product with Γ1 can be done
without any extra space. Indeed, only the last two rows are computing new values
while the other three ones are just identity. Finally, ordering the computation such that
Equation (2.14) starts to compute the following values in the output space

α0 + X
n
3α1 + X

2n
3 ζ0 + X nζ1 + X

4n
3 γ0 + X

5n
3 γ1

allows us to write the space complexity as S(3k) = S(3k − 1) + 2× (2× 3k−1 − 1) which
gives S(n) = 2n− 2 log3(n)− 1. Here again, this complexity does not take into account
the space for the management of the stack that should be 5 log3(n) similarly to Karatsuba.
It seems plausible following the idea of Thomé to show that even when n is not a power
of three that the space should be no more than 2n+ 5 log3(n).

FFT based multiplication Since Cooley and Tukey result of FFT [CT65], the use of
FFT algorithm within polynomial multiplication allows to reach a quasi-linear time
complexity of O(n log(n)). More precisely, assuming n= 2k, deg f + deg g < 2n and K
embeds a 2n-th primitive root of unityω, the time complexity for computing the product
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f · g is 9n log(2n) + 4n− 2 operations in K [GG13, Section 8.2]. In order to reach such
a complexity, one needs to transform the two input polynomials into their evaluations at
the first 2n powers of ω. This requires to have at least an extra space of 2n algebraic
registers as one transform can be done into the output space. As all remaining steps can
be done with O(1) extra space, the space complexity for polynomial multiplication with
FFT is exactly 2n.

In [Roc09], an adaptation of this algorithm is proposed to decrease the space complexity
to O(1). The idea is not to compute the full product but only half of it using half size
FFT, which can be done completely within the output space with only O(1) temporary
space. Then using iteratively the same process on smaller and smaller parts of the
product makes it possible to perform the whole computation within the output space.
While decreasing the space complexity to O(1) this algorithm keeps the same asymptotic
complexity of the classical FFT approach with an extra constant factor. In particular the
time complexity becomes 11n log(2n)−8n− log(2n)+6 operations in K. One may notice
this approach works for any polynomial degrees but the time and space complexities are
only valid for power of 2. Later, Harvey and Roche[HR10] designed an in-place version
of van der Hoeven’s truncated FFT method [Hoe04] to perform FFT-based multiplication
in-place even when the size n is not a power of two.

Summary of complexities for polynomial multiplication. The table 2.2 below pro-
vides an overview of the space and time complexities for the most classical algorithms
for computing polynomial products over K[X ].

Tab. 2.2: Space and time complexity for full product algorithms with size-n polynomials inputs.

Algorithms Time complexity Space complexity Reference
naive 2n2 + 2n− 1 O(1) folklore

Karatsuba < 6.5nlog(3) ≤ 2n+ 5 log(n) [KO63]
Karatsuba < 7nlog(3) ≤ n+ 5 log(n) [Tho02b]
Karatsuba < 10nlog(3) ≤ 5 log(n) [Roc09]
Toom-3 < 73

4 nlog3(5) ≤ 2n+ 5 log3(n) [Too63; Coo66]
FFT1 9n log(2n) +O(n) 2n [CT65]
FFT1 11n log(2n) +O(n) O(1) [Roc09]
TFT2 O(n log(n)) O(1) [HR10]

One should notice that among these results, the one from [Roc09] achieving O(log(n))
space provides a stronger operation than just a full product, that is called a half-additive
full product. Since this stronger operation will play a major role in the next section, we
provide a formal definition for it:

Definition 1 (Half-additive full product). Let f and g be two size-n polynomials, and
h be a polynomial of size n− 1. The (low-order) half-additive full product of f and g
given h is FP+lo( f , g, h) = h+ f g. Similarly, their high-order half-additive full product is
FP+hi( f , g, h) = X nh+ f g. An in-place half-additive full product algorithm is an algorithm
computing a half-additive full product where h is initially stored in the output space.
From the space complexity, the problem of in-place half-additive full product might be
harder than full product since the available output space is further restricted: only n

1n must be a power of 2 and K must contain a 2n-th primitive of unity.
2K must contain a 2n-th primitive of unity.
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free algebraic registers compared to 2n− 1. With no distinction we will refer to one of
these two operations with FP+.

2.3.2 In-place polynomial multiplication

As seen in Table 2.2 many algorithms do not have yet an in-place variant but they need at
most a linear amount of extra memory. Our main result in [Cpub-GGR19] is to provide
generic reductions that allow to derive in-place polynomial multiplication algorithms
from algorithms that use no more than a linear space complexity. The following theorem
states formally this result, giving precisely the constants in the reductions:

Theorem 2.3.1.

1. Given a full product algorithm with time complexity M(n) and space complexity
≤ cn, one can build an in-place algorithm for the half-additive full product with time
complexity ≤ (2c + 7)M(n) + o(M(n)).

2. Given a (low or high) short product algorithm with time complexity M(n) and space
complexity ≤ cn, one can build an in-place algorithm for the same problem with time
complexity ≤ (2c + 5)M(n) + o(M(n)).

3. Given a middle product algorithm with time complexity M(n) and space complexity
≤ cn, one can build an in-place algorithm for the same problem with time complexity
≤M(n) log c+2

c+1
(n) +O(M(n)) if M(n) is quasi-linear, and O(M(n)) otherwise.

Actually, our reductions work for any space bound s(n)≤ O(n). Smaller space bounds
yield better time bounds though we do not have a general expression in terms of s(n).

Fig. 2.1: Tilings of the matrices MFP( f ) (left), MSPlo( f ) (center) and MMP( f ) (right).
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Main idea. Our technique to reach in-place algorithms is to use an out-of-place algo-
rithm for the problem as building block. There, we employ a strategy that divides the
computation in such a way one can compute only a part of the result using the remaining
part of the output as temporary. Doing this process in tail recursive manner yields our
in-place reductions. We shall mention this technique has been already used in [Boy+09]
to provide in-place variant of Strassen-Winograd fast matrix multiplication.

The (constant) amount of space needed in our in-place reduction corresponds to the
space needed to process the base cases. Our technique expresses naturally when seeing
polynomial product as a linear application. There, the idea is to split the matrix in a
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way that enable to both compute only part of the result, using other part as temporary,
and to offer tail recursion. For full product, we will have to use an half-additive variant
in order to be tail recursive3. Figure 2.1 exhibits the choice of our splitting and tiling for
the three polynomial products (full product, (low) short product and middle product)
that exhibit the expected

In-place full product. As precised above, our aim is to build an in-place (low-order)
half-additive full product algorithm iFP+hi based on an out-of-place full product algorithm
oFP that has space complexity cn. That is, we are given two n-size polynomials f and g
in the input space and a (n− 1)-size polynomial h in the (n− 1) low-order registers of
the output space R and we aim to compute f g + h in R. The algorithm is based on the
tiling of the matrix MFP( f ) given in Figure 2.1 (left).

For some k < n to be fixed later, let f = f̂ X k+ f0 and g = ĝX k+g0 where deg f0, deg g0 <

k. Then we have
h+ f g = h+ f0 g + f̂ g0X k + f̂ ĝX 2k. (2.15)

Recall that the output R has size 2n−1 with its n−1 lowest registers containing h. Then
Equation (2.15) can be evaluated with the following three steps:

1: R[0..n+k−1[← h+ f0 g (red part in Figure 2.1)
2: R[k..n+k−1[← R[k..n+k−1[ + f̂ g0 (blue part in Figure 2.1)
3: R[2k..2n[← R[2k..2n[ + f̂ ĝ (green part in Figure 2.1)

The first two steps corresponds exactly to two additive unbalanced full products, that is
unbalanced full products that must be added to some already filled output space. One
can describe an algorithm oFP+u for this task, based on a (standard) full product algorithm

oFP: If f has degree < k and g has degree < n, n > k, we write g =
∑dn/ke−1

i=0 giX
ki

with deg(gi)< k. Then f g =
∑

i f gi: The algorithm computes the dn/ke products f gi
in 2k− 1 extra registers and adds them to the output. If oFP has time complexity M(n)
and space complexity cn, the time complexity of oFP+u is dn/ke (M(k) + 2k− 1) and its
space complexity (c + 2)k− 1.

The last step computes h+ f g and corresponds to a half-additive full product on inputs
of degree < n− k, since only the n− k− 1 first registers of R[2k..2n[ are filled: Indeed,
deg(h+ f0 g + f̂ g0X k)< n+ k− 1. This last step is thus a tail recursive call.

In order to make this algorithm run in place, k must be chosen so that the extra memory
needed in the two calls to oFP+u fits exactly in the unused part of R. This is the case
when

(c + 2)k− 1≤ 2n− 1− (n+ k− 1)

which gives k ≤ n+1
c+3 . The resulting algorithm is formally depicted in Algorithm 1 given

below.

The time complexity of Algorithm 1 is completely driven by the constant c and it satisfies
the recurrence T (n) = T (n− k) + (2 dn/ke − 1)(M(k) + 2k− 1) where the out-of-place
full product cost M(n) and has a space complexity ≤ n. We prove in [Cpub-GGR19,

3Tail recursiveness is mandatory in order to avoid the call stack which would incur a penalty of O(log(n))
in the space complexity.
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Algorithm 1 iFP+hi_from_oFP

Input: f and g of size n in the input space, h of size n− 1 in the output space R
Output: R contains f g + h
Required: Full product algorithm oFP of space complexity ≤ cn

1: if n< c + 2 then
2: R← R+ f g . using a naive algorithm
3: else
4: k← b(n+ 1)/(c + 3)c
5: R[0..n+k−1[← oFP+u (h, f0, g) . work space: R[n+k−1..2n[
6: R[k..n+k−1[← oFP+u (h+ f0 g, f , g0) . same work space
7: R[2k..2n[← iFP+hi_from_oFP( f quo X k, g quo X k)

section 5.1] that the complexity T (n) for in-place half additive full product is no more
than (2c + 7)M(n) + o(M(n)) operations.

In-place short product Similarly, we can design an in-place variant for the short
product operation. For simplicity we only describe the case of the low short product
since the high short product is equivalent by transposition, see Equation (2.2). Our
approach is using the tiling of MSPlo( f ) depicted on Figure 2.1 (center) and recalled
below:

Fig. 2.2: Decomposition of MSPlo( f ).

MSPlo( f mod X n−k)

L0L1L2L3

U0U1U3

Let f =
∑n−1

i=0 fiX
i and g =

∑n−1
i=0 giX

i , and let h=
∑n−1

i=0 hiX
i = SPlo( f , g). The idea is

to fix some k < n and to have two phases. The first phase corresponds to the bottom k
rows of MSPlo( f ) and computes hn−k to hn−1 using the out-of-place algorithm on smaller
polynomials. In particular, we remark that the bottom k rows can be tiled by dn/ke
lower triangular matrices (denoted L0, . . . , Ldn/ke−1 from the right to the left), and
dn/ke − 1 upper triangular matrices (denoted U0, . . . , Udn/ke−2). One can identify the
matrices Li and Ui as matrices of some low and high short products. More precisely, the
coefficients that appear in the lower triangular matrix Li are the coefficients of degree
ki to k(i + 1)− 1 of f . Thus, Li =MSPlo( fki,k(i+1)) where fki,k(i+1) =

∑k(i+1)−1
j=ki f jX

j−ki.
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Similarly, the coefficient of Ui are the coefficients of degree ki + 1 to k(i + 1)− 1 of f
which in fact corresponds to Ui =MSPhi( fki,k(i+1)). Remark that the matrices Ldn/ke−1 and
Udn/ke−2 must be padded with zero if k does not divide n. Altogether, this proves that
this part of the computation reduces to dn/ke low short products and dn/ke − 1 high
short products, in size k.

The second phase corresponds to the top (n − k) rows and is a tail recursive call to
compute h0 to hn−k−1: Indeed, h mod X n−k = SPlo( f mod X n−k, g mod X n−k).

In order for this algorithm to actually be in place, k must be small enough. If the out-of-
place short product algorithm uses ck extra space, since we also need k free registers to
store the intermediate results, k must satisfy n− k ≥ (c + 1)k, that is k ≤ n/(c + 2). The
resulting algorithm is depicted in Algorithm 2 given below.

Algorithm 2 iSPlo_from_oSP

Input: f and g of size n
Output: R contains SPlo( f , g)
Required: Two short product algorithms oSPlo and oSPhi of space complexity ≤ cn

1: if n< c + 2 then
2: R← SPlo( f , g) . using a naive algorithm
3: else
4: k← bn/(c + 2)c
5: for i = 0 to dn/ke − 1 do . work space: R[0..n−k[
6: R[n−k..n[+= oSPlo(( fki,k(i+1), gn−k(i+1),n−ki))

7: for i = 0 to dn/ke − 2 do . same work space
8: R[n−k..n[+= oSPhi( fki,k(i+1), gn−k(i+2),n−k(i+1))

9: R[0..n−k[← iSPlo_from_oSP( f mod X n−k, g mod X n−k)

Here again, the time complexity of the algorithm is driven by the constant c and the
cost of the in-place short product that we denote M(n). In particular, let T(n) be the
complexity of our in-place short product algorithm, we have that T(n) = T(n− k) +
dn/keM(k) + (dn/ke − 1)M(k− 1) + 2k(dn/ke − 1). We prove in [Cpub-GGR19, section
5.2] that the complexity for the in-place low (or high) short product is then no more
than (2c + 7)M(n) + o(M(n)) operations.

In-place middle product We assume that we have an algorithm for the middle product
that uses cn extra space to compute the middle product in size (n, m): polynomials
inputs are of sizes n+m− 1 and n, respectively and the polynomial output is of size
m. The idea for the in-place algorithm is quite similar as for the short product: first
compute k of the m coefficients of the result using a calls to the out-of-place algorithm
in size (n, k) using m− k free cells of the output space as work space and then use a
recursive call. The in-place algorithm is again based on the tiling given in Figure 2.1
(right) that is recalled below in Figure 2.3.

The top k rows corresponds to the matrix MMP( f quo X n+k) and the bottom n−k rows to the
matrixMMP( f quo X k). The algorithm consists in computingMMP( f quo X n+k)[g0, . . . , gn−1]T

using the out-of-place algorithm and then compute the remaining MMP( f quo X k) as a
tail recursive call. Since our assumption on out-of-place algorithm is that cn extra space
is needed, there is no chance to have cn < m− k, especially when m < n. Therefore,

2.3 In-place polynomial multiplications 33



Fig. 2.3: Decomposition of MMP( f ).

T0T1T2T3

MMP( f quo X k)

we only consider to use a balanced out-of-place middle product (e.g. m= n). One can
easily compute an unbalanced middle product by dn/me calls to the balanced case with
the right coefficients, padding with zeroes when necessary and summing up the inter-
mediate results. This situation is exactly depicted in Figure 2.3 where MMP( f quo X n+k) is
decomposed with balanced middle products given by the Toeplitz matrices Ti defined
with the coefficients of degree ki to k(i + 2)− 1 in f , i.e. Ti =MMP( fki,k(i+2)). We shall
mention that Tdn/ke might be padded with zeros when k does not divide n.

To make our algorithm to work in place, the value of k has to be adjusted so that the
work space is large enough. The result of a middle product in size k has size k and needs
ck extra work space by hypothesis. Therefore, if m− k ≥ (c + 1)k, that is k ≤ m/(c + 2),
the computation can be performed in place. The resulting algorithm depicted below in
Algorithm 3 achieved the desired space complexity of O(1).

Algorithm 3 iMP_from_oMP

Input: f and g of size n+m− 1 and n respectively
Output: R contains MP( f , g)
Required: Middle product oMP of space complexity ≤ cn

1: if m< c + 2 then
2: R← oMP( f , g) . using a naive algorithm
3: else
4: k← bm/(c + 2)c
5: for i = 0 to dn/ke − 1 do . work space: R[k..m[
6: R[0..k[+= oMP(( fki,k(i+2), gn−k(i+1),n−ki))

7: R[k..m[← iMP_from_oMP( f quo X k, g) . recursive call

The time complexity of our in-place middle product is trickier than previous results on
full and short product. Indeed, in this case the recursive call is no more balanced as the
degree of one operand remains constant. In particular, let T (m, n) be the time complexity
of our in-place middle product for input (m, n) and let M(n) be the time complexity of the
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out-of-place balanced middle product. Then we have T (m, n) = T (m−k, n)+dn/keM(k).
One main difficulty of the analysis is that n remains constant and that k is varying at each
level of the recurrence. i.e. it is getting smaller and smaller. We prove in [Cpub-GGR19,
section 5.2] that the complexity for the in-place middle product is then no more than
T(n, n) ≤ M(n) log c+2

c+1
(n) + O(M(n)) for m = n. We also show that the increase by

log c+2
c+1
(n) in the time complexity is only inherent to quasi linear time algorithms and that

in other cases the complexity remains O(M(n)). We have not yet provided the constant
in the latter case.

2.3.3 Space preserving reductions

Fig. 2.4: Overview of time and space relations between polynomial product operations. Arrows
between algorithms indicate problem reductions that either preserve space (blue
arrows), make it in-place (green arrows) or possibly increase space (black arrows);
the label λ exhibits the increase in the corresponding time complexity.
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As seen in the previous section, we obtain in-place algorithms for the full and short
products that completely preserve the asymptotic time complexity while this is not
completely true for the middle product. Therefore, we are interested to harness this
difficulty. For this, we define a notion of time and space preserving reduction between
problems.

We say that a problem A is TISP-reducible to a problem B if, given an algorithm for B
that has time complexity t(n) and space complexity s(n), one can deduce an algorithm
for A that has time complexity O(t(n)) and space complexity s(n) + O(1). We write
A≤TISP B is A is TISP-reducible to B and A≡TISP B if both A≤TISP B and B ≤TISP A.
Note that the TISP-reduction is transitive. The reduction we use can be defined using
oracles and is an adaptation of the notion of fine-grained reduction [Vas18, Definition
2.1] adapted to time-space fine-grained complexity classes [Lin+16].

The following theorem provided in [Cpub-GGR19] establishes the difficulty relation
between problems.

Theorem 2.3.2. Half-additive full products and short products are equivalent under TISP-
reductions, that is

FP+hi ≡TISP FP+lo ≡TISP SPhi ≡TISP SPlo.

Furthermore, if SP denotes either SPlo or SPhi,

FP≤TISP SP≤TISP MP.

Note. As given in Equation (2.1), the middle product of f and g can be computed as
the sum of the low short product of f quo X n−1 with g and the high short product of
X ( f mod X n−1) with g. Yet this reduction does not preserve the space complexity since
one needs to store the results of the two short products in two zones of size n before
summing them. Actually, the reduction given from oMP to iMP can easily be adapted to
a reduction from SP to MP that is space-preserving. Yet, the complexity also worsens
with a logarithmic factor. Thus, we cannot conclude that MP≤TISP SP.

Figure 2.4 given above provides a general overview on what we know today about
the space and time complexity relation between all variants of univariate polynomial
product. The green values are obtained trough the results presented in this section,
while the other ones are either classical or obtained by applying simple rewriting rule
using a notion of fake padding. For instance, one of the easy reduction is obtained with
the relation

SPlo( f , g) =MP(0+ X n−1 f , g).

Of course, we cannot store the zeros otherwise this would change the space complexity.
Instead, our fake padding technique uses the fact that with only O(1) non-algebraic
registers one can embed those zeros into the structure of the polynomials: storing the
indices range is sufficient. The structure is then in charge to return a zero whenever
needed. Note, it is easy to show that structure does not increase the space and time
complexity while it is compliant with recursivity.
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2.4 Multiplication in Chebyshev basis

Polynomials are a fundamental tool in mathematics and especially in approximation
theory where mathematical functions are approximated using truncated series. One can
think of the truncated Taylor series to approximate a function as a polynomial expressed
in the monomial basis. In general, many other series are preferred to the classical Taylor
series in order to have better convergence properties. For instance, one would prefer to
use the Chebyshev series in order to have a rapid decrease in the expansion coefficients
which implies a better accuracy when using truncation [MH02; Boy01]. One can also
use other series such as Legendre or Hermite to achieve similar properties. It is therefore
important to have efficient algorithms to handle arithmetic on polynomials in such bases
and especially for the multiplication problem [BT04; BJ10]. This is for instance of great
interest to rigorous computing which aims to guarantee numerical approximation of
functions through certified bounds on the results [BJ10].

Despite the zoology of algorithms for multiplication in monomial basis seen in Section
2.1, it is yet not clear how to directly adapt these algorithms to work with any other basis.
Nevertheless, it has been shown in [BSS08; BSS10] and some earlier work [PST98] that
change of basis between the monomial basis and any orthogonal polynomial bases can be
done in time O(M(n) log(n)) for n-size polynomials. Converting the initial problem to the
monomial basis and reverting back the result in the original basis yields immediately a
cost of O (̃M(n)) for the multiplication in all these bases. Even if this result is satisfactory
from a theoretical point of view, the hidden constant and the logarithmic factor may
incur a non-negligible gap in practical performance, especially due to the use of power
series compositions [BSS08]. Reducing this gap is necessary to provide the most efficient
implementations. In the case of Chebyshev basis, the complexity of the conversions is
even lower down to O(M(n)) [BSS08] but the constant remains non-negligible. For
Chebyshev basis, some dedicated multiplication algorithms have been also proposed for
R[X ] or C[X ]. In particular, fast discrete cosine transform provides an algorithm with
a complexity of O(n log(n)) operations in R [BT97; CH90]. Note, this can be seen as
the counterpart of the use of fast Fourier transform in the monomial bases case. This
result is interesting since it provides a more practicable algorithm, avoiding conversions
between bases. However, no other subquadratic approaches exist in the literature and
this incurs a disparity with the monomial case. Since it is well know that quasi-linear
time algorithms are not always preferred in practice, it is of interest to design other
subquadratic variants.

Definition 2. Chebyshev polynomials are polynomials defined by the following recur-
rence relation:







Tk(X ) = 2x Tk−1(X )− Tk−2(X ),
T0(X ) = 1,
T1(X ) = X .

Another possible definition over R, is to define the Chebyshev polynomials of the first
kind on the interval [−1,1] by

Tk(X ) = cos(k arccos(X )), k ∈ Z≥0 and X ∈ [−1,1].
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Problem 1. Given two polynomials a, b ∈ R[X ] such that a(X ) = a0
2 +

∑d
k=1 akTk(X ) and

b(X ) = b0
2 +

∑d
k=1 bkTk(X ) compute the polynomial c(X ) = a(X )b(X ) ∈ R[X ] such that

c(X ) = c0
2 +

∑2d
k=1 ckTk(X ).

The main difference between the Chebyshev basis and the monomial basis comes from
the span of basis’ elements product. Indeed, we have that

x i × x j = x i+ j while Ti(X )× T j(X ) =
Ti+ j(X ) + T|i− j|(X )

2
.

It is obvious that classical algorithms discussed in Section 2.1 do not apply directly to
solve Problem 1. In [Jpub-Gio12], we propose a novel approach for problem 1 using
a reduction to the monomial case that improves the constant in the complexity of the
generic approach using changes of bases [BSS08; BSS10]. In particular, our method
avoids the use of change of bases. The following theorem states our main result.

Theorem 2.4.1. The complexity of multiplication of polynomials in Chebyshev basis of
degree less than n is no more than 2M(n) +O(n). Furthermore, if we denote MT (n) the
complexity of such a multiplication, we have that the multiplication in monomial basis is
no more than 2MT (n) +O(n).

In the following sections we develop more on the main ingredient behind this result and
we show the effectiveness of our approach for polynomial over R by comparing with
the best existing method [BT97] which is based on the discrete cosine tranform (DCT-I).
We shall mention that similar results on polynomials operations in Chebyshev basis
have also been done in a similar way in [Tra15; Ben12], especially for the Euclidean
division.

Note. Our method is presented in the context of polynomials in R[X ] but it also works
for any ring that would have basis’ element following similar recurrence relation„ e.g.
Dickson polynomial over a finite fields [LMT93].

2.4.1 Reduction to classic polynomial multiplication

Let two polynomials a, b ∈ R[X ] of degree d = n− 1 expressed in Chebyshev basis :

a(X ) =
a0

2
+

d
∑

k=1

akTk(X ) and b(X ) =
b0

2
+

d
∑

k=1

bkTk(X ).

The polynomial c(X ) = a(X ) b(X ) = c0
2 +

∑2d
k=1 ckTk(X ) ∈ R[X ] is given by the following

formula from [BT97]:

2ck=



















k
∑

l=0

ak−l bl +
d−k
∑

l=1

(al bk+l+ ak+l bl), for k = 0, ..., d−1,

d
∑

l=k−d

ak−l bl , for k = d, ..., 2d.

(2.16)
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Our main observation in [Jpub-Gio12] is to remark that all terms appearing in Equation
(2.16) can be obtained from convolutions on coefficients of a(X ) and b(X ). Indeed,
let

ā(X ) = a0 + a1X + a2X 2 + ...+ ad X d ,

b̄(X ) = b0 + b1X + a2X 2 + ...+ bd X d ,

r̄(X ) = revd+1(a(X )) = ad + ad−1X + ad−2X 2 + ...+ a0X d . (2.17)

These polynomials are given in the monomial basis, and their products can computed in
M(n). In particular, let

f̄ (X ) = ā(X )× b̄(X ) = f0 + f1X + f2X 2 + ...+ f2d X 2d ,

ḡ(X ) = r̄(X )× b̄(X )) = g0 + g1X + g2X 2 + ...+ g2d X 2d . (2.18)

We can rewrite Equation (2.16) as follow

2ck=

¨

fk + gd−k + gd+k − a0 bk − ak b0, for k = 0, ..., d−1,

fk, for k = d, ..., 2d.
(2.19)

From this equation it is straightforward to derive an algorithm of complexity 2M(n)+O(n)
for the multiplication of polynomials in Chebyshev basis, recalling that n= d + 1.

Improving the constant for DFT approach. We propose in [Jpub-Gio12] to improve
this approach when the underlying multiplication algorithm is based on DFT approach.
Indeed our approach needs two multiplications in monomial basis using operands
ā(X ), b̄(X ) and r̄(X ) = ā(X−1)X d . Somehow, we compute twice the DFT transforms of
b̄(X ) and ā(X ) on 2n points. Let ω be a 2n-th primitive root of unity, we have

DFT2n(ā) = [ ā(ωk) ]k=0...2n−1,

DFT2n(r̄) = [ ā(ω2n−k) ωkd ]k=0...2n−1.

This implies that the coefficients of DFT2n(r̄) correspond to the ones of DFT2n(ā) in
reversed order scaled out by the adequate powers of ω, and this can be done with only
O(n) operations. We can even go further and remove the multiplications by powers of
ω. Indeed, one can calculate the product X r̄(X )b̄(X ) instead of the product r̄(X )b̄(X ).
Note that the degree of the product remains less than 2n and can be done through 2n
points DFT. There, recalling that d = n− 1 and ω is a 2n-th primitive root of unity it is
sufficient to remark that

DFT2n(X r̄) = [ ā(ω2n−k) (−1)k ]k=0...2n−1

which removes the multiplications by powers of ω. Using all these considerations, one
can modify our approach to save exactly 2 DFTs. Saying it more generally, the complexity
of our approach has exactly the same asymptotic complexity as the multiplication in
monomial bases, for algorithms using a DFT approach.

Estimation of the arithmetic complexity. Since our reduction is generic, we will denote
it PM-Chebyshev followed by the underlying multiplication method in monomial bases.
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i.e. PM-Chebyshev (Karatusba) for using Karatsuba algorithm. We will also denote "DCT-
based" the fast method of [BT97] and "Direct" the naive method given by Equation (2.16).
Table 2.3 below summarizes the exact number of operations in R needed to multiply
two n-size polynomials. Note we also provide in this table the estimate for the fast
method of [BT97] when the DCT-I transform is achieved through DFT. Indeed, one can
calculate up to some scaling a N-size DCT-I transform by a 2N-size DFT transform. This
estimate makes sense for practical purpose since software might use DFT for computing
DCT-I transforms [FJ05]. We remark from the values that the faster dedicated method of
[BT97] provides the best possible complexity in theory. Our approach with DFT remains
close to it and even outperforms it if DCT is achieved through DFT.

Tab. 2.3: Number of real operations for multiplication of size-n polynomial in Chebyshev basis
over R[X ].

Algorithm nb. of operations in R
Direct 2.5n2 − 0.5n
DCT-based [BT97] (12n+ 3) log 2n− 14n+ 15
DFT-based [BT97] 24n log 2n− 42n+ 18
PM-Chebyshev (Schoolbook) 4n2 − 1
PM-Chebyshev (Karatsuba) 13nlog3 − 10n
PM-Chebyshev (DFT-based) 16n log 2n− 12n+ 21

2.4.2 Practical experiments.

In order to further emphasize the benefit of our approach from the existing methods, we
proposed in [Jpub-Gio12] to evaluate both its performance and its numerical accuracy.
First, we remarked from the standard numerical library for fast discrete Fourier transform,
namely FFTW [FJ05], that standard code for the DCT-I transform has serious numerical
problems, in particular loosing accuracy in the computed result4. There, for improving
the numerical accuracy it is preferred to rely on DFT code for computing DCT-I and then
relax the performance by a factor of two. In this context, our approach might reveal
competitive as it offers a lower count of operations, as depicted in Table 2.3.

Numerical accuracy. To emphasize the "good" numerical behavior of our method we
provide in [Jpub-Gio12] practical experiments. More precisely, we have computed
approximations of the relative error by computing the exact solution with multiprecision
rational numbers from the GMP library [Gt16]. The coefficients of the polynomial are
random floating point numbers where the exponents have a rather small norm, e.g. a
fraction of two integers. The latter choice ensures that DFT transforms remains in a
favorable stability range [Hoe08]. Note that all complex DFTs are computed with FFT
through FFTW library. To confirm the implementation of the DCT-I code in FFTW, we
also wrote a dedicated code that compute DCT-I with double length DFT. Figure 2.5
illustrates the stability results on average for 50 polynomial product for sizes ranging
from 2 to 213.

4see http://www.fftw.org/fftw3_doc/Real-even_002fodd-DFTs-_0028cosine_
002fsine-transforms_0029.html
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Fig. 2.5: Experimental measure of the relative error in double precision. Polynomial coefficients
lying in [−50,50].
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From Figure 2.5 we can conclude few thoughts. Our method PM-Chebyshev (DFT-based)
seems to offer the same numerical behavior as the DCT based one, and thus offer a
concrete alternative in practice. As expected, the code using DCT-I is as stable as the
one using a double length-DFT since they are indeed similar code. Finally, the use of our
approach together with Karatsuba technique is not worth it as it introduces too many
numerical errors. This is certainly due to the high number of additions which often
cause numerical errors. From a theoretical point of view, our approach with FFT-based
polynomial multiplication should be similar to the one using DCT (with double length
FFT) as they both use FFT and perform some extra additions/scaling that are similar. Of
course, this rough analysis need to be confirmed by a dedicated work that would study
the backward stability of the multiplication problem in Chebyshev basis, as done for the
monomial case in [Hoe08].

Performances The table 2.4 reports the computation time for the same set of parame-
ters as for the stability evaluation. As expected, our approach using reduction to the
monomial case with FFT is competitive and even outperforms the DCT based approach
of [BT97]. In particular, the practical performance confirms the estimation based on
the number of operations given in Table 2.3. These timings also confirm that the DCT-I
code in FFTW is using a double length DFT. Finally, Karatsuba approach does not bring
any benefit in practice neither for its performance nor for its numerical stability, and it
must be avoided. As a general conclusion, our approach might be worthwhile for any
efficient polynomial product algorithm that has good stability behavior.
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Tab. 2.4: Times of polynomial multiplication in Chebyshev basis (given in µs) on Intel Xeon
2GHz platform.

n Direct DCT-based DCT-based PM-Chebyshev PM-Chebyshev
with DFT Karatsuba with DFT

2 0.23 1.25 0.43 0.41 0.49
4 0.43 1.32 0.57 0.62 0.58
8 0.52 1.80 0.81 1.04 0.86

16 1.28 3.11 1.56 1.91 1.28
32 4.33 4.88 2.84 5.11 2.58
64 15.73 8.82 9.55 16.83 5.41
128 56.83 18.08 17.07 70.54 13.37
256 211.34 35.97 31.42 195.85 24.41
512 814.71 82.47 68.67 554.36 49.53

1024 3219.13 160.81 159.21 1618.37 109.74
2048 12800.30 346.95 364.82 4749.63 236.01
4096 54599.10 741.38 740.31 14268.10 556.83
8192 220627.00 1613.43 1625.43 40337.20 1176.00
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3Contributions to integer arithmetic

3.1 Introduction

Historically, integer arithmetic received more attention than its polynomial analogue.
Indeed, the major results for the multiplication problem [KO63; Coo66; Too63; SS71]
have been primarily designed for the integer case, and then were further adapted to the
much simpler case of polynomials. Indeed, integer carries make things more complicated.
While being quite similar, new breakthrough ideas are usually done for integers. This
has been again verified with the work of Fürer in 2007 [Für07] which improves the
upper bound O(n log(n) log(log(n))) of [SS71] to I(n) = O(n log(n)2O(log∗(n))), where
log∗ is the iterated logarithm function. It is only ten years later that the polynomial case
followed [HHL17]. Since [Für07] many other improvements have been done to reduce
the constant value in the exponent of 2O(log∗(n)). In a recent report [HH19a] van der
Hoeven and Harvey provide a stronger result where they demonstrate an unconditional
upper bound of O(n log n) for the problem. Note that this time, they also provide a
similar result for the polynomial case [HH19b] but under some mild hypothesis on
the coefficient ring. Interested readers will find in the two latter references a really
nice exposition of historical advances on the multiplication problem. To a major extent,
this new upper bound is rather theoretical and it should not yet have a large impact
on the practical performance of multiplication of large integers. Schönhage-Strassen
algorithm’s implementation is still as of today the most efficient in practice for really
large integers [GKZ07].

Let A and P be respectively m-word and a n-word integers with n ≤ m. The quotient
(A quo P) and the remainder (A mod P) from the Euclidean division of A by P can
be computed in O(I(m)) word operations; the algorithm goes back to [Coo66], see
also [AHU74, Section 8.2] and [BZ10, Section 2.4.1]. As a consequence, modular
multiplication modulo P with n-words integers can also be done using O(I(n)) word
operations: first do the product over the integers and then reduce the result using a
division by P. The rather more complicated operation of inversion modulo P can be
done using O(I(n) log(n)) word operations using fast gcd algorithms [Knu70; Sch71].
All these results provide the foundation for the most classical method dealing with
arithmetic over prime finite fields Fp

∼= Z/pZ. When several modular multiplications
are needed, as for instance in the exponentiation used by RSA algorithm [RSA78] or
simply in matrix multiplication in Fp, two major techniques based on precomputation
improve the latter result. In [Bar86; Mon85] it is shown that modular multiplication
can avoid division when either β2n/P or 1/P mod βn are known in advance. There the
modular reduction only requires two short products and costs 2I(n). Of course, the
precomputations cost O(I(n)) using fast Newton iteration [Coo66] and they are easily
amortized when several multiplications are needed.
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In the following sections, we present two of our results that aim to perform modu-
lar integer computations [Cpub-GII13; Jpub-Dol+18]. The first section gives a new
algorithm for modular multiplications based on [Bar86; Mon85] that enables better
practical performance on multi-core processors by exhibiting lower synchronization
barriers than any previous algorithm. The second section focuses on basis conversions
arising within multi-modular technique. Similarly to Barret and Montgomery algorithms
[Bar86; Mon85] that use precomputation to improve efficiency of modular multiplication,
we provide a precomputation technique that enables the use of matrix multiplication
for integer conversions with the Residue Number System (RNS) [BZ10, Section 2.1.3].
Exploiting this technique leads us to practical improvements over any existing methods,
even with the asymptotically faster ones.

3.2 Modular multiplication with better parallelism

Barrett’s method [Bar86] precomputes ν =
�

β2n/P
�

to easily compute an approximated
quotient Q = bbAB/βncν/βnc such that C = AB − QP with C < 3P. Thanks to this
precomputation, the cost of the modular multiplication AB mod P reduces to three n-
word integer products: T0 + βnT1 = AB = FP(A, B); Q = bT1ν/β

nc = SPhi(T1,ν) and
C = T0 + SPlo(Q, P) plus at most two subtractions by P since 0 ≤ C < 3P. Similarly,
Montgomery’s method [Mon85] precomputes µ = −1/P mod βn so that we can compute
C = AB/βn mod P with almost the same operations: T0 + βnT1 = AB = FP(A, B);
Q = T0µmod βn = SPlo(T0,µ) and C = T1 + SPhi(Q, P)1. Here again, subtracting
P might be necessary since 0 ≤ C < 2P. This method can be turned into a real
modular multiplication if all operands are assumed to be already in the Montgomery
representation, that is A= A′βn mod P and B = B′βn mod P. There, the multiplication
AB mod P with Montgomery’s method gives A′B′βn mod P. The complexity of these
two methods are similar and it is no more than 3I(n) word operations (assuming the
precomputation is already done). The interested reader can find an interesting discussion
on the similitude of these two methods in [BZ10, Section 2.4] together with improved
variants for some specific integer multiplication algorithms. Note that when subquadratic
multiplication algorithms are not needed, e.g. when the number of words remains small
(less than 6 in GMP library [Gt16]), one would prefer to use the Finely Integrated
Operand Scanning (FIOS) of [KAK96]. This method processes sequentially each word of
one operand and performs unbalanced multiplications (one word by n-word) followed
by reduction implying a single word quotient. This method is of interest if the output
space is restricted, meaning for instance that the full product cannot be stored. This
is typically the case of interest for hardware implementations. Further insights on
hardware implementation of modular multiplication can be found in [Neg16].

During the supervision of Thomas Izard’s PhD thesis, we have worked on these methods
to incorporate more parallelism. In particular, we achieve in [Cpub-GII13] a modular
multiplication algorithm that exhibits better independent computations while minimizing
the number of thread synchronization. We also provide in [Cpub-GIT09] a first insight
on using GPU for performing basic operations over prime fields. More precisely, we
managed to show that clever implementation of FIOS method can compete with the best
available software that is the MpFQ library [GT07]. The following sections discusses
only about our first contribution.

1Here, the short product must compute the high n-word of the product, not the n− 1 as defined in SPhi
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3.2.1 Partial reductions

We introduce a partial Montgomery reduction and a partial Barrett reduction that only
reduce the operand by t words for a given integer t ≥ 0. In particular, let P be an n-word
integer and C be an m-word integer such that C < P2, Algorithm 4 below computes
R ≡ Cβ−t (mod P) such that 0 ≤ R < βm−t . Similarly, Algorithm 5 computes R ≡ C
(mod P). It is assumed that t ≤ m− n to guarantee the algorithms to be correct.

Algorithm 4 PMR (Partial Montgomery Reduction)

Input: integers P, C , t,µ such that βn−1 < P < βn, gcd(P,β) = 1, 0≤ C < P2, C < βm,
0≤ t ≤ m− n and µ= −P−1 mod β t (precomputed)

Output: R≡ Cβ−t (mod P) with 0≤ R< βm−t

Q← µC mod β t

R← (C +QP)/β t

if R≥ βm−t then
R← R− P

return R

Algorithm 5 PBR (Partial Barrett Reduction)

Input: integers P, C , t,ν such that βn−1 < P < βn, 0≤ C < P2, C < βm, 0≤ t ≤ m− n
and ν=

�

βn+t/P
�

(precomputed)
Output: R≡ C (mod P) with 0≤ R< βm−t

Q←
�

C1ν/β
t
�

βm−n−t where C = C1β
m−t + C0 with 0≤ C0 < β

m−t

R← C −QP
while R≥ βm−t do R← R− βm−n−t P
return R

The complexities of these partial reductions are identical. Let us denote their cost
T (t, n, s) where t is the number of words to reduce, n is the number of words of P. Here,
s is used to express that less than t non-zero words appear in the left-most digits of C
for PBR; and the right-most digits of C for PMR. Thus, we have

T (t, n, s) =

¨

I(n, t) + I(t, s) if s < t

I(n/t) + I(t) otherwise
(3.1)

These two algorithms will serve as building blocks to derive our modular multiplication
with better parallelism in the next section.

3.2.2 Multipartite modular multiplication

Classical modular multiplication use either Barrett or Montgomery method. In [KT08], it
has been proposed to use them together to reduce both ends of the product, and therefore
exhibit a natural two fold parallelism. Let A= A0 + βn/2A1, B and P be n word integers,
then bipartite method of [KT08] computes a ABβ−n/2 mod P through A1B mod P and
A0Bβ−n/2 which be can reduced using PMR and PBR algorithms with t = n/2. This
result is improved in [Sak+11] by splitting both operands and use Karatsuba technique
to offer a three fold parallelism. In our paper [Cpub-GII13], we further pursue this idea
by splitting both operands in k parts in order to reach a higher level of parallelism.
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Let 0 ≤ A, B < P < βn and gcd(P,β) = 1. Splitting A, B into k parts each as A =
∑k−1

i=0 Aiβ
ni/k and B =

∑k−1
i=0 Biβ

ni/k, assuming k divides n, the modular product shifted
to the right by n/2 digits rewrites

ABβ−n/2 mod P =
k−1
∑

i=0

k−1
∑

j=0

AiB jβ
di, j mod P, (3.2)

where di, j = n(i + j)/k− n/2 and −n/2≤ di, j ≤ 3n/2− 2n/k. The figure 3.1 illustrates
the splitting of the multiplication for k = 5. In such a case, it is easy to see that only
some of the partial products must be reduced. In fact, the product above βn must be
reduced with PBR while the one below 0 must be reduced with PMR.

β−n/2β0βnβ3n/2

A0

B0

A1

B1

A2

B2

A3

B3

A4

B4

A0B0

A0B1

A0B2

A0B3

A0B4

A1B0

A1B1

A1B2

A1B3

A1B4

A2B0

A2B1

A2B2
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A3B0
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A4B0
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A4B2

A4B3

A4B4

Fig. 3.1: Illustrating the 5-ary multipartite multiplication

The number of such independent reductions is roughly k2/4+O(k). Of course summing
up all partial products that are aligned to the same digit can reduce this number to
exactly 2 dk/2e. This approach is summarized in the following algorithm
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Algorithm 6 k-ary modular multiplication

Input: integers k, P, A, B,µ,ν such that k ≥ 2, 0 < P < βn, gcd(P,β) = 1, 0 ≤ A, B < P,
µ= −1/P mod βn/2, ν=

�

β3n/2/P
�

where A=
∑k−1

i=0 Aiβ
in/k and B =

∑k−1
i=0 Biβ

in/k

Output: R≡ ABβ−n/2 (mod P) with 0≤ R< P
for each h ∈ {0, . . . , 2k− 2} do

Ch←
∑

i+ j=h

AiB j

if h≤ dk/2e − 1 then
Rh← PMR(P, Ch, th,µmod β th), where th = n/2− h(n/k)

if h≥ 2k− 1− dk/2e then
Rh← PBR(P, Chβ

hn/k, th,
�

ν/βn/2−th
�

), where th = (h+ 2)n/k− 3n/2
else

Rh← Chβ
hn/k

R←
2k−2
∑

i=0

Rh

while R≥ P do R← R− P
return R

Lemma 3.2.1. The complexity of the PMR or PBR reduction in the for each loop of
algorithm 6 is

¨

I( n
2 − h n

k ) + I(n, n
2 − h n

k ) when dk/2e − 2≤ l ≤ 2k− dk/2e
I( n

2 − h n
k , 2n

k ) + I(n, n
2 − h n

k ) otherwise

While the overall sequential complexity of algorithm 6 is beyond the classical approach
of Montgomery and Barret, its usage becomes more interesting with parallelism. In
[Cpub-GII13] and in Izard’s PhD [Iza11] it is shown that the parallel complexity is











2I(n/2) + I(n, n/2) for k = 2,

I(n/3) + I(n/2) + I(n, n/2) for k = 3,

I(n/k) + I(n/2,2n/k) + I(n, n/2) for k > 3.

The latter results compute each part of the for each loop of algorithm 6 in parallel and
execute all integer multiplications sequentially. In comparison, Barrett and Montgomery
have a parallel complexity of 3I(n) while the bipartite method of [KT08] achieves
I(n/2) + 2I(n, n/2) and tripartite method of [Sak+11] reaches a parallel complexity of
I(n/2) + I(n, n/2).

Let us assume a more realistic model where integer multiplication can be parallelized
on T = θ1θ2 processors at a parallel cost of I(n/θ1, n/θ2) with 2 synchronizations (one
after partial products and one after their summation). Of course, we assume that integer
multiplication is parallelized naively but this is a rather classical approach for considered
cryptographic bit length [SP04]. Applying this technique, we summarize the obtained
complexities for parallel modular multiplication in Table 3.1.

The last entry of this table refers to a variant of the k-ary modular multiplication presented
above and described in [Cpub-GII13]. The latter approach computes in parallel all the
quotients Q arising in the PMR and PBR calls but do not perform each reduction

3.2 Modular multiplication with better parallelism 47



Algorithm Parallel complexity on θ1θ2 cores # synch.

Montgomery/Barrett 3I
�

n
θ1

, n
θ2

�

6

Bipartite 2.5I
�

n
θ1

, n
θ2

�

(∗) 6

k-ary multipartite (k = 2θ1θ2/3) (1.5+ 9
4θ1θ2

+ θ1θ2
2 )I

�

n
θ1

, n
θ2

�

2

k-ary multipartite* (k = 2θ1θ2/3) (2.5+ 9
4θ1θ2

)I
�

n
θ1

, n
θ2

�

3

Tab. 3.1: Parallel complexity of various modular multiplication algorithms. (∗) when θ1θ2 = 2,
the bipartite algorithm requires only 2 synchronizations

independently. Instead, it adds a synchronization and sum all these quotients together
to perform only one parallel integer multiplication with P at a cost of I(n/θ1, n/θ2). Of
course this last optimization drastically improves the complexity of our algorithm but
it slightly increases the number of synchronizations. Even with this last approach, the
bipartite modular multiplication still provides the lowest count of operations. However,
our two methods allow to divides by at least two the number of thread synchronizations.
We have done some benchmarks to illustrate the benefit of our approach with two
Intel processors X5650 with six 2.66GHz cores each. Our implementation relied on
GMP library 5.0.2 and OpenMP with no explicit SIMD instructions. As confirmed by
these experiments reported in Table 3.2, the synchronization bareers are significant
in practice and they could be dominant when integers size is not large, i.e. less than
a hundred words. For instance, for 1024-bits integers (16 words) it seems unlikely
that thread parallelisms is worth it since threads management and synchronization
incur a too large penalty compared to the sequential execution. When the bit length is
larger our multipartite approach remains interesting to lower down the effect of thread
synchronization, which is still being significant. However, when the arithmetic count is
overshooting this effect, bipartite method might be preferred.

sizes (in bits)

Algorithm 1024 1536 2048 3072 4096 6144 8192 12288 16384

1 Thread Best seq. 1.32 2.53 4.13 8.18 13.06 26.03 41.10 79.76 125.18

3 Threads Montgomery 3.63 4.15 4.95 6.71 8.84 13.42 20.11 33.96 50.50
2-ary multi* 2.59 3.23 3.83 5.49 7.43 12.24 18.26 32.17 48.40
2-ary multi 1.47 2.04 2.86 4.84 7.45 12.91 19.95 37.59 58.48

4 Threads Montgomery 3.73 4.34 4.94 6.54 9.60 13.05 19.09 33.09 49.77
Bipartite 3.93 4.08 4.69 6.27 7.94 12.13 17.12 29.60 44.65
4-ary multi* 2.75 3.05 3.68 5.06 7.07 11.40 17.38 31.04 48.16
4-ary multi 1.68 2.14 2.90 4.74 7.20 13.43 20.60 37.88 60.99

6 Threads Montgomery 4.66 5.10 5.71 6.70 8.72 12.18 17.30 26.82 41.94
Bipartite 4.82 5.20 5.39 6.45 7.88 10.99 15.16 22.92 34.58
4-ary multi* 3.32 3.47 3.83 5.13 6.56 9.72 14.48 24.13 36.22
4-ary multi 1.95 2.42 3.03 4.96 6.91 12.00 17.82 32.08 49.84

8 Threads Montgomery 7.62 7.99 8.59 10.51 13.01 16.39 20.18 30.59 42.36
Bipartite 10.12 9.98 10.33 11.05 12.25 15.45 18.90 26.61 36.58
8-ary multi* 5.85 6.03 6.44 7.57 8.87 12.18 16.06 25.43 37.80
8-ary multi 3.98 4.29 4.92 6.59 8.84 13.81 19.88 33.92 51.10

Tab. 3.2: Timings (in µs) for several parallel modular multiplication algorithms on 1, 3, 4, 6
and 8 cores, for operands ranging from 1024 to 16384 bits. For a given number of
cores and a given size, the gray cells represent the most efficient algorithm
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3.3 Simultaneous conversion with residue number
system

As previously mentioned, integer division reduces to integer multiplication to achieve the
best complexity. This reduction is mostly well understood in the case of the division of a
2n-word integer by a n-word integers, and it costs O(I(n)) words operations. However
in the multi-modular technique that we will develop in the following sections, one of the
basic operation is rather to divide an n-word integer by a smaller t-word integer where
possibly n� t. In that specific case, more refined estimates for Euclidean division can
be given. Let A and P be respectively n-word and t-word integers then:

• if n� t, the computation of (A quo P) and (A rem P) can be done in O(n/tI(t))
word operations,

• if we suppose more precisely that β t−1 ≤ P < β t and n− t ≤ t, the remainder
(a rem m) can be computed in time O((n− t)I(n− t)).

3.3.1 The Residue Number System

The Residue Number System (RNS) is a non-positional number system that allows to
represent finite sets of integers. Let m1, m2, . . . , ms ∈ Z≥0 be pairwise distinct primes,
and let M = m1m2 · · ·ms. Then any integer A∈ {0, . . . , M−1} is uniquely determined by
its residues (a1, a2, . . . , as) where ai = (A rem mi); this residual representation is called a
Residue Number System [BZ10, Section 2.1.3]. Operations such as addition, subtraction,
multiplication and exact division are straightforward in this residual representation:
by doing the operation separately in each residual class. Conversions between the
classical word representation of A and the residual one are potentially costly. For
the following discussion, we assume that all mi ’s have length at most t; in particular,
any A in {0, . . . , M − 1} has length at most st. The purpose of the multi-modular
approach is to find a sufficiently large integer M = Πs

i=1mi such that the sought integer
solution lies in {0, . . . , M − 1}. Hence, the initial problem over the integers can be
mapped into each Z/miZ. Therefore, finding the solutions in each residual class Z/miZ
provides a solution to the initial problem as we have have the ring isomorphism Z/MZ∼=
Z/m1Z× · · · ×Z/msZ. The remaining difficulty lies in the conversions between word
representation of integers and RNS.

The conversion to the RNS representation (also called multi-modular reduction) amounts
to taking an st-word integer A and computing all remainders (A rem mi). Using clas-
sical division, we can compute each of them in O(s I(t)) word operations, for a total
time in O(s2I(t)). The classical divide-and-conquer approach of [BM74] improves
the complexity to O(I(st) log(s)) word operations (see also [GG13, Theorem 10.24]).
The idea is basically to compute separately the remainders A mod (m1 . . . ms/2) and
A mod (ms/2+1 . . . ms) and apply the process recursively. The key point is then the fast
precomputation of the induced subproduct tree of the mi ’s.
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The inverse operation that converts integers from RNS to word representation is achieved
through Chinese Remaindering Theorem (CRT)[GG13, Section 5.4]. Let A be an integer
in {0, . . . , M − 1} given by its RNS representation (a1, . . . , as); then, A is given by

A=

� s
∑

i=1

(aiui rem mi)Mi

�

rem M , (3.3)

where Mi = M/mi and ui = (1/Mi rem mi) for all i. The naive algorithm to recover A
from its residues is easily deduced from this expression and it costs O(s2 I(t)+s I(t) log(t))
word operations. The cost is dominated by computing the ui ’s and the inner product
of the summand. As previously, a similar divide-and-conquer approach is presented
in [BM74] to recover A with only O(I(st) log(s) + s I(t) log(t)) word operations. The
idea is to reconstruct separately A mod (m1 . . . ms/2) and A mod (ms/2+1 . . . ms) which of
course can be done recursively, and then apply equation (3.3) to reconstruct A. The
only difficulty is to get all the Mi rem mi necessary for computing the ui ’s. In fact, this
can be done efficiently by re-using the fast multi-modular reduction to compute each
λi = M rem m2

i as it immediately follows that Mi rem mi = λi/mi . Finally, the ui ’s are
computed with s integer gcds.

In terms of implementation, multi-modular reductions using the naive algorithms can
benefit from vectorized (SIMD) instructions to save constant factors, and can be easily
parallelized. On the other hand, the quasi-linear approaches do not benefit from SIMD
instructions in a straightforward manner. Furthermore it does require O(s log(s)) extra
memory while the naive approach needs only O(s) extra memory, and the latter can
probably be done in-place. Finally, for the sake of completeness, we shall point to a
recent variant of these conversions that improves the complexities by a factor log log(s)
based on FFT-trading [Hoe17].

3.3.2 On simultaneous conversions

For classical problems in linear algebra, such as matrix multiplication, determinant
or rank, it is often a good choice to use a multi-modular approach. Even if this kind
of approach does not yield the asymptotically fastest ones, their simplicity and their
intrinsic parallelism often make them more efficient in practice. In such a situation, the
conversions between word representation of integers and RNS have to be done for several
entries, usually N2 for N × N matrices. For that specific case, the classical fast multi-
modular reduction [BM74] cannot be further reduced and it costs O(N2I(st) log(s)),
contrary to the classical fast multi-modular reconstruction [GG13, Section 5.4] that
can share the precomputation of the ui ’s to reach a complexity of O(N2I(st) log(s) +
sI(t) log(t)). When the naive approach is used, it seems not trivial to show that one can
reduce the quadratic dependency in s. In [Jpub-Dol+18] we propose a precomputation
technique that aims to break this dependency. In particular we demonstrate the following
theorem

Theorem 3.3.1. Let A = (A1, . . . , Ar) be a vector of r integers lying in {0, . . . , M − 1}
where M = m1m2 . . . ms with coprime integers mi < β

t for 1≤ i ≤ s. Assuming r ≥ s, the
linear map

φ : Zr
M −→ Z

r
m1
× · · · ×Zr

ms
such that φ(A) = (A rem m1, . . .A rem ms)
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can be computed in O(rsω−1I(t))word operations and the inverse mapφ−1 can be computed
in O(rsω−1I(t) + sI(t) log(t)) word operations.

Of course, this theorem does not improve the complexity when naive matrix multipli-
cation (ω= 3) is used, but when ω< 3 this yields a O(s3−ω) speed-up from the naive
multi-modular reduction and reconstruction. Besides, the expression of the algorithm in
term of matrix multiplication makes it possible to re-use very efficient matrix multipli-
cation libraries (i.e. BLAS). This will improve considerably the practical performance,
especially due to cache memory optimization technique [GG08]. When parameters
values are favorable, the use of faster matrix multiplication such as Strassen [Str69] will
be an opportunity for further practical speed-ups [DGP02; Jpub-DGP08].

The main ingredient behind our result is simply to trade unbalanced divisions, i.e.
A rem mi , with a matrix-vector product involving integers smaller than the mi ’s. Then,
we show that the remaining step is just balanced divisions with integers of O(t log(s))
words. For multi-modular reconstruction the trick is quite similar.

Multi-modular reduction: Given the vector A, the decomposition of A in base β t is
obtained without any operations as it is given by the encoding of its coefficients :

�

A1 . . . Ar
�

=
�

1 β t β2t . . . β (s−1)t
�





a1,1 . . . ar,1
...

...
a1,s . . . ar,s



 .

Using the notation |· · · |mi
for the operation rem mi , the application ofφ on that equation

gives the following matrix relation





|A1|m1
. . . |Ar |m1

...
...

|A1|ms
. . . |Ar |ms



=





|1|m1
|β t |m1

. . .
�

�β (s−1)t
�

�

m1
...

...
...

|1|ms
|β t |ms

. . .
�

�β (s−1)t
�

�

ms



×





a1,1 . . . ar,1
...

...
a1,s . . . ar,s



−diags(mi)×Q

where Q ∈ Zs×r
≥0 and diags(mi) is the s× s diagonal matrix made from the mi ’s. It is not

difficult to see that the coefficients of Q are such that Q i, j < smiβ
t < β3t , recalling that

mi ’s are distinct primes smaller than β t .

Hence, the computation of φ(A) amounts to a matrix multiplication of dimensions s× s
by s× r with their entries bounded by β t ; and to rs modular reductions of integers with
O(t) words. The precomputation phase for a given φ corresponds to the computation
of (β t) j rem mi for 1 ≤ i, j ≤ s that is achieved at a cost of O(s2I(t)). Altogether, one
can deduce the claimed cost.

Multi-modular reconstruction (CRT): the inverse of φ can be computed similarly.
Given the residues of the vector A, we define the matrix T as the scaling of the residues
by diags(ui) that is

T =





|A1u1|m1
. . . |Aru1|m1

...
...

|A1us|ms
. . . |Arus|ms



 .
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Using the decomposition of the M j ’s in base β t such that M j =
∑s−1

i=0 γi, jβ
i t , for 1≤ j ≤ s,

we can write the inner sum of Equation (3.3) that is
�

M1 . . . Ms
�

T as

�

1 β t β2t . . . β (s−1)t
�





γ1,1 . . . γ1,s
...

...
γs,1 . . . γs,s



×





|A1u1|m1
. . . |Aru1|m1

...
...

|A1us|ms
. . . |Arus|ms



 . (3.4)

The computation of φ−1 is then achieved by evaluating the expression given in Equa-
tion (3.4) followed by a modular reduction by M component-wise. This amounts to
exactly rs modular reductions of integers in βO(t) for computing T ; then to a matrix
multiplication of dimensions s× s by s× r with their entries bounded by β t ; and finally
to r modular reductions by M of integers in O(β st). Note that the final multiplication
by
�

1 β t β2t . . . β (s−1)t
�

in Equation (3.4) only requires 3r additions of st-word
integers since the computed coefficients are smaller than β3t . The precomputation
phase for a given φ is similar to the classical approach that is to compute the ui ’s and
the Mi ’s. As previously, assuming r ≥ s ensures the validity of our theorem.

For more readability we have rather simplified the presentation of our method given in
[Jpub-Dol+18]. In particular, the choice of the decomposition in base β t leads to the
best complexities but our analysis has been done for any decomposition in base β t ′ with
t ′ ≤ t. One of the reason is that for practical purpose it may be more relevant to use a
splitting that guarantees that the matrix multiplication result holds within a word-size
machine. This is indeed ensured when s′β t+t ′ holds in a machine word, with s′ ≥ s
such that s′ =

�

st/t ′
�

. In that cases, the complexities become O(MM(r, s, s′)I(t)) for
the multi-modular reduction and O(MM(r, s, s′)I(t) + sI(t) log(t)) for the multi-modular
reconstruction.

Practical performance: We designed a fine-tuned implementation of the previous
approaches in our FFLAS-FFPACK library [Jpub-DGP08]. Here again, our implementation
re-uses the efficiency of numerical BLAS libraries for the matrix multiplication involved
in the RNS conversions. In particular, this implies some choices for the parameters
t and t ′. The restriction given by double precision floating point numbers in BLAS
libraries sets s′β t+t ′ < 253. The representation of multi-precision integers usually uses
64-bits words. Choosing β = 2 and a value of t ′ to be a multiple of 8 ensures that
getting the decomposition of integers in base β t ′ has a constant cost2. The value of t
is usually guided by the multi-modular approach that has to be done. In our case, our
motivations comes from linear algebra and matrix multiplication. Following our results
in [Jpub-DGP08] this implies that t < 27. Hence, we decided to fix the value of t ′ to be
16 and then t is chosen maximal so that 16≤ t ≤ 27. Note that taking t ′ = 24 would
limit too much the matrix dimension in the targeted linear algebra operation. Using our
parameters, we are able to handle integers up to 189 KBytes that is roughly a million of
bits. This is a mild restriction as the fast RNS conversions would be definitively faster in
practice for smaller bit length.

We now recall timings obtained in [Jpub-Dol+18] for the computation of RNS conversions
in the flagship computer algebra libraries : FLINT [Har10] and Mathemagix [Hoe+12];

2In practice this is achieved with only a cast of the pointer to the integer limbs.

52 Chapter 3 Contributions to integer arithmetic



and our code in FFLAS-FFPACK. Since all implementations do not share the same value
for t and the underlying datatype, we first recall the choices made by each library:

Library max moduli bit length datatype
FLINT 59 64-bit integers

Mathemagix 31 32-bit integers
FFLAS 26 64-bit floating point

The benchmarks are made for the parameters of a multi-modular matrix multiplication
of matrix dimension 128. This implies that the RNS basis is twice larger than necessary
for the conversion from the β -adic representation of the input integer matrices, but it is
tight for the reconstruction of the output integer matrix. The choice of matrix dimension
128 is made so that the effect of the precomputation is amortized. In particular, this
allows to extract average timings for single integer conversion.

Tab. 3.3: Simultaneous conversions to RNS (time per integer in µs) on Intel Xeon E5-2697
(multi-thread off)

RNS bit length FLINT MMX (naive) MMX (fast) FFLAS [speedup]
28 0.17 0.34 1.49 0.06 [x 2.8]
29 0.35 0.75 3.07 0.13 [x 2.7]
210 0.84 1.77 6.73 0.27 [x 3.1]
211 2.73 4.26 14.32 0.75 [x 3.6]
212 7.03 11.01 30.98 1.92 [x 3.7]
213 17.75 29.86 72.42 5.94 [x 3.0]
214 50.90 88.95 183.46 21.09 [x 2.4]
215 165.80 301.69 435.05 80.82 [x 2.0]
216 506.91 1055.84 1037.79 298.86 [x 1.7]
217 1530.05 3973.46 2733.15 1107.23 [x 1.4]
218 4820.63 15376.40 8049.31 4114.98 [x 1.2]
219 13326.13 59693.64 20405.06 15491.90 [none]
220 37639.48 241953.39 54298.62 55370.16 [none]

Tables 3.3 and 3.4 report the RNS conversion time on average per integer matrix
entry. Each integer matrix conversion is done several time to reach a total time of few
seconds that ensures more confidence in the timings. The MMX columns correspond
to Mathemagix library where two implementations are available: the asymptotically
fast divide-and-conquer approach and the naive one. The FLINT column corresponds
to fast divide-and-conquer implementation available in FLINT version 2.5 while FFLAS
corresponds to the implementation of our new algorithms with parameters t ′ = 16 and
an adaptative value of t < 27 that is maximal for the given RNS bit length. For both
tables, we add in the FFLAS column the speedup of our code against the fastest code
among FLINT and Mathemagix.

One can see from Tables 3.3 and 3.4 that up to RNS bases with ≈ 260 000 bits (or
equivalently ≈ 4100 words), our new method outperforms existing implementations,
even when asymptotically faster methods are used. For an RNS basis with at most 215 bits
= 4 KBytes our implementation is at least twice as fast. If we just compare ourselves with
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Tab. 3.4: Simultaneous conversions from RNS (time per integer in µs) on Intel Xeon E5-2697
(multi-thread off)

RNS bit length FLINT MMX (naive) MMX (fast) FFLAS [speedup]
28 0.63 0.74 3.80 0.34 [x 1.8]
29 1.34 1.04 7.40 0.39 [x 3.4]
210 3.12 1.86 15.53 0.72 [x 4.3]
211 6.92 4.29 30.91 1.57 [x 4.4]
212 16.79 12.18 63.53 3.94 [x 4.3]
213 40.73 43.89 139.16 12.77 [x 3.2]
214 113.19 144.57 309.88 43.13 [x 2.6]
215 316.61 502.18 687.45 161.44 [x 2.0]
216 855.48 2187.65 1502.16 609.22 [x 1.4]
217 2337.96 10356.08 3519.61 2259.84 [x 1.1]
218 7295.26 39965.23 9883.07 8283.64 [none]
219 18529.38 156155.06 22564.36 31382.81 [none]
220 48413.81 685329.45 59809.07 111899.47 [none]

Tab. 3.5: Precomputation for RNS conversions from/to together (total time in µs)

RNS bit length FLINT MMX (naive) MMX (fast) FFLAS
28 18.58 0.34 1.49 670.30
29 19.60 0.75 3.07 708.40
210 35.80 1.77 6.73 933.30
211 68.30 4.26 14.32 1958.60
212 148.10 11.01 30.98 5318.30
213 338.90 29.86 72.42 17568.60
214 765.10 88.95 183.46 65323.40
215 2013.70 301.69 435.05 250234.90
216 5392.80 1055.84 1037.79 987044.30
217 13984.80 3973.46 2733.15 4066830.50
218 35307.50 15376.40 8049.31 17133438.90
219 89413.10 59693.64 20405.06 69320436.10
220 243933.90 837116.30 805324.30 244552123.40

Mathemagix naive implementation, which basically has the same theoretical complexity
since ω = 3 in our case, we always get a speedup between 3 and 6. This is of course
due to the use of better cache optimizations in BLAS.

Table 3.5 provides time evaluations of the precomputation phase for each implementation.
As expected, one can see that our method relies on a long phase of precomputation.
Despite this long precomputation, our method is really competitive when the number
of elements to convert is sufficiently large. For example, if we use an RNS basis of 215

bits, our precomputation phase needs 250ms while FLINT’s code needs 2ms. However,
for such a basis bit length, our conversion to RNS (resp. from) needs 80µs (161µs) per
element while FLINT’s one needs 165µs and 316µs. Assuming one needs to convert
back and forth with such an RNS basis, our implementation will be faster when more
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than 1000 integers need to be converted. Note that the code of our precomputation
phase is not fully optimized and we should be able to lower this threshold, which makes
our approach even relevant for smaller numbers of simultaneous conversions.

3.3.3 Extending to larger moduli

The presented approach is limited by the use of the numerical BLAS to perform matrix
multiplication implying at most 26-bit integer moduli. This restriction is not problematic
since there are enough of those primes for most applications of multi-modular techniques.
However, for the multiplication of polynomials with large integer coefficients the use of
fast Fourier transform implies to have primitive 2d -roots of unity in each Z/miZ, where
2d bounds the degree of the product. To ensure such property, it is common to use FFT
primes of the form c2d − 1 for any integer c > 1. However, the number of FFT primes
is much smaller than the number of primes: less by a factor of 2d−1 asymptotically.
To handle larger integer coefficients with these specific moduli, there are two major
directions: first, raise the prime size limit of our simultaneous RNS conversions; second,
use 3-primes FFT when all FFT primes have been exhausted [Pol71] (see also [GG13,
Chapter 8]). Since the latter choice at least triples the runtime per bit, we chose to
investigate the first solution. We shall remind that the multi-modular technique is not
asymptotically the most efficient solution to this problem. As we already mentioned in
2.1, Kronecker substitution together with integer multiplication yields the best asymptotic
method for polynomial multiplication with large integer coefficients. However, for some
range of integers and degrees, multi-modular technique might be really competitive in
practice, especially if parallelism is used.

We provide in [Jpub-Dol+18] an extension of our approach to handle larger moduli while
still relying on BLAS matrix multiplication. Note that already slightly larger moduli will
substantially increase the possible bit length of the coefficients: with our forthcoming
technique, we will be able to multiply polynomials up to degree 222 and of coefficient
with bit length 220 using primes of 42 bits. This is particularly interesting since FFT
performances are almost not penalized when 53-bit primes are used instead of 32-bit
primes as demonstrated in [HLQ16].

The main observation is that when the moduli mi are too large, the following restriction
from BLAS matrix multiplication is no more true: s′β t+t ′ < 253. Therefore, the solution
is to express all mi ’s in their expansion in base βδ such that s′βδ+t ′ < 253. This means
that the integers modulo the mi ’s are split in κ chunks of size δ.

Multi-modular reduction: For multi-modular reduction this implies the following
rewriting











|1|m1

�
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�β t ′
�

�
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= B0 + βB1 + · · ·+ βκ−1Bκ−1
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where each matrix Bi are in Zs×s′

<βδ
. Hence, our previous method for multi-modular

reduction is now working individually for each Bi ’s as δ has been chosen so that s′βδ+t ′ <

253. This particularly means that only a factor of κ will appear in the complexity. We
have demonstrated that our method requires O(MM(κs, s′, r)I(δ))) word operations.
The most remarkable property of this approach is to be as efficient as the one when
the moduli are restricted to be less than β26. Indeed, in such a case the complexity is
of O(MM(s, s′, r)I(t))). With larger moduli we obtain O(MM(κs, s′, r)I(δ))) which can
be reformulated as O(MM(s, s′, r)κI(δ))). Using the super-linearity assumption on the
complexity function of integer multiplication that is κI(δ)≤ I(t), we obtain exactly the
same complexity bound.

Multi-modular reconstruction: Similarly, the multi-modular reconstruction implies
the following rewriting of T as

T =





|A1u1|m1
. . . |Aru1|m1

...
...

|A1us|ms
. . . |Arus|ms



= T0 + βT1 + · · ·+ βκ−1Tκ−1

where each matrix Ti are in Zs×r
<βδ

. Here again, our previous method for multi-modular
reconstruction is working individually for each Ti ’s using the same argument on δ. In
that case, we have also demonstrated that our method requires O(MM(κs, s′, r)I(δ))) +
sI(t) log(t) word operations, which boils down to O(MM(r, s, s′)I(t) + sI(t) log(t)) using
the same argument as before.

Practical performance: This extension of our approach has been implemented in
the FFLAS-FFPACK Library. The implementation is restricted to κ = 2 as it offers a
sufficient range of values for integer polynomial multiplication as already mentioned.
As before, we chose β = 2 and t ′ = 16. The value of δ is dynamically chosen to ensure
s′βδ+16 ≤ 253. Since we chose κ= 2, this means our primes must not exceed 22δ. For
small RNS basis of bit length less than 215 (' 4 KBytes), we can choose the maximum
value δ = 26. For larger RNS basis, we need to reduce the value of δ, e.g. with δ = 21
one can use 42-bit primes and reach an RNS basis of 220 bits (' 131 KBytes). Our
implementation is similar to the one with moduli less than 226, which is in fact the
case κ= 1. In order to speed-up our conversions with larger primes, we always stack
the matrices to compute the κ matrix multiplication altogether using only one larger
matrix multiplication. In practice, it is best to have such a larger matrices because the
peak performance of BLAS is attained above a certain matrix dimension. Furthermore,
doubling a matrix dimension may offer an extra level of sub-cubic matrix multiplication
in FFLAS-FFPACK.

Table 3.6 is reporting the benchmarks from [Jpub-Dol+18] using similar settings as in
the previous section. As matter of comparison, it reports the time of our RNS conversions
when κ = 1, corresponding to the "small" prime of Section 3.3.2. Comparison with
the FLINT library is also provided as it is the fastest contestant offering similar prime
bit length when κ = 2 (e.g. 59 bits). The values reported in Table 3.6 confirm our
conclusion that the performance is asymptotically similar for different values of κ.
However, for small RNS bit length, one may remark slight differences between κ = 1
and κ = 2. For this size, the matrix multiplication is not dominant in the complexity
and the constant behind second order terms roughly double the cost. Furthermore,
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our implementation with κ= 2 does not benefit from all the SIMD vectorization code
that has been done with κ= 1, explaining the variation. Note that for larger RNS bit
length, the conversion to RNS with κ= 2 is faster than the one with κ= 1. This is of
course due to larger matrix multiplications which benefits from the sub-cubic matrix
multiplications of FFLAS-FFPACK. This is no longer true for conversions from RNS as
the last division step is almost twice as costly as for the method with κ = 1. Finally,
compared to FLINT, our approach can improve performances up to a factor of two.
For very large bit length, the fast divide-and-conquer approach of FLINT kicks in and
becomes indeed more advantageous.

Tab. 3.6: Simultaneous RNS conversions (time per integer in µs)

To RNS From RNS
RNS FLINT FFLAS FFLAS FLINT FFLAS FFLAS

bit length (κ= 1) (κ= 2) (κ= 1) (κ= 2)
mi < 259 < 227 < 253 < 259 < 227 < 253

28 0.17 0.06 0.15 0.63 0.34 0.63
29 0.35 0.13 0.24 1.34 0.39 0.70
210 0.84 0.27 0.53 3.12 0.72 1.39
211 2.73 0.75 1.20 6.92 1.57 2.46
212 7.03 1.92 2.92 16.79 3.94 5.15
213 17.75 5.94 8.01 40.73 12.77 14.98
214 50.90 21.09 25.05 113.19 43.13 47.54
215 165.80 80.82 85.38 316.61 161.44 167.93
216 506.91 298.86 299.11 855.48 609.22 629.69
217 1530.05 1107.23 1099.52 2337.96 2259.84 2375.98
218 4820.63 4114.98 4043.68 7295.26 8283.64 8550.81
219 13326.13 15491.90 15092.94 18529.38 31382.81 33967.42
220 37639.48 55370.16 67827.24 48413.81 111899.47 121432.66

As we will see in Section 4.2, this improvement for RNS conversions will be important
to reach efficient dense linear algebra over multiprecision prime fields that heavily relies
on integer matrix multiplication.
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4Contributions to linear algebra

4.1 Introduction

As presented in the main introduction of this manuscript, the history of exact linear
algebra has been first impacted by the work of Strassen [Str69] showing first sub-cubic
algebraic complexity for matrix multiplication and matrix inversion. Since then matrix
multiplication are a key tool to derive algorithm with a complexity upper bounds of
O(nω) or O (̃nω) to most of the problems. The last fifty years have seen many algorithms
improving the value of ω, the best value being so far ω< 2.3729 [Le 14]. This clearly
improves on the naive approach of ω = 3 and also on the first result of Strassen
ω= 2.807. While all these results improve theoretically the complexity of dense linear
algebra, Strassen’s algorithm remains the most efficient sub-cubic approach in practice,
and it is now widely available in software. Even if some efforts to implement theoretically
faster algorithms have been done, their superiority remain seldom visible in practice
[BD16].

Similarly to the Strassen breakthrough, the work of Storjohann [Sto03] impacted the
complexity of dense linear algebra over principal rings, more precisely over univariate
polynomial rings. In that case, the complexity is shown to have the same cost as matrix
multiplication, O (̃nωd) operations over the base ring, while any other approaches
could not amortize expression swell, yielding a complexity of O (̃nω+1d): O(nd) being
generally the bound on the degree of matrix entries during the calculation. Clearly, this
work opened a new breach for faster linear algebra over univariate polynomial or integer
rings. The last two decades have seen new efficient algorithms providing non-trivial
reductions to polynomial (or integer) matrix multiplication.

In this chapter, we describe two of our contributions that either show practical efficiency
of the algebraic reductions or provide new tools to derive reductions to polynomial
matrix multiplication.

Section 4.2 is devoted to efficient implementations of dense linear algebra over finite
fields, and more specifically to prime fields. While Strassen’s approach is relevant when
field’s operations have almost constant cost, for larger fields the cost of the arithmetic
leaves some room for further improvement. Indeed, in that case the problem falls
naturally in the framework of dense linear algebra over integers, and its cost is then
related to integer matrix multiplication. As we will see, our proposal to use delayed
modular reduction leads to great improvement both in practice and in theory. This
description is based on the work [Jpub-DGP08; Cpub-DGP04] that gave birth of the
FFLAS-FFPACK1 Library and some of its improvements [Jpub-Dol+18] .

1https://linbox-team.github.io/fflas-ffpack/
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Section 4.3 deals with dense linear algebra with univariate polynomials. Here we focus
on the problem of minimal approximant bases as it influences the design of the most
efficient algorithms as shown in Figure 1.1. In particular, we describe our result that
exhibits the first reduction to polynomial matrix multiplication for that problem, and
we provide a quick overview on what has be done so far to extend it to more general
cases. We will also give some insights on a novel description of our reduction fitting the
online computational model and proving practical benefit for early termination within
the block Wiedemann approach. Lastly, we provide an almost optimal certification
procedure for the minimal approximant bases problem. All these descriptions are based
on [Cpub-GJV03; Cpub-GL14a; Cpub-GN18].

4.2 Efficient dense linear algebra over prime fields

When dealing with linear algebra problems over prime field Fp, there is no problem of

expression swell as the elements remain in the integer range [0, p− 1] or [− p−1
2 , p−1

2 ] if
signed representation is used. As seen in section 3.2, it is classical to perform arithmetic
of Fp through integer operations followed by a modular reduction. Hence, depending on
the bit length of the prime p the implementations and the algorithms may vary according
to machine word precision.

4.2.1 Half word-size prime fields

Extending the representation beyond the canonical representation, that lets elements
of Fp to be larger than p, is classical and leads to better performance in practice than
reducing modulo p after each operation. As proposed in [DGP02], let δ be the word-size
machine precision (usually δ ≤ 64), if p is such that

n
(p− 1)2

2
< 2δ

then a matrix multiplication over Fp with inner dimension n can be done over the integers
followed by n2 divisions by p without any overflow. Note that applying division for each
multiplication would increase this number to n3 and penalize the overall performance
as division is usually very expensive on modern processor. As an example, on latest
Skylake X Intel architecture unsigned 64-bit integers division requires more than 21
cycles while multiplication and addition need respectively 1 and 0.5 cycle (see Agner
Fog instructions table2). Of course, one can circumvent the divisions using any of
the Barrett or Montgomery methods presented in section 3.2. Nevertheless, this still
provides at least a factor of two of slowdown. In [Har14] a similar technique of delayed
modular reduction is used to speed-up FFT transforms over prime field in practice. Using
similarity with BLAS convention, we call fgemm the general matrix multiplication over
Fp.

Another key idea in [DGP02] to improve fgemm performance is to couple delayed modu-
lar reduction with hybrid fast matrix multiplication, that is to use Strassen-Winograd
algorithm [Str69; Win71] for few levels of recursion and then switch to the naive algo-
rithm. The latter cubic matrix multiplications are done very efficiently using numerical

2https://www.agner.org/optimize/instruction_tables.pdf
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libraries (GOTO BLAS/OPEN BLAS [GG08], MKL [Int07], ATLAS [WPD01]) that take
advantage of cache optimization and pipelined vector instructions. This choice leads
to fix δ = 53 or δ = 24 as either double or float are used, the latter being twice
faster in practice. Using int64_t would allow δ = 64 but the performance of integer
units are never better their floating point counterpart: sometimes halved and sometimes
equivalent (see [Ppub-Gio14]). Furthermore, no standard equivalence to BLAS library
exists for integer types yet.

Using Strassen-Winograd with delayed arithmetic incurs intermediate growth in the
matrix coefficients that affects the threshold of the modular reductions. If t levels of
recursion are used, we show in [Jpub-DGP08] that the reductions can be totally delayed
as soon as

9t
j n

2t

k

�

p− 1
2

�

< 2δ.

As mentioned in [Per14], a better adaptation of this threshold can be done as only few
of the recursive calls are really matching this bound. In practice, the FFLAS-FFPACK
code for fgemm is using such adaptive criteria by keeping track of matrix coefficient
bounds through all recursive calls. From that approach one is able to reach performance
for fgemm that are similar to or better than its numerical analogues: dgemm for double
or sgemm for float. Nevertheless, the larger the p the higher the number of modular
reductions. When n is too large, splitting the matrix in blocks of smaller dimension is
used so as to ensure the validity of delayed reduction. As seen in [Per14], the overhead of
modular reductions remains limited in practice and it does not prevent from a sub-cubic
time behavior. In particular, our work to provide SIMD implementation of Barrett’s
method for matrices and vector in FFLAS-FFPACK has been crucial for reducing the
impact of these reductions. We have conducted this work in FFLAS-FFPACK with our
PhD student B. Vialla and also with B. Boyer. Note that similar effort have been done
independently in the Mathemagix library [HLQ16].

Reduction to matrix multiplication: Following the work of Strassen [Str69] providing
sub-cubic matrix inversion of dense matrices over a finite field, several other problems
have been reduced similarly to matrix multiplication: LUP factorization, determinant
[BH74]; LQUP factorization, rank and kernel basis [IMH82]; characteristic polynomial
[PS07], rank profile [DPS15]. All these problems rely mainly on matrix multiplication
and matrix inversion. However, in most cases, inversion can be replaced with triangular
system solving to lower the constant in the reduction [Jpub-DGP08]. The latter operation,
called ftrsm, consists in finding the unique solution matrix X ∈ Fm×n

p of the triangular
linear system T X = B where B ∈ Fm×n

p and T ∈ Fn×n
p have a triangular shape. The

reduction to matrix multiplication is easily achieved with a recursive divide-and-conquer
strategy. In [Jpub-DGP08] we provide a hybrid recursive algorithm for ftrsm that
enables delayed modular reduction. In particular, we show that delaying completely the
reduction incurs an exponential growth of the coefficients, and it is only relevant for
small p. Nonetheless, we prove that this growth can be better controlled by performing
the reduction only before and after the last recursion step, obtaining then the same
bound as for matrix multiplication. Building the LQUP factorization of [IMH82] on
top of our delayed fgemm and ftrsm, and managing the operation in such a way the
input matrix is overwritten with the result matrix, allows to reach high efficiency for
linear algebra operation over Fp. In particular, this achieves performance similar to
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the ones LAPACK numerical libraries [And+99]. Since then, many other efforts have
been done to provide faster fgemm code : improving memory management [Boy+09]
or exploiting asymptotically faster algorithm [BD16]; and also to design better matrix
factorization algorithms: revealing more structural information [DPS15] or allowing
better parallelism [Dum+16a; Dum+14]. A survey on most of these improvements is
provided in Pernet’s HDR manuscript [Per14].

4.2.2 Multi-precision prime fields

Of course, the limitation of that method is that the prime p must satisfy p < 226. While
interesting work is done in the numerical community to provide BLAS and LAPACK
libraries for extended precision (double-double, quad-double, ...), the relative perfor-
mance of these libraries (XBLAS3, MPACK4) are far from being linear with the precision.
In fact, it is almost quadratic as subquadratic techniques often incur too many numerical
errors. Furthermore, these libraries might use extended precision only for internal
computation. It is then neither appropriate nor efficient to rely on such software for
computing with prime p that are beyond 226.

Integer matrix multiplication: Extending the bit length of p beyond the word-size
makes the algebraic complexity of matrix multiplication not as tight as it could be.
In such a case, the cost of arithmetic with matrix coefficients is no more unitary and
depends on the length of the prime p. In particular, with the classical approach we
get a complexity of O(MM(n)I(k)) = O(nωI(k)) word operations for multiplication of
matrices of dimension n over Fp with p < 2kδ. This complexity can be improved by
looking at the problem of integer matrix multiplication. Table 4.1 below summarizes the
main known complexity results for the multiplication of n× n matrices with their entries
having at most k words. We consider d = O(k+ log(n)/δ) that is roughly the number
of words for the coefficients in the matrix product. Note that mapping back the result to
Fp does not change these complexities as the modular reductions need O(n2I(d)) word
operations.

Tab. 4.1: Summary of asymptotic complexity for integer matrix multiplication

Method Word operations
algebraic algorithm nωI(d)
multi-modular naive nωd + n2d2

multi-modular [Jpub-Dol+18] nωd + n2dω−1

multi-modular [BM74] nωd + n2I(d) log(d)
Kronecker segmentation and [BS05]

�

nωk+ n2M(k)
�

I(log(kn))
Kronecker segmentation and [HH18] nωkI(log(kn)) + n2I(k)

The multi-modular method aims to compute the matrix product using the RNS represen-
tation. Assuming the moduli of the RNS basis hold in a machine word-size, that is below
2δ, the number of moduli needed to recover the integer matrix product is O(d). There-
fore, the modular matrix multiplications cost O(nωd) word operations. The remaining
part of the complexity depends on the choice of the algorithm for the RNS conversions,
see Section 3.3. The Kronecker segmentation method aims to use polynomial arithmetic.

3https://www.netlib.org/xblas/
4http://mplapack.sourceforge.net
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The technique is to split the k-word integers into size-k polynomials having their co-
efficients less than 2δ, and perform the polynomial matrix product over Zm[X ], with
m> 22δ+log(kn). Using the fast polynomial evaluation/interpolation technique of [BS05]
to perform the polynomial matrix product yields the announced complexity. The tech-
nique developed in [HH18] is to use a splitting that gives a smaller polynomial degree of
O(k/ log(kn)), and to replace the composite integer m with a prime p = O(k/ log(kn)).
In particular, it performs the product modulo pλ using lifting technique and it uses
Bluestein’s FFT trick [Blu70] to reduce the evaluations/interpolations of the polynomial
matrices to integer matrix products. Choosing good parameters makes the latter integer
matrix product to have integer entries with roughly log(kn) words and it allows to
remove the logarithmic factors of the polynomial matrix evaluation/interpolation phase.
For practical applications, the Kronecker approach can be simplified since the memory
constraint implies that log(kn)< δ. Indeed, the maximal number of words that can be
stored on a single computer is bounded by 2δ which means that n2k < 2δ. Therefore,
using three-prime FFT technique [Pol71] with m = p1p2p3 such that p1, p2, p3 < 2δ

allows to hide the factor I(log(kn)). Of course, the latter approach still incurs a constant
overhead.

When the number of words is larger than the matrix dimension, say n= O(log(k)), the
best theoretical algorithm is the one in [HH18]. However, it is better in practice to
rely on Kronecker segmentation and the three-prime FFT to provide a more efficient
computation. While no implementation of [HH18] exist yet, similar performances might
be hard to reach: the authors already suggest not to use their algorithm in practice. We
shall mention that the fast multi-modular approach incurs a log(d) factor that cannot be
optimized out with CRT as for Kronecker, which makes the latter more suitable in practice.
When the matrix dimension is larger than the integers length, i.e. k = O(log(n)), any of
the multi-modular approaches would be the most efficient since the cost is dominated
by the modular matrix product. When k = O(n) the situation is less clear and all
algorithms can be competitive. This clearly depends on the level of optimizations in the
implementations.

Our work in [Jpub-Dol+18] illustrates that such optimizations can make a difference
in practice. In particular, we use our simultaneous conversions with RNS, presented in
Section 3.3.2, together with our highly efficient fgemm code to provide efficient integer
matrix multiplication in FFLAS-FFPACK. In particular, we re-use similar parameters
as in Section 3.3.2. We set β = 2, t ′ = 16 and choose the maximum value of t such
that n 22t ¶ 253 (modular matrix multiplication constraint) and s′2t+t ′ ¶ 253 (RNS
constraint). As an example, with t = 20 our code is able to handle matrices up to
dimension 8192 with entries up to 189 KBytes (' 220.5 bits).

Figure 4.1 reports the timings of integer matrix multiplication for different matrix entries
bit length (abscissa of plots) and different matrix dimensions (4 different plots) that are
representative of all different ranges of parameters. We compared ourselves with FLINT
[Har10], and Mathemagix [Hoe+12] :

• FLINT provides two implementations: the algebraic algorithm FLINT (classic)
with some hand-tuned inline integer arithmetic, and the multi-modular algo-
rithm FLINT (multi-modular) which uses the fast divide-and-conquer tech-
niques [BM74] for conversions to and from the RNS.
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• The Algebramix package of the Mathemagix library provides three implemen-
tations: the algebraic algorithm, the multi-modular one and the Kronecker seg-
mentation with FFT. MMX (kronecker-fft) reduces multi-precision integers to
polynomials over single-precision integers via Kronecker substitution, and then per-
forms FFTs on these polynomials [HLQ16, Section 5.3]. MMX (multi-modular)
plot corresponds to a hybrid multi-modular approach that uses both quadratic and
fast RNS conversions [BM74].

• The FFLAS entry corresponds to our multi-modular implementation [Jpub-Dol+18].

Fig. 4.1: Timings for multi-precision integer matrix multiplication (Intel Xeon E5-2697 2.6 GHz,
using single thread)5
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From Figure 4.1, we see that our method improves performance in every cases for some
initial range of bit length. However, when the matrix dimension increases, the benefit of
our method also tends to increase. We should mention that Kronecker method has the
best asymptotic complexity in terms of integer bit length but it turns out to be the worst
with respect to matrix dimension. This is confirmed in Figure 4.1 where for k = 212, MMX
(kronecker-fft) is the fastest code for small matrix dimensions (e.g. n= 32) while
it becomes the worst for larger ones (e.g. n= 512). As mentioned above, the level of
optimizations brought by the extensive use of efficient matrix multiplication, even for
RNS conversions, gives a little advance to our approach for the setting k = θ (n).

Reduction to matrix multiplication: Integer matrix multiplication and modular re-
duction are the main core operations for fast algorithms in dense linear algebra over
multi-precision prime fields. In particular, it is sufficient to plug any integer matrix
multiplication algorithms presented above in the classical reduction to yield an efficient
method. While with word-size primes this approach leads to the most efficient algorithm,
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for multi-precision ones it seems not to be the case. To illustrate this, we consider the
problem of ftrsm for an upper triangular matrix A∈ Fn×n

p and a matrix B ∈ Fn×n
p . The

following splitting of the problem AX = B gives the reduction to matrix multiplication
complexity in the algebraic setting:

�

A1 A2
A3

�

︸ ︷︷ ︸

A

�

X1
X2

�

︸︷︷︸

X

=

�

B1
B2

�

︸︷︷︸

B

with A1, A2, A3 ∈ F
n
2×

n
2

p and X1, X2, B1, B2 ∈ F
n
2×n
p .

Indeed, it is sufficient to solve :

• A3X2 = B2 with a recursive call
• D = B1 − A2X2 with fgemm
• A1X1 = D with a recursive call

The complexity satisfies the recurrence T(n, n) = 2T(n/2, n) +MM(n/2, n/2, n). As-
suming n = 2t , we have T(n, n) = O(nω) operations in Fp. Let us now assume that p
is a k-word prime (i.e. p < β k) and fgemm costs O(nωd + n2d2) word operations with
d = O(k+ log n) . The resolution of the recurrence gives T (n, n) = O(nωd+n2d2 log(n))
word operations, which is slower than matrix multiplication by a factor log(n) when
k = O(nω−2). This situation arises for every integer matrix multiplication where a log(n)
shows up in the complexity terms that are quadratic in the matrix dimension. The
classical approach that maps the whole original problem to a sufficiently large RNS basis
does not give any improvement as it would imply to recover a rational solution that has
entries of O(nk) words, see [Jpub-DGP08, Theorem 4.2].

Nevertheless, if fgemm is based on multi-modular approach, our delayed approach of
[Jpub-DGP08] allows to remove this log(n) factor. Indeed, the integer growth within
trsm is coming mainly from the linear combinations of the previous computed result:
this corresponds to the computation A−1

1 D = A−1
1 (B1 − A2X2). As remarked in [Jpub-

DGP08, Section 4.3], reducing both (B1 − A2X2) rem p and A−1
1 D rem p allows to keep

the coefficients below n(p− 1)2. Using this remark, we can almost perform the whole
computation of ftrsm within an RNS basis larger than n(p− 1)2. Indeed, all internal
calls to integer matrix multiplication will fit this setting except for each final recursive
level. For these latter cases, the row matrices D and X1 of dimension 1× n have to be
reduced modulo p. The latter operations amount to 2n conversions between integers
and RNS representations for total cost of O(n2d2) word operations, thus removing the
log(n) factor. A similar remark has been done in [DPS13] to reduce the number of
delayed modular reductions in ftrsm. Of course, we can reach O(n2I(d) log(d)) using
fast RNS conversions, or O(n2dω−1) with our simultaneous approach of Section 3.3.

In practice, it is even possible to obtain a better speed-up by avoiding the use of RNS
conversions inside the algorithm; only the inputs and the output are converted. Indeed,
the problem of modular reduction within an RNS basis, and more generally the extension
of RNS bases was well studied [ST67]. The main idea is based on the CRT. Any integer
0 ≤ A < M = Πs

i=1mi for co-prime mi ’s is uniquely determined from its residues
ai = |A|m1

= A rem mi:

A=

� s
∑

i=1

|aiui|mi
Mi

�

−αM ,
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where Mi = M/mi , ui = (1/Mi rem mi) for 1≤ i ≤ s, and 0≤ α < s.

Reducing the right hand side of this equation modulo p gives a method for a partial
modular reduction in RNS basis. Let (z1, . . . , zs) ∈ Zs

≥0 and p ∈ Z>0 with

zi =

�

�

�

�

�

s
∑

i=1

�

�|aiui|mi

�

�

p |Mi|p − |αM |p

�

�

�

�

�

p

rem mi for 1≤ i ≤ s. (4.1)

The unique integer Z satisfying the relation zi = Z rem mi for 1 ≤ i ≤ s is such that
Z ≡ A rem p and 0≤ Z < p

∑s
i=1 mi. Assuming p < β k and the mi ’s to be less than β t

this approach yields a partial reduction modulo p: going from β st to β logβ (s)+k+t .

The main difficulty in Equation (4.1) is to know the value of α from the CRT without
computing the integer Z . However, α being a quotient, it can be determined by

α=

� s
∑

i=1

|aiui|mi

mi

�

While this computation remains costly using rational numbers, some speed-ups are
obtained using either modular arithmetic with ms+1 > s [SK89], or floating point
arithmetic [MS90] or fixed point arithmetic [Ber95]. The two latter approximated
methods are of course faster in practice. Note that α < s which means that all the
s2 values of |αM rem p|mi

for 0 ≤ α, i < s can be easily precomputed and stored in a
table.

Assuming that we are given r integers (A1, . . . , Ar) by their residues |A j|mi
for 1 ≤

j ≤ r and 1 ≤ i ≤ s, the summation in Equation (4.1) corresponds to the matrix
multiplication

H =





|M1|p rem m1 . . . |Ms|p rem m1
...

...
|M1|p rem ms . . . |Ms|p rem ms



×





|A1u1|m1
. . . |Aru1|m1

...
...

|A1us|ms
. . . |Arus|ms



 .

Computing
�

�|Hi, j|p − |α j M |p
�

�

mi
for 1≤ i ≤ s and 1≤ j ≤ r allows to get the evaluation of

Equation (4.1). Here, α j stands for the value α in the CRT for A j . Assuming all possible
constant values are precomputed and r = O(s), this approach costs O(rsω−1I(t)) word
operations. This approach is similar to the simultaneous conversions with RNS given in
Section 3.3.2.

The classical approach for modular reduction in RNS would use back and forth con-
versions interleaved with a reduction modulo p. In particular, this would induce: r
integer reconstructions from RNS, r integer reductions modulo p and r multi-modular
reductions to RNS. In fact, our approach trades the r reductions modulo p to only
s of them, for |Mi rem p|, and the r multi-modular reductions to RNS to s of them,
corresponding to |Mi rem p|. Furthermore, if several modular reductions within RNS
representation must be done, the latter precomputations are amortized. This is typically
the case for ftrsm where n simultaneous RNS modular reductions are done n times.
This will provide some gain as soon as s < n2.
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This approach can be used in the delayed ftrsm with n equations over Fp, as soon as
the RNS basis satisfies the following constraint:

m(p− 1)2 <
Πs

i=1mi
∑s

i=1 mi

Some preliminary results of this method in the FFLAS-FFPACK library shows practical
improvement in many cases against the classical reduction scheme to fgemm.

PLUQ factorization: Following similar thoughts, the fast algorithms for classical matrix
factorizations (LQUP [IMH82], PLE/CUP [JPS13], Gauss Jordan [Sto00], . . . ) incur a
similar logarithmic factor in their complexity over multi-precision prime fields. This result
is precisely established for Gauss Jordan algorithm in [Sto00, Corollary 2.12], where
the complexity is O(nωd + n2 log(n)I(d) log(d)) word operations for n by n matrices.

The fast PLUQ factorization provided in [DPS13] is a good candidate to avoid the
spurious log(n) factor and to make the complexity exactly the one of fgemm. Indeed, as
remarked in [DPS13, Theorem 4], using delayed modular reductions allows to reduce the
number of modular reductions from O(n2 log(n)) to only O(n2) for factoring A∈ Fn×n

p .
As for ftrsm, delaying the modular reduction in PLUQ factorization makes the matrix
coefficients bounded by n(p− 1)2 during the course of the algorithm. Therefore, using
an RNS basis larger than this bound and converting only the coefficients that have to be
reduced modulo p, or the ones that have to be checked to be non-zero (pivot search)
yields an algorithm of complexity O(nωd + n2I(d) log(d)) word operations, matching
with the one of fgemm.

Similarly to ftrsm, we can use our fast simultaneous modular reduction in RNS to
further speed-up the latter approach. In that case, the RNS basis must be chosen so
that

m(p− 1)2 <
Πs

i=1mi

(
∑s

i=1 mi)2
.

Indeed, the matrix coefficients during the course of the algorithm are now bounded
by m(p − 1)2(

∑s
i=1 mi)2. Note that checking divisibility by p in RNS remains hard to

improve and we revert to back and forth conversions. A more precise study of the
number of these conversions must be done as it could be as large as n2 in the worst case.
Here again, preliminary results in FFLAS-FFPACK library shows good improvement in
practice.

4.3 On the computation of approximant bases

Approximant bases, also called order bases or sigma-bases, are a central tool in the
recent advances in linear algebra over K[X ]. Indeed, many problems have been reduced
to polynomial matrix multiplication through the use of minimal approximant bases, see
Figure 1.1.
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Let F =
∑

i≥0 FiX
i ∈ K[[X ]]m×n be a matrix of power series and σ a positive integer. A

vector p ∈ K[X ]1×m is called an approximant of F at order σ if

pF ≡ 0 mod Xσ.

The set of all such approximant vectors forms a free K[X ]-module of rank m, which
we define as Aσ(F) = {p ∈ K[X ]1×m

�

� pF ≡ 0 mod Xσ}. An approximant basis for
(F,σ) is then a basis ofAσ(F). In order to allow the efficient computation of such bases,
algorithms have been designed to find the minimal bases according to their row degree
(using lexicographic order). The latter quantity, corresponding to the vector of maximal
degree of each row, aims at bounding the "size" of a polynomial matrix, i.e. the number
of coefficients in K. More precisely, minimal approximant bases are the ones that are
row-reduced [VB92]. In order to provide a better control of this row degree during the
course of the algorithms, the notion of minimality is extended to shifted row degree. This
notion only amounts to taking the row degree where each row entry is shifted by a power
of X accordingly a vector s ∈ Zm: rdeg([a1, . . . , am]) = rdegs([a1X s[1], . . . , amX s[m]]).
This new quantity is compliant with matrix multiplication and it is useful for bounding
intermediate matrices during the course of the algorithms. Consequently, shifted minimal
approximant bases, or s-minimal approximant bases are the ones that have minimal
s-row degree, or similarly that are s-row reduced. Note that this degree extension
captures a more general framework that allows to compute classical normal forms, such
as Hermite or Popov form, as a specific shifted minimal approximant basis [BLV99;
BLV06].

Fast algorithms: Beckermann and Labahn provide in [BL94] the very first efficient
algorithm that uses a divide-and-conquer approach on the order σ, yielding a complexity
of O (̃(m2n+ n2m)σ) operations in K. In [Cpub-GJV03] we adapt their algorithm to
incorporate fast matrix multiplication, thus obtaining a complexity of O (̃mωσ). While
being faster for n = O(m), our result could not handle shifted minimal basis and
the case n � m provides an overshoot in the complexity, especially with n = 1 that
encompasses Hermite-Padé approximants. The latter case has been solved partially in
[Sto06] where only terms of the basis of degree no more than O(

� nσ
m

�

) are computed in
time O (̃mω

� nσ
m

�

). The salient idea is to transform the vector problem with order σ to
a roughly square matrix problem of smaller order O(

� nσ
m

�

), and re-use [Cpub-GJV03].
[ZL12] follows this approach to derive an algorithm for computing minimal basis of
any n and m at a cost of O (̃mω

� nσ
m

�

). Furthermore, their algorithm is able to find
shifted minimal bases for balanced shifts (those having their values in an interval of size
O(
� nσ

m

�

)), and small unbalanced shifts (those having their values in an interval of size
O(nσ). The latter restrictions are due to the size of minimal approximant bases that
can be in Θ(m2nσ) for very unbalanced shifts [Jea+16, App. B]. Of course, the latter
cases are not reachable in the targeted complexity. In such a case [Jea+16] proposes
to use further restriction on the minimal bases, that is to compute their shifted Popov
canonical form that is always of size O(mnσ). The algorithm provided in [Jea+16]
achieves a complexity of O (̃mω

� nσ
m

�

) for arbitrary shifts. In fact, this algorithm solves
the more general case of approximants that are defined such that pF ≡ 0 mod X d,
where d = (d1, . . . , dn) ∈ Zn

≥0 and the modular reduction X d is done columnwise (i.e.
(pF)1, j mod X d

j ). The obtained complexity is O(mω−1D) with D =
∑n

i=1 di. Note that
the previous case ofAσ(F) is encompassed by setting d = (σ, . . . ,σ). Interested reader
on the details of all these results can find a nice survey in [JNV19] and [Nei16a].
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4.3.1 Reduction to matrix multiplication

In [Cpub-GJV03], we provide an algorithm called PM-Basis that reduces the computation
of minimal approximant basis of Aσ(F) to the product of polynomial matrices. The
main ingredients behind our approach can be outlined with the following two lemmas.

Lemma 4.3.1. Let A, B ∈ K[X ]m×m with B invertible, ~u-row reduced and of ~u-row degree
~v. Then the ~u-row degree of AB is equal to the ~v-row degree of A and AB ∈ K[x]m×m is
~u-row reduced if and only if A∈ K[x]m×m is ~v-row reduced.

Lemma 4.3.2. Let P(1) ∈ K[X ]m×m
≤δ1

be a minimal approximant basis ofAδ1
(F) with row

degree ~v and P(2) ∈ K[X ]m×m
≤δ2

be a ~v-minimal approximant basis ofAδ2
(X−δ1 F mod Xδ2)

with row degree ~u, then P = P(2)P(1) ∈ K[X ]m×m
≤δ1+δ2

is a minimal approximant basis of
Aδ1+δ2

(F) and ~u is its row degree.

Lemma 4.3.1 is a consequence of [Zho12, Lemmas 2.14, 2.18] and it is a key observation
to prove Lemma 4.3.2, which appears first in [BL94, Theorem 6.1]. Using these two
lemmas, one can derive the divide-and-conquer approach on σ by setting δ1 = δ2 = σ/2
and reduce the computation to multiplication of polynomial matrices in K[X ]m×m

≤σ/2. The
remaining ingredient is the final recursion step that aims to computing a minimal
approximant basis at order 1. This problem is equivalent to finding some particular row
echelon form of a matrix kernel in Km×n. In [Cpub-GJV03] we show this can be done
using any matrix factorization revealing the low row rank profile of the constant term
of the given matrix, after some row permutations related to the shift. The complexity
is O(MM(m, n, r)) = O(mnrω−2) operations in K where r is the rank of the matrix.
Applying the divide-and-conquer strategy (DAC) yields the algorithm PM-Basis of [Cpub-
GJV03] and gives the complexity O (̃mωσ).

4.3.2 Fast iterative algorithms

Let us assume that algorithm Basis(F0,~s) computes a minimal basis for A1(F0) for
given F0 ∈ Km×n and ~s ∈ Zm. The algorithm M-Basis of [Cpub-GJV03] is a slow iterative
variant of PM-Basis. It computes a minimal basis of F ∈ K[[X ]]m×n at order σ by
computing iteratively all minimal basis of order 0 < i ≤ σ of F . This approach is
equivalent to using δ2 = 1 in lemma 4.3.2. This approach has a complexity of O(mωσ2)
due to the unbalanced degrees in the polynomial matrix multiplication p(2)p(1) and
X−i p(1)F mod X .

The efficiency of PM-Basis is indeed obtained exclusively by balancing the degree of
p(2) and p(1), the calls of Basis remaining identical. This approach of balancing the
degree is classical in computer algebra to get quasi-linear time complexity: see fast
multi-modular reduction/reconstruction [BM74] or fast gcd [Knu70; Sch71]. We now
provide a variant of M-Basis that achieves similar complexity to PM-Basis by deferring
polynomial matrix multiplication to only the balanced degree cases [Cpub-GL14a]. It
can be seen as the derecursivation of PM-Basis where the stack of recursive calls are
handled by hand.

Let ν2(k) be the 2-valuation of a positive integer k that is ν2(k) = n1 if k =
∑r

i=1 2ni is
the binary decomposition of k with n1 < · · · < nr . By convention ν2(0) = +∞. The
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main idea behind our fast iterative variant is to link the recursive levels of PM-Basis
to the binary decomposition of k. Indeed, an approximant basis at order k is made
from k products of polynomial matrices of degree at most 1. However, using the binary
decomposition of k such an approximant basis is also the product of at most r polynomial
matrices of degree 2ni where k =

∑r
i=1 2ni as defined above. Such polynomials matrices

are roughly the one computed by PM-Basis. Our delayed approach consists in keeping
such product unevaluated and only perform polynomial matrix products of the same
degree.

When computing a new approximant at order k, the value ν2(k) tells us how many
products can be merged with the unevaluated approximant basis at order k − 1. In
particular, this corresponds to the number of completed recursive levels in PM-Basis.
Similarly, the value ν2(k− 2ν2(k)) indicates how many levels of recursion we have to go
back to find the series used in this step k . The algorithm 7 (called iPM-Basis) given
below implements this strategy. It performs exactly the same computation as PM-Basis
when σ = 2t and it has a complexity of O (̃mωd) operations in K.

Algorithm 7 iPM-Basis (F,σ,~s)

Input: F ∈ K[[X ]]m×n, ~s ∈ Zm and σ ∈ Z≥0
Output: P ∈ K[X ]m×m and ~u ∈ Zm

1: F (∞) = F
2: M0, ~u0 = Basis(F mod X ,~s )
3: for k = 1 to σ− 1 do
4: v = ν2(k), v′ = ν2(k− 2v)
5: M (v) = ((Mk−1 ·M (0)) ·M (1)) · · ·M (v−1)

6: F (v) = X−2v
M (v)F (v

′) mod X 2v

7: Mk, ~uk = Basis(F (v) mod X , ~uk−1)
8: Let

∑r
i=1 2ni be the binary decomposition of σ

9: M (n1) = ((Mσ−1 ·M (0)) ·M (1)) · · ·M (n1−1)

10: return (M (n1) ·M (n2)) · · ·M (nr ), ~uσ−1

Note that a similar iterative algorithm for fast multi-modular reconstruction has been
proposed in [DGR10]. In the latter work, the recursive call stack is handle through a
radix ladder rather than an explicit approach with the valuation in two of the indices. In
particular, such iterative approach is used to design finer early termination strategy.

The design of iPM-Basis followed similar motivations, and especially in the context of
block Wiedemann algorithm. Indeed, in that specific case, the coefficients of the matrix
power series F are given by the computation of (UAiV )i≥1, that is done iteratively as
UA(Ai−1V ). While it is expected the number of coefficients of F to be 2N/n+O(1), the
argument remains probabilistic [Cop94]. In some specific cases, this bound might be
loose as experimented in [Cpub-Dum+07]. Theorem 2.12 of [KV05] gives a tighter
bound by looking at the invariant factors of the characteristic matrix x IN−A. Let µ be the
sum of the degrees of the n largest invariant factors of x IN − A. Then, a minimal matrix
generating polynomial of

∑

i≥1(UAiV )X i can be derived from an approximant basis at
precision dµ/me+ dµ/ne+O(1) [KV05; Tur06]. When the values of µ are assumed to
be smaller than the matrix dimension, early termination could be valuable. A classical
heuristic termination method is to check if the meaningful rows of the approximant
basis keep the same row degree during few consecutive orders. This condition is similar
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to getting consecutive zero discrepancies in the Berlekamp-Massey algorithm [KL03].
However, such condition does not allow to minimize the dependency on the coefficients
of the series within fast algorithms. Indeed, step 6 of iPM-Basis (and similarly in
PM-Basis) computes at step k a matrix middle product with the coefficient of F possibly
up to 2k, e.g. when k = 2ν2(k). It is then possible that the number of coefficient of
the series is overshot by a factor two, which makes early termination not as efficient
as it could be. We propose in [Cpub-GL14a] to use the online computation model to
circumvent the latter problem.

Online computation The online computation model aims at providing a framework
where the input (resp. output) symbols are read (resp. written) sequentially with the
constraint that the k-th output symbol is issued before reading the (k + 1)-th output
symbol. This model is interesting to capture inputs that are implicitly defined by a
recursive equation. The online computation model has been revived in computer algebra
in 1997 by van der Hoeven for power series multiplication [Hoe97]. While the model has
existed in computational complexity since the late ’60s [Hen66], only [FS74] proposes a
non trivial idea to achieve fast integer multiplication in this model. Of course, almost all
naive algorithms for classical operations on integers or polynomials fit well this model:
only the first k input coefficients are needed to provide the first k coefficient of the result.
However, it is not trivial to find their fast equivalent in this model.

[Hoe97] uses this model to capture the dynamic precision of classical computation
with power series and he provides a quasi-linear time algorithms for the truncated
multiplication (short product). Since then, complexity refinements were obtained and
few extensions to other problems were also proposed: improved truncated multiplica-
tions [Hoe02; Hoe03; Hoe07; LS16; Hoe14], resolution of system of equations (linear,
algebraic) [Hoe02; BL12; Leb15] , (q)-differential) [Bos+12]. Many of these results
are also valid with p-adic numbers; see Lebreton’s PhD thesis [Leb12]. As a general
remark, it is always the case that fast online algorithms incur a non-constant increase
in their complexity compared to their offline quasi-linear variants. In particular the
early result [Hoe97; Hoe03] on fast online power series multiplication at precision n
gives a cost of O(M(n) log(n)) operations in K while the best known result to date is

O(M(n)e2
p

log(2) log log(n)) [Hoe14].

Usually online algorithms assume that all inputs follow the model: each input is discov-
ered iteratively. However, an half-line variant is defined for functions having multiple
arguments. The idea is that not all arguments are online, a few of them being known
completely in advance. For power series product, this means one of the two operands is
known in advance. We propose in [Cpub-GL14a] to adapt the half-line truncated power
series of [Hoe03] to the need of iPM-Basis algorithm. To this end, we use the fact that
the update of the series F in iPM-Basis (and also in PM-Basis) are just specific middle
products: X−2νM (ν)F (ν

′) mod X 2ν . Here the coefficients of M (ν) are completely known
while the ones of F (ν

′) can be discovered iteratively using half-line approach. Figure 4.2
illustrates such half-line middle product with a polynomial A=

∑7
i=0 AiX

i completely

known in advance and a polynomial B =
∑14

i=0 BiX
i known partially up to the degree 7.

The meaning of this figure is that sums of diagonal elements correspond to coefficients in
the middle product. The integer values in the colored shapes indicate at which iterative
step the corresponding products are computed. For instance the first coefficient of
the middle product in computed directly at the beginning because all coefficients of
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Fig. 4.2: Shifted half-line middle product

both operands are known. On the contrary, the last coefficient is only computed after
7 iterations when B14 is known: it is made from the sum of coefficients computed at
iterations 0,4,6 and 7. Remark that each step is made of classical middle-products or
short-products.

Replacing line (6) in iPM-Basis algorithm with such half-line middle product yields
our online algorithm, called oPM-Basis, for the computation of minimal approximant
basis. Its complexity is O (̃mωσ) operations in K. As originally mentioned in [Cpub-
GL14a] an extra log(σ) factor is hidden in this notation compared to the complexity of
PM-Basis and iPM-Basis. We shall mention that our latter result is in fact improved
by the faster online power series multiplication in [Hoe14], thus reducing the factor to

e2
p

log(2) log log(n) = o(log(n)).

In [Cpub-GL14a], we demonstrate with some experiments that this extra log factor does
not impact too much the performance in practice. We also emphasize its benefit for early
termination in block Wiedemann algorithm. In particular, this means that we can expect
at most a factor two speed-up when the cost of computing coefficients of the matrix
power series

∑

i≥1(UAiV )X i dominates. Figure 4.3 illustrates this with time comparisons
of the first two parts of the block Wiedemann algorithm: computation of the series
∑

i≥1(UAiV )X i and its minimal matrix generating polynomial through approximant
basis. Here the matrix A is square of dimension 217 with coefficients over Fp for a 23-bit
prime p. The block dimensions are chosen to be 16 which means that the matrix power
series is potentially computed up to precision 214. From this experiment we can see that
oPM-Basis removes the staircase effect of iPM-Basis that need to double the knowledge
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of the series for each power of two. Of course, when the value of early termination
is close to δ = 2t − ε for very small ε ≥ 0 the iPM-Basis algorithm might be more
efficient.

Fig. 4.3: Timing of block Wiedemann with early termination.
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4.3.3 Certification of minimal bases

While all fast known algorithms for minimal approximant bases are deterministic, it
is not trivial to efficiently verify that a given polynomial matrix is indeed a minimal
approximant basis. Such procedure might be considered useless for any deterministic
algorithms. However, with the emergence of delegating computation [GKR08], and
the use of more and more complex infrastructures and software to tackle challenging
computations [Kle+12], it appears nowadays crucial to provide such an posteriori
verification for giving more credits to the computed result. In that case, one can either
use proof of program as in [GKR08], or use dedicated algorithm to do the verification
according to the input and output. The latter approach can use extra information given
together with the output, known as a certificate, to ease the verification. The goal is
then to find optimal certificates, meaning that one can verify the solution within linear
time in the size of the problem instance. Of course, the computation of the certificate
must not dominate, and its size must remain minimal. As in delegating computation, an
interactive protocol can be used between the "prover", who does the computation, and
the "verifier" who wants to establish the correctness of the result (or the proof-of-work).
The idea is that the verifier sends challenges to the prover in order to establish a publicly
verifiable proof of the commitments. The goal in that context is then to minimize the
number of rounds of the protocol and to minimize the communication cost.

Several optimal certificates exist for most linear algebra problems on matrices over a
field or over the integer [KNS11; Kal+12; DK14; Dum+16b], but the case of univariate
polynomial has been less studied. We shall mention [Luc+18] which provides some
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work in this direction. Most of these certificates are based on interactive protocols with
possibly a constant increase of the prover time. We refer to [Dum18] for a recent survey
on efficient certificates for exact linear algebra.

Our result in this section is an almost optimal certificate for the minimal approximant
bases problem that can be verifiable within a non-interactive protocol. The time of
the prover is not affected by the computation of the certificate, and the size of the
latter is small. The main results and their proofs are provided in [Cpub-GN18]. Since
minimal approximant bases play a central role in fast linear algebra with univariate
polynomial, we believe our non-interactive certificate can help to design other efficient
non-interactive verification protocols.

Let us first recall briefly the more general problem of minimal approximant basis at
order d= (d1, . . . , dn) ∈ Zn

≥0 together with some of their properties.

For a truncated power matrix series F ∈ K[X ]m×n, we consider the K[X ]-module
Ad(F) = {p ∈ K[X ]1×m

�

� pF = 0 mod X d} where X d = diag(X d1 , . . . , X dn) is the
n× n diagonal matrix made of powers of X accordingly to the di ’s. Here pF = 0 mod X d

means that pF = qX d for some q ∈ K[X ]1×m, and the matrix power series is truncated
similarly to get F . For a shift s ∈ Zm

≥0, a matrix P ∈ K[X ]m×m is a s-minimal approximant
basis of F if and only if it is a s-row reduced basis ofAd(F) [VB92].

According to this definition, verifying that a matrix P is an s-minimal approximant basis
for a given instance (d, F, s) boils down to the following three properties on P:

1. Minimal: P is s-row reduced. Assuming T ∈ Km×m such that X−~uPX s = T +
O(X−1)X→∞ with ~u be the shifted s-row degree of P, this corresponds to T having
full rank [BLV99]. This can be assessed easily in O(mω) operations in K with fast
dense linear algebra. The matrix T is the so-called s-leading row matrix of P.

2. Approximant: the rows of P are approximants. This corresponds to verify the
truncated matrix polynomial product PF = 0 mod X d, or equivalently that PF =
QX d for a polynomial matrix Q ∈ K[X ]m×n. This can be done in optimal time
O(Size(P) + Size(F)) operations in K using our result given in Section 2.2.2.

3. Basis: the rows of P generates the moduleAd(F).

While the first two properties can be verified efficiently, the last one seems harder
without any other information than F and d to describe the module. The following
lemma establishes a relation between approximant basis and kernel basis that serves to
ease the verification of the latter point. It will naturally help to define our certificate.

Lemma 4.3.3. Let d ∈ Zn
≥0, F ∈ K[X ]m×n, and P ∈ K[X ]m×m. Then P is a basis ofAd(F)

if and only if there exists Q ∈ K[X ]m×n such that [P Q] is a kernel basis for [FT −X d]T. If
this is the case, then we have Q = PFX−d and there exist V ∈ K[X ]m×m and W ∈ K[X ]m×n

such that PV +QW = Im.

From this lemma, we have shifted our problem of being a basis ofAd(F) to the one of
[P Q] being a kernel basis. The following theorem proven in [Cpub-GN18] shows that
only the knowledge of C =Q(0) ∈ Km×n is in fact necessary to ensure P is a basis, and
therefore C could serve as certificate.
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Theorem 4.3.4. Let d ∈ Zn
≥0, F ∈ K[X ]m×n, and s ∈ Zm. A matrix P is an s-minimal

approximant basis ofAd(F) if and only if the following properties hold:

(i) P is s-reduced;

(ii) det(P) is a non zero monomial in K[X ];

(iii) the rows of P are inAd(F), that is, PF = 0 mod X d;

(iv)
�

P(0) C
�

∈ Km×(m+n) has full rank, where C is the coefficient of degree 0 of PFX−d.

Using this theorem and assuming the matrix C is given, we provide in [Cpub-GN18]
a Monte-Carlo algorithm that verifies that a given polynomial matrix P is a s-minimal
approximant basis ofAd(F) at a cost of O(Size(P)+Size(F)+mω−1(m+ n)) operations
in K. The algorithm is always correct when returning false, while the probability of
error of a true answer is less than 1/2 when K contains at least 2(D+ 1) elements with
D =

∑n
i=1 di .

Let ∆ =
∑m

i=1 ri where rdeg(X−sP) = [r1, . . . , rm], the algorithm consists of verifying
each item as follow:

1. check (i) by computing the rank of the matrix T whose entry i, j is the coefficient
of degree ri of the entry i, j of P. If the matrix is not full rank return false;

2. check first part of (iv) by computing the rank of the matrix [P(0) C]. If it is not
full rank return false;

3. To ensure (ii), we use the fact that det(P) = X∆ [Kai80, Section 6.3.2]. Therefore,
we pick a random α ∈ S ⊂ K and check that det(P(α)) = det(P(1))α∆. If it is not
the case return false;

4. Finally, we check (iii) and the last part of (iv) by verifying probabilistically that
PF = C mod X t where t= (d1 + 1, . . . , dm + 1). If it is not the case return false;
otherwise return true;

The complexity is easily derived since all operations are either dense linear algebra over
K or evaluation of the polynomial matrices P and F . When the dense linear algebra part
over K is not dominant our algorithm is optimal. Note that this is mainly the case of
interest. In order to derive the probability of error, one need to take the maximum of
the error probabilities in step 3 and in step 4 that is no more than D/#S.

Computing the certificate: Such a verification protocol implies that the matrix certifi-
cate C ∈ Km×m, that is the term of degree 0 of PFX−d, is computed together with the
polynomial matrix P by the prover. The verifier receives this two matrices and apply
our algorithm to verify that P is correct with good probability. The cost of computing C
must be negligible compared to the computation of P. We remind that fastest known
algorithms to compute P have a complexity of T (m, D) = O (̃mω−1D) operations in K.

For example, suppose that the dimensions and the orders are balanced: m= n and d=
(D/m, . . . , D/m). The matrix C is then the coefficient of degree D/m of the polynomial
matrix product PF . Thus, C can be computed by D/m multiplications of matrices in
Km×m, which gives a cost of O(mω−1D) that is in o(T (m, D)) as expected.
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The main difficulty to obtain similar cost for the general case is that the degree of both P
and F can be unbalanced. While the column degree of F is bounded by d by definition,
no such restrictions exist in general on either the row degree or the column degree of
the minimal approximant basis P. Nevertheless, all fast algorithms with complexity
O (̃mω−1D) share the property that the size of the approximant basis P is in O(mD).
In particular, when the shift satisfies |s − min(s)| ∈ O(D) the matrix P is such that
|rdeg(P)| ∈ O(D) [VB92, Thm 4.1]. For larger shift, the use of shifted Popov form for the
basis ensures that |cdeg(P)| ∈ O(D) [Jea+16]. In such cases, we provide the following
theorem.

Theorem 4.3.5. Assuming m ∈ O(D) and either |rdeg(P)| ∈ O(D) or |cdeg(P)| ∈ O(D),
where D = |d|, one can compute the matrix C = X−dPF mod X with O(mω−1D) operations
in K if n≤ m and O(mω−1D log(n/m)) operations in K otherwise.

The main idea behind our approach is to bound the number of non zero entries of
given degree in both P and F . Let us denote δ = max(d). Hence, for every possible
degrees k < δ the number of rows of P with degree ≥ k is no more than γD/k when
|rdeg(P)| ≤ γD. A similar remark applies to F , the number of columns with degree ≥ k
is no more than D/k. Let us rewrite the matrix C as C = X−δPH mod X where the j-th
column of H corresponds to the j-th column of F multiplied by Xδ−d j .

Assuming P =
∑δ

k=0 PkX k and F =
∑δ

k=0 FkX k, we then have

C =
δ
∑

k=0

PkHδ−k (4.2)

We can therefore provide the following lemma on the number of nonzero rows of Pk
and the nonzero columns of Hδ−k.

Lemma 4.3.6. Let us define the sets Rk = {i ∈ {1, . . . , m} | rdeg(Pi,∗)} ≥ k} and Dk =
{ j ∈ {1, . . . , n} | d j ≥ k}. For a given integer 0 ≤ k ≤ δ, if i 6∈ Rk the i-th row of Pk is
zero; if j 6∈ Dk the j-th column of Fd j−k is zero. In particular, Pk has at most #Rk ≤ γD/k
nonzero rows and Hδ−k has at most #Dk ≤ D/k non zero columns.

Following this lemma, our algorithm is almost straightforward. Indeed, the idea is to
evaluate Equation (4.2) using only the relevant rows and columns of each summand :
the rows of P having their indices in Rk and the columns of H having their indices in
Dδ−k. The complexity estimate follows by using the given bound on the size of Rk and
Dk. Note that our description corresponds to the case of |rdeg(P)| ∈ O(D). The case
|cdeg(P)| ∈ O(D) implies similar techniques where both the column indices of P and
the row indices of F are chosen in the set of non-zero columns of Pk.

Note. It seems unlikely that efficient computation of the certificate can be extended
to the more general case where only the assumption on Size(F) ∈ O(mD) is made.
Indeed, our technique heavily relies on the degree structure of F to remove unnecessary
calculation and then reduce the complexity to the average row/column degree. To
our knowledge, only one fast algorithm for minimal bases approximant from [ZL12]
does not provide any degree property on F . This appears when the shift is weakly
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unbalanced: |min(s)− s| ∈ O(D). As the more general result of [Jea+16] using shifted
Popov form encompasses the latter case, this is not a problem. Nevertheless, some new
techniques avoiding the use of degree structure to compute the certificate would be
really interesting.
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5Conclusion and future work

5.1 Conclusion

This manuscript covers some of the most representative works we have achieved during
the past fifteen years on providing efficient algorithms and implementations in exact
linear algebra. Beside improving the complexity of some problems with fine tuned
algorithms, we have also provided their efficient implementations in libraries that are
internationally renowned. We think our work has been helping to improve the benefits
of using effective computer algebra for solving computational mathematics problems.

Among our results, we have shown in section 4 that reductions to matrix multiplication
is essential to obtain the best possible complexities while offering practical benefits. In
particular, our design of delayed modular arithmetic on top on numerical matrix multi-
plication yields one the most efficient solution for dense linear algebra over half-word
size prime fields to date. Extending this approach with our new RNS conversions of
Section 3.3 allows to further broaden these performances to the case of larger prime
fields. For linear algebra over univariate polynomials we have shown in Section 4.3 that
our approach with PM-Basis algorithm or its iterative variant iPM-Basis has played an
important role for fast algorithms in theory and in practice. In particular, the implemen-
tation of block Wiedemann approach can rely on such tool to get as much performance
as possible, and some of the intermediate calculation can be checked using our optimal
certificate of Section 4.3.3. Finally, for more basic arithmetic operations on integers
or polynomials, we have seen that novel faster algorithms are still reachable but it
would be hard to make them relevant in practice. In Section 2.3, we further study the
multiplication of polynomials with a new eye, aiming to provide algorithms that are
both efficient in time and memory. In particular, we exhibit a generic framework that
provides self-reductions that are time preserving while decreasing memory requirement.
While our approach is still theoretical, we believe such approach would help to design
faster code in computer algebra.

5.2 Future work

We detail in the next sections the axis or research we want to continue or to explore in
the next few years.

5.2.1 Toward better space complexity

In Section 2.3, we show that one can turn any algorithm for univariate polynomial
product (full, middle and short) into an algorithm that is in-place, meaning that no extra
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memory from the input/output are necessary. This approach is orthogonal to the ones
that have been previously done in the community and we hope this new approach will
be followed to strengthen the memory efficiency of algorithms. Following this result
many challenging tasks remain to be solved to go further in this direction.

Ad hoc optimization for specific algorithms: while we employ a general framework
to provide in-place algorithms, the extra constant arising in the time complexity might
not be satisfactory compared to the one obtained specifically for a given algorithm. In
particular, as seen in Table 2.2, we remark that dedicated in-place algorithms can exploit
some features that make these constants not too far from the original algorithms using
more memory. It is then reasonable to continue to provide such dedicated in-place
algorithms. For instance the Toom-3 method seems to be the natural candidate. Indeed,
from the description provided in Section 2.3 with linear algebra, it appears feasible to
find a factorization of the Toom-3 matrices (i.e. ∆ and Γ ) such that they can be applied
without any extra memory. Here the major difficulty will be to minimize the number
of involved extra operations. Probably, designing a partial additive variant, certainly
half-additive, should help.

Another interesting approach would be to use our general reduction scheme and optimize
it for a given algorithm or a family of algorithms. For instance, when computing the out-
of-place unbalanced multiplications in algorithm 1, one can save some time by evaluating
the smaller operands only once (it is done many times in our complexity estimate).
Similar remark applies for the interpolation of the coefficients that appear at the same
position in the output space. For all algorithms using evaluation/interpolation a few
redundant operations could be saved. Following the idea on unbalanced multiplication
given in [BZ10, Section 1.3.5], we should be able to further improve the complexity of
our reduction scheme.

Another idea would be to change the space complexity model. As mentioned in the
definition of our space complexity models, using an input space that has a read/write
access is reflecting nowadays architecture. Therefore, using this memory for storing
intermediate calculation might help. Of course, the model must ensure that original
inputs are reverted back by the end of the computation. We have some preliminary results
that provides similar space complexity as in [Roc09] for the Karatsuba middle product
in this model. It slightly improves the time complexity of our generic approach but at
an expense of a non-constant extra memory space i.e. logarithmic in the polynomial
size. Finally, the extra logarithmic factor for quasi-linear time in-place middle product
should be further studied in order to either remove it or prove it to be a lower bound.

Practicability of the in-place reductions: from Section 2.3 we’ve seen that reductions
preserving memory exist between product problems and also that any out-of-place
algorithms can be turned in-place. In order to provide efficient in-place implementations
it is therefore needed to study in more detail which path from the reductions graph,
summarized in Figure 2.4, should be taken. This has to be done for each problem and
for each possible targeted complexity. Of course, this study has to be consolidated with
extensive experimentations on various architectures in order to emphasize the most
efficient choices in practice.
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Re-use in-place products for other problems: polynomial (or integer) multiplication
is a central operation in computer algebra as many other problems reduce to it in order
to achieve the best possible asymptotic complexity. It is then meaningful to see whether
such reductions can be turned in-place by re-using our in-place products. Of course, this
implies to adapt existing algorithms for a better memory management. For instance, the
division problem seems a good candidate as it has been demonstrated in [HQZ04] that
using middle product can reduce the time complexity. In fact, the latter also reduces the
extra memory requirement. Another fundamental problem that should be studied next
is multi-point evaluation/interpolation [GG13; BS05]. Such operations are central in
computer algebra but the use of the notorious subproduct tree makes the fast classical
algorithms fall into a rather different class of problems. Indeed, classical approaches
precompute the whole subproduct tree that is larger than the output space [GG13,
Section 10.1]; this clearly makes a description of an in-place variant a relatively more
complex task. There, new algorithm designs must be invented to better take care of the
memory. This could be achieved by interleaving the computation of some nodes of the
subproduct tree whenever needed, while not storing them all. This should raise similar
approaches that have been already exhibited for online computations of polynomial
products [Leb12].

Finally, our ultimate goal would be to design an in-place fast gcd and its generalized
matrix version: e.g. minimal approximant basis. Being able to provide such an algorithm
would definitively be an asset for improving memory footprint of block Wiedemann
approach. Our idea is to exploit the particularity of the latter problem that is the input
operand (the matrix power series

∑

i>0 UAiV X i) can be replaced by a smaller one as
the algorithm goes on. We think that using this feature could help to design a better
in-place polynomial middle product and then improving the general space complexity
for the minimal approximant basis.

More generally, the holy grail in this direction would be to be design completely in-
place algorithms: meaning inputs are overwritten by the result, without having any
output space. Note this has been demonstrated feasible in linear algebra for matrix LU
factorization [JPS13] but we haven’t seen yet any such results for polynomial or integer
multiplication, even using a quadratic time complexity.

The integer case: our generic approach for in-place algorithms has been designed
essentially for polynomials. A natural question is to see if it can be applied to the integer
case that is more difficult due to carry propagation. Note that only one result reduces
the space complexity of integer multiplication in the Karatsuba case [Che16]. The latter
approach is only an adaptation from the polynomial case given in [Roc09]. A very
interesting result would be to find in-place variant for the Schönage-Strassen integer
product algorithm [SS71] that is often used in practice [GKZ07].

Harder problems: for a long time, we have in mind to design fast in-place modular
multiplication algorithm as it is important for low memory devices or low power calcu-
lations that today only employ an in-place quadratic approach [Ish+17]. Of course, our
research did not succeed yet and our experience is that the problem is really hard. One
can think of this problem through linear algebra meaning that the modular multiplication
is a linear application with a dense matrix that embeds a small structure : a sum of two
distinct linear applications. Therefore, the problem reduces to almost in-place dense
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matrix-vector product, which of course seems very hard to be turned in-place using
subquadratic approaches.

5.2.2 Certification

Relation between direct and transposed problems: Section 2.2 shows that short
product and middle product have an optimal probabilistic verification procedure, similar
to the one used for classic polynomial product. Our approach is based on using linear
map and the transposition principle [BLS03] together with Freivalds’ technique [Fre79].
In fact, our middle product verification procedure is equivalent to the multiplication of
the polynomial F = f0 + f1X + · · ·+ fn−1X n−1 by the polynomial G =

∑n−1
i=0 (αX )i for a

random α. As we demonstrated in [Jpub-Gio18] and section 2.2 the latter operation
can be done in O(n) operations. Therefore, a natural question is to see if any other
problems being described through linear maps can be optimally verified by finding a
sufficiently large family of inputs that makes the problem solvable in optimal time. In
our case, the multiplication of a polynomial with another one having its coefficients in
geometric progression is optimal and so for the transposed problem: the middle product.
Maybe a first target should be the Euclidean division which is the transposed operation
of the extension of linear recurrence [BLS03]. A consequence of an optimal verification
procedure for Euclidean division would raise the more interesting problem of verifying
modular multiplication. In the latter case, the difficulty would be to combine efficiently
the two approaches to verify the composition of the two operations: multiplication and
reduction. Of course, the goal is to have no knowledge of the quotient, otherwise the
problem is easily handled with the verification of two short products.

Extend certificate to otherminimal bases ofK[X ]-submodules ofK[X ]m: Section 4.3.3
provides an almost optimal verification procedure for minimal bases of K[X ]-submodules
of K[X ]m described by relations on polynomials modulo some powers of X . Our veri-
fication strongly uses this property. In particular, this raised the problem of verifying
truncated polynomial matrix multiplication (see Section 2.2.2 and [Jpub-Gio18]) and
we strongly use the fact that the determinant of the basis is a power of X (see Sec-
tion 4.3.3). In [VB92; BL00], vector M-Padé and matrix rational interpolant problems
are also described through K[X ]-submodules of K[X ]m and they indeed resemble our
minimal approximant basis problem. In [Jea+17; Nei16a] this resemblance is used
to provide the best asymptotic complexity for the minimal interpolant basis problem,
re-using techniques similar to [BL94; Cpub-GJV03]. It seems therefore natural to extend
our verification procedure to these problems. In the specific case of interpolant, the
submodule is described by polynomial relations modulo some (X − αi)δi for a set of
points (α1, . . . ,αn) and a set of integers {δ1, . . . ,δn}. In that case, verifying the relations
can be done efficiently by evaluating at the given points αi. For the minimal basis
verification our approach using the determinant of the basis no longer works, indeed we
do not have an a priori knowledge of its roots and their multiplicities. Nevertheless, this
information can be carried out into a new certificate as they are computed by current
fast algorithms [Nei16a]. In a more general setting, the polynomial relations in the
module is described by a multiplication matrix: in triangular form [BL00] or in block
Jordan form [Jea+17]. In those cases, the roots of the basis determinant are no longer
explicitly computed by fast algorithms. Hence, further investigations are needed to
provide a relevant certificate.
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Non-interactive certificates in linear algebra: interactive proof-of-work has been ex-
tensively used recently to prove optimal certificates in linear algebra [DKT15; DK14;
Dum+16b]. While these results have a great importance from a theoretical point of
view, their implementation might be rather complicated, even if they can be turned non-
interactive using some cryptographic hash functions. However, using such certificates to
automatically verify software seems inappropriate. We hope that providing dedicated
non-interactive certificates would be a real advantage for their wide usage in existing
linear algebra software. Following idea of [Luc+18] and our approach for minimal
approximant bases may help to get non-interactive certificates for linear algebra over
polynomial rings.

5.2.3 Efficient software in exact linear algebra

Exact linear algebra reached an algorithmic maturity where most of the problems have
been reduced to matrix multiplication, even in the case of rings embedding expression
swell. See Figure 1.1 and [Per14, Figure 1] for a summary of these reductions. These
complexity results are fundamental as twenty years back they seemed out of reach. As
discussed in Chapter 4 some of these reductions are already implemented in the LinBox
library and they already established their superiority on the more classical approaches.
For the next few years, our effort still needs to be continued to provide more of these
reductions and to harness their efficiency.

Polynomial matrices: the use of polynomial matrix multiplication, minimal approx-
imant basis, and high order lifting technique are the main components for fast dense
linear algebra with polynomials. Our effort in LinBox library has been mostly focused
on the efficiency of polynomial matrix multiplication and minimal approximant basis.
The use of vectorized version of FFT algorithms and BLAS matrix multiplication has
been predominant in the efficiency of our code for half word-size prime fields. The
underlying structure used by these two approaches are however orthogonal and some
conversions are still necessary. These conversions are both memory and time consuming
and it is a major priority to avoid them. In fact, polynomial coefficients must be stored
contiguously for better efficiency in the FFT and so for the matrix coefficients in the use
of BLAS matrix multiplication. To avoid storage conversions, we need to design some
hybrid formats that enable contiguous storage on both sides (matrix and polynomial),
probably using strides as in BLAS. In case of minimal approximant basis, this structure
must also embed some properties to facilitate memory operations such as row/column
permutations that are extensively used in M-Basis algorithm. As mentioned previously,
the structure must also be compliant with memory efficiency as it will be a key point for
challenging computation. Apart from being completely in-place, algorithmic trade-off
should be found between time and memory efficiency.

Similar trade-of should be found between parallel and sequential algorithm in order
to provide the most efficient parallel execution. While it is almost straightforward
to distribute matrix row (or column) operations as it is classically done in the block
Wiedemann case, it seems less obvious how to do this on the polynomial structure.
Indeed, minimal approximant basis of vectors of dimension two is related to gcd. The
latter operation is known to be in the NC class, meaning that it has a poly-logarithmic
parallel complexity using a polynomial number of processors. While for gcd, the resultant
operation is used to achieve this result, the algorithm remains only of theoretic interest
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as sequential fast gcd is more efficient in practice [Kal10]. Surprisingly, no similar
results have been done for the matrix Padé problem that should clearly get more benefit
into practice. Following this direction might lead to some improvement for parallel
computation in polynomial linear algebra.

Finally, high order lifting technique has not received as much attention as approximant
basis, probably because less reductions are implied. However, providing an efficient
implementation remains a challenging task while being crucial for row reduction and
Smith normal form. This is one major step for polynomial linear algebra in LinBox and
more generally in any computer algebra software. This will join a similar effort that
have been just started in [HNS19] and applied to the bivariate resultant problem.

Word-size matrix multiplication: : In our FFLAS-FFPACK library, most efforts have
been done to treat the case of matrices that either have rather small entries, i.e. less than
half a wordsize, or very large entries, i.e. more than a hundred of bits (see Section 4.2).
The medium size range around a word-size integer appears to be quite useful in the
community while we have not yet provided optimized code for such a range of values.
Indeed, our rule of thumb is to used half-word size code to extend to higher precision
and then reach the best ratio of performance per bit [Jpub-Dol+18]. However, in that
specific range this rule is no more relevant. In that case, it urges to provide efficient
matrix multiplication that either relies on exact BLAS like kernel with extended precision,
as done for FFT in [HLQ16], or to use Kronecker segmentation to exhibit polynomial
with smaller coefficient and perform their product with subquadratic scheme. The main
objective of the latter approach would be to find thresholds that minimize the number
of matrix multiplication with smaller coefficients.

BlockWiedemann: Our main motivation has been the design of efficient code for block
Wiedemann approach. As of today, LinBox provides essentially all core components to
achieve this for some medium size challenging computation1 and essentially for few
byte prime fields. Our effort needs to be continued to improve the range of efficiency
and to ease its usage. The main difference with the CADO-NFS software is that our block
Wiedemann implementation is rather generic and it is entirely exhibited to the high-end
users. This specificity makes it difficult to provide high-level API while keeping fine
tuning of the code. Some crucial engineer work has to be done in that sense, and we are
confident that would be done with the support from Cyril Bouvier that just been freshly
hired as a research engineer at LIRMM. His experience with the CADO-NFS project is a
real asset for the success of that work.

In [Kle+10] a variant of block Wiedemann approach is presented where the column
of the series S(X ) =

∑

i>0 UAiV X i are not truncated to the same order. In particular,
an adaptation of the matrix Berlekamp-Massey is described to that specific case. This
approach is mostly motivated for computations that are distributed on nodes that
offer different computing power. Instead of using dynamic load balancing during the
algorithm, the idea in [Kle+10] is to compute as many coefficients of the series as in
original block Wiedemann but unbalancing the degree on the columns. This problem
typically resembles to some approximant basis problem. Nevertheless, in that case
minimal approximant bases are related to linear combinations of the columns of S
which makes generalized approximant basis modulo X d with d ∈ Nn×1

>1 not directly

1not using distributed computing
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suited. It seems that the problem is related to classical approximant basis but with a
specific shift that compensates the unbalanced column degrees. A proper description and
testing of this approach within LinBox would be interesting. A more difficult problem to
consider would be when the truncation order is not known in advance, as in the case
of online computation. Even if the latter context does not match any applications in
cryptography, the theoretical question remains interesting by itself and it could offer
more flexibility for distributed parallel computation of the rank of very large sparse
matrices [Cpub-Dum+07].

Faster polynomial arithmetic for ring-LWE: Efficient polynomial arithmetic is a major
tool in the development of efficient computer algebra software, but this is also the case in
lattice-based cryptography. Several major advances in fully homomorphic cryptography
(FHE) has emerged recently following the work of Gentry’s PhD [Gen09]. In particular,
the Learning With Error problem regained a lot of attentions [Reg05] to define fully
homomorphic protocols. It has been shown in [LPR10] that using cyclotomic rings helps
to speed-up some lattice-based public-key cryptosystems, and especially for the ones
using LWE problems. Several practicable post-quantum cryptography protocols are today
relying on such polynomial rings, see the recent report from the NIST Post-Quantum
Cryptography Standardization Process [Ala+19]. The arithmetic of such cyclotomic
rings is then crucial for the efficiency of practical applications. Classical approaches
have mainly focused their attention on the power-of-two cyclotomic rings as they ease
the calculation while keeping a good level of security. In [LPR13] a general framework
to deal with arbitrary cyclotomic rings is presented. This lets some hope to enhance a
bit further the security of ring-LWE while still providing efficient operations in the ring.
In a recent collaboration with our former PhD student Bastien Vialla, we are interested
by the question of fast modular polynomial multiplication in arbitrary cyclotomic rings.
Our goal is here a more prospective work to provide efficient basic routines for FHE and
more generally to lattice based cryptography.

5.2.4 Sparse polynomial

During the past years, we have concentrated our attention on dense polynomial as
we mainly focused on the univariate case. However, when dealing with multivariate
polynomials it is more appropriate to use a sparse representation as the number of non
zero coefficients remains small compare to the possible monomial supports. A classic
way of dealing with these multivariate sparse polynomials is to reduce operations to
the univariate case using Kronecker substitution [GG13]. Therefore, the univariate case
received a lot of attention and a series of works improved the complexity of sparse
polynomial multiplication. A really nice recent survey on these results is available in
[Roc18]. In particular, one can distinguish two phases that are: finding the monomial
support of the products, and then finding the coefficients. The first phase is the most
difficult part and it ends up to be solved with sparse interpolation [Bla79; BT88], while
the second phase is using evaluation/interpolation on special sets of points. When
the support of the product is known in advance, [HL13] provides a quasi-linear time
algorithm in both the settings of algebraic and bit complexity. Similar result holds
when the support is not known but it is assumed that no cancellation occurred when
doing calculation on the coefficients [AR15], i.e. the support can be computed without
knowing the coefficients. In such a situation, while the computation is almost optimal
(only some extra logarithmic factors), we do not know yet how to verify such product in
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less operations, as done for the dense case. With the new insight given in Section 2.2
for verifying truncated products of dense polynomials, it seems feasible to provide faster
verification. Indeed, the probability that the product must hold modulo X p − 1 for a
random integer p seems to be sufficiently reasonable. In particular, this probability
is related to the divisibility by cyclotomic polynomials of the polynomial representing
erroneous values in the product. The study of this divisibility property will give a lower
bound on the value of p and the complexity should follow.

In a more general way, we collaborate with Bruno Grenet to provide efficient imple-
mentations of sparse polynomial arithmetic and to develop new ideas to tackle more
difficult problems such as the interpolation or the factorization of sparse polynomials.
Our experience on dense polynomial arithmetic should lead us to a fruitful collaboration.
Some of the axis that we want to explore are: sparse polynomial division using similar
techniques used in [AR15]; switch from the monomial basis to other ones, e.g. Cheby-
shev as in Section 2.4, or using bounded depth-circuit larger than two [FS15]. An ideal
goal would be to provide a library similar to NTL for the sparse case, continuing some
efforts already done by the community within the FLINT or the Mathemagix library
[GR16; HL14]. This axis of research led to a PhD grant application at the University of
Montpellier starting in fall 2019. With Bruno Grenet, we are currently supervising a
master student working on probabilistic verification of sparse polynomial product.
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