
HAL Id: tel-02418022
https://hal-lirmm.ccsd.cnrs.fr/tel-02418022v2

Submitted on 20 Dec 2019 (v2), last revised 17 Jan 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting User Steering In Large-Scale Workflows
With Provenance Data

Renan Souza

To cite this version:
Renan Souza. Supporting User Steering In Large-Scale Workflows With Provenance Data. Databases
[cs.DB]. UFRJ, Rio de Janeiro, 2019. English. �NNT : �. �tel-02418022v2�

https://hal-lirmm.ccsd.cnrs.fr/tel-02418022v2
https://hal.archives-ouvertes.fr


SUPPORTING USER STEERING IN LARGE-SCALE WORKFLOWS WITH
PROVENANCE DATA

Renan Francisco Santos Souza

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia de Sistemas e
Computação, COPPE, da Universidade Federal
do Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Doutor em
Engenharia de Sistemas e Computação.

Orientadores: Marta Lima de Queirós Mattoso
Patrick Valduriez

Rio de Janeiro
Dezembro de 2019



SUPPORTING USER STEERING IN LARGE-SCALE WORKFLOWS WITH
PROVENANCE DATA

Renan Francisco Santos Souza

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)
DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Orientadores: Marta Lima de Queirós Mattoso
Patrick Valduriez

Aprovada por: Dr. Marco Aurelio Stelmar Netto
Prof. Alexandre de Assis Bento Lima
Profa. Vanessa Braganholo Murta
Profa. Lúcia Maria de Assumpção Drummond

RIO DE JANEIRO, RJ – BRASIL
DEZEMBRO DE 2019



Souza, Renan Francisco Santos
Supporting User Steering in Large-scale Workflows with

Provenance Data/Renan Francisco Santos Souza. – Rio de
Janeiro: UFRJ/COPPE, 2019.

XIII, 125 p.: il.; 29, 7cm.
Orientadores: Marta Lima de Queirós Mattoso

Patrick Valduriez
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2019.
Referências Bibliográficas: p. 108 – 125.
1. User Steering. 2. Data Provenance. 3. Large-

scale Workflows. I. Mattoso, Marta Lima de Queirós
et al. II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii



Agradecimentos

Agradeço:
A Deus, porque até aqui nos ajudou o Senhor.
À Gisele, minha esposa e motivação maior, por estar ao meu lado desde o primeiro

dia da graduação até o último dia do doutorado. Seu amor, apoio e compreensão
têm sido essencial para alcançar meus objetivos.

À minha mãe por todos sacrifícios para prover a melhor educação que pôde. Seus
conselhos e orações foram especialmente importantes nesses últimos meses.

Agradeço ao Marcos, ao meu pai, à Deuseni, a toda minha família e à família da
Gisele pela força e compreensão.

À minha orientadora, Professora Marta Mattoso, que me orientou em todos os
momentos, persistentemente, desde o início do mestrado até aqui. Com ela, muito
além da pesquisa, aprendi o significado de ensino. Agradeço pela paciência, esforço
e cuidado que teve comigo durante todos esses difíceis anos.

Ao meu coorientador, Professor Patrick Valduriez, pela orientação objetiva e
precisa. Agradeço-o também pelo apoio com equipamentos (Grid5000) usados nos
experimentos da tese e pelo suporte financeiro enquanto estive no período sanduíche
na França.

Aos pesquisadores e colaboradores que estão ou estiveram no Laboratório da
IBM Research no Brasil. Dentre os quais, alguns tornaram-se amigos próximos que
participaram do meu dia-a-dia na labuta dividida entre o trabalho e o doutorado,
compartilhando seus conhecimentos e palavras de ânimo. Por medo de cometer
a injustiça de não mencionar alguém, fica aqui meus sinceros agradecimentos a
todos os amigos. Agradeço também aos gerentes do BRL que sempre incentivaram
meu doutorado, me orientaram e permitiram minha liberação para realização das
atividades acadêmicas quando necessário. Agradeço especialmente ao meu gerente
Marco Netto que, além disso, aceitou fazer parte do exame de qualificação e da
banca desta tese.

Ao Jonas Dias pelas valiosas sugestões dadas durante o exame de qualificação.
Agradeço aos Professores Vanessa Braganholo Murta e Alexandre Lima pelos con-
selhos no exame de qualificação e por terem aceitado fazer parte da banca. Agradeço
também à Professora Lúcia Drummond por ter aceitado compor a banca.

iv



Aos amigos Vítor Silva e José Camata pela colaboração na pesquisa e ajuda para
alcançar os resultados da tese. Aos participantes do projeto SciDISC, especialmente
ao Professor Alvaro Coutinho pela orientação, incentivo e parceria nos artigos.

Aos amigos do laboratório LIRMM/Inria em Montpellier.
À equipe administrativa do PESC e do NACAD por toda a ajuda na buroc-

racia. À equipe do NACAD também agradeço pelo suporte com os equipamentos
usados nos experimentos (Lobo Carneiro). Aos colaboradores do COPPE-LATEX,
por fornecerem o fonte do template usado para escrever esta tese. Os fontes desta
tese encontram-se no GitHub neste link.

Finalmente, agradeço a todos meus professores que participaram da minha edu-
cação, desde a época do colégio até o doutorado. Certamente tive diversas influências
positivas que me inspiraram e ajudaram a chegar até aqui.

A todos, muito, muito obrigado!!! :)

v

http://coppetex.sourceforge.net
https://github.com/renan-souza/phd-thesis


Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

APOIO A WORKFLOWS DE LARGA ESCALA CONDUZIDOS POR
USUÁRIO COM DADOS DE PROVENIÊNCIA

Renan Francisco Santos Souza

Dezembro/2019

Orientadores: Marta Lima de Queirós Mattoso
Patrick Valduriez

Programa: Engenharia de Sistemas e Computação

Workflows em Ciência e Engenharia Computacional (CSE) são de larga escala,
requerem execução em Processamento de Alto Desempenho (PAD) e têm a natureza
exploratória da ciência. Durante a execução, que costuma demorar horas ou dias,
usuários precisam conduzir o workflow analisando-o e adaptando-o dinamicamente
para melhorar a qualidade dos resultados ou reduzir o tempo de execução. Entre-
tanto, eles tipicamente fazem diversas ações de condução do workflow, que precisam
ser rastreadas. Caso contrário, eles têm dificuldade de entender como e o que precisa
ser conduzido, podem conduzir de forma errada, pode ser difícil explicar resultados
que foram consequências das ações e pode ser impossível de reproduzir os resultados.
Esta tese endereça esse problema propondo uma abordagem que define os conceitos
fundamentais para ações de usuário para condução de workflows; introduz a noção de
proveniência de ações de condução; e propõe um diagrama de dados compatível com
o padrão W3C PROV para modelar dados de ações de condução com proveniência.
Além disso, a abordagem apresenta princípios de projeto de sistemas para permitir
a gerência de dados de ações de condução através da captura, relacionamento com
o restante dos dados do workflow e armazenamento eficiente. Duas instâncias dessa
abordagem foram projetadas e implementadas: uma para ser adicionada a scripts
paralelos e a outra é usada em um Sistema Paralelo de Gerência de Workflows,
as quais são as duas formas típicas de se executar experimentos de CSE em PAD.
Através de experimentos com casos reais da indústria de Óleo e Gás, mostra-se que
a abordagem permite que usuários entendam como suas ações afetam diretamente
os resultados em tempo de execução e também que os princípios de projeto foram
essenciais para adicionar sobrecarga desprezível à execução dos workflows em PAD.

vi



Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Doctor of Science (D.Sc.)

SUPPORTING USER STEERING IN LARGE-SCALE WORKFLOWS WITH
PROVENANCE DATA

Renan Francisco Santos Souza

December/2019

Advisors: Marta Lima de Queirós Mattoso
Patrick Valduriez

Department: Systems Engineering and Computer Science

Computational Science and Engineering (CSE) workflows are large-scale, require
High Performance Computing (HPC) execution, and have the exploratory nature of
science. During the long run, which often lasts for hours or days, users need to steer
the workflow by dynamically analyzing it and adapting it to improve the quality
of results or to reduce the execution time. However, to steer the workflow, users
typically perform several interactions (called user steering actions), which need to
be tracked. Otherwise, users find it harder to understand how and what needs to be
steered, they can steer in a misleading way, it can be difficult to explain the results
that were consequences of their actions, and it can be impossible to reproduce the
results. This thesis addresses this problem by proposing an approach that defines the
fundamental concepts for user steering action; introduces the notion of provenance
of steering actions; and contemplates a W3C PROV-compliant data diagram to
model steering action data with provenance. Also, the approach presents system
design principles to enable the management of steering action data by capturing,
explicitly relating the actions to the rest of the workflow data, and storing these
data efficiently. Two instances of this approach were designed and built: one is
a lightweight tool to be plugged into parallel scripts and the other is to be used
within a Parallel Workflow Management System, which are the two typical ways to
conduct CSE experiments in HPC. Using real use cases in the Oil and Gas industry,
the experiments show that the proposed approach enables users to understand how
their actions directly affect the workflow results at runtime and that the system
design principles were essential to add negligible overhead to the HPC workflows.

vii



Contents

List of Figures x

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

2 Background: User Steering in Large-scale Workflows in CSE 7
2.1 Basic Concepts and Terminology . . . . . . . . . . . . . . . . . . . . 7
2.2 A Dataflow-oriented Approach for Workflows . . . . . . . . . . . . . . 10
2.3 CSE Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 CSE Applications in Workflow Scripts . . . . . . . . . . . . . 13
2.3.2 CSE Applications in Workflow Management Systems (WMSs) 15
2.3.3 Computational Scientists and Engineers . . . . . . . . . . . . 17

2.4 Supporting Workflow Steering in CSE with Data Management Tech-
niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 W3C PROV and its Extensions . . . . . . . . . . . . . . . . . . . . . 22

3 The State-of-the-Art in User Steering Action Data Analysis 25
3.1 Approaches for Online Analysis, Adaptation, and User Steering Ac-

tion Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Making a CSE Application Steerable . . . . . . . . . . . . . . . . . . 34
3.3 System Design of an Approach that Supports User Steering . . . . . . 38
3.4 Further Discussion on the Analyzed Approaches . . . . . . . . . . . . 39

4 WfSteer: An Approach for Managing User Steering Action Data 47
4.1 User Steering Action Data: a new type of data that needs to be managed 47
4.2 User Steering Action and Data Definitions . . . . . . . . . . . . . . . 48
4.3 Definitions for Online Data Adaptations . . . . . . . . . . . . . . . . 49
4.4 Modeling Steering Action Data using W3C PROV Concepts . . . . . 51
4.5 Adaptive Monitoring Concepts . . . . . . . . . . . . . . . . . . . . . . 57

viii



5 Managing User Steering Action Data in Workflow Scripts 59
5.1 Methodology and General Architecture . . . . . . . . . . . . . . . . . 59
5.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Methodology to Analyze the Overhead . . . . . . . . . . . . . . . . . 69

6 Managing User Steering Action Data in a WMS 72
6.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Addressing Steering Action Data Consistency Issues . . . . . . 74
6.2.2 Further Details . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Experimental Evaluation 86
7.1 Managing Steering Action Data in Workflow Scripts . . . . . . . . . . 86

7.1.1 Use case: Computational Fluid Dynamics in Geoscience with
libMesh-sedimentation . . . . . . . . . . . . . . . . . . . . . . 87

7.1.2 User Steering Action Data Analysis . . . . . . . . . . . . . . . 88
7.1.3 Overhead Evaluation . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Managing Steering Action Data in a WMS . . . . . . . . . . . . . . . 95
7.2.1 Use case: Ultra-deepwaters’ Risers Fatigue Analysis . . . . . . 95
7.2.2 User Steering Action Data Analysis . . . . . . . . . . . . . . . 96
7.2.3 Overhead Evaluation . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusions 104
8.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography 108

ix



List of Figures

2.1 Data derivation paths between data transformations. . . . . . . . . . 11
2.2 libMesh-sedimentation Workflow. . . . . . . . . . . . . . . . . . . . . 15
2.3 Risers Fatigue Analysis Workflow [1]. . . . . . . . . . . . . . . . . . . 16
2.4 Integrating domain, execution, and provenance data in a workflow

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 PROV-DM General Overview [2]. . . . . . . . . . . . . . . . . . . . . 23
2.6 An excerpt of a relational database schema that implements PROV-Wf. 24

3.1 A taxonomy for user steering actions. . . . . . . . . . . . . . . . . . . 25
3.2 User steering approach for optimization [3]. . . . . . . . . . . . . . . . 34
3.3 Basic components of an approach that supports user steering, accord-

ing to PICKLES et al. [4]. . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 User steering concepts, according to MULDER et al. [5]. . . . . . . . 40
3.5 Conceptual view of a approach that supports steering according to

MULDER et al. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 User steering for Operations Research [3]. . . . . . . . . . . . . . . . . 41
3.7 DANANI and D’AMORA [6]’ view on “the future of steering workflows”. 42
3.8 Dynamic data-driven steering architecture [7]. . . . . . . . . . . . . . 43
3.9 “Computational Steering Environment” system architecture [8–10]. . . 43
3.10 Falcon’s architecture [11]. . . . . . . . . . . . . . . . . . . . . . . . . 44
3.11 WBCSim approach architecture [12–14]. . . . . . . . . . . . . . . . . 45

4.1 PROV-DfA overview. A larger visualization is on GitHub [15]. . . . . 51
4.2 Dataflow in the libMesh-sedmentation simulation using the dataflow-

oriented approach with PROV-DfA. . . . . . . . . . . . . . . . . . . . 56
4.3 Visualization of data using PROV-DfA. . . . . . . . . . . . . . . . . . 57

5.1 DfAdapter’s General Conceptual Architecture. . . . . . . . . . . . . . 61
5.2 Sequence diagram for managing steering action data with DfAdapter. 65
5.3 Workflow Database Schema for DfAdapter. . . . . . . . . . . . . . . . 67

x



6.1 User-steered data reduction using the Cut operator. The input
dataset I_Preprocessing is split into subsets GI_Preprocessing and
HI_Preprocessing. A slice following the criteria C = WAV E_LEN >

39.0 ∧WIND_SPD > 14 is cut off from I_Preprocessing trans-
forming it into I_Preprocessing′. . . . . . . . . . . . . . . . . . . . . 75

6.2 Sequence diagram showing what happens in a user-steered data re-
duction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Using MySQL Workbench to query the workflow database at runtime. 83

7.1 libMesh-sedimentation workflow script code with added API calls
along with its workflow representation. . . . . . . . . . . . . . . . . . 88

7.2 2D visualization of the tank and the concentration of sediments. This
figure was generated at simulation time t = 10. . . . . . . . . . . . . . 89

7.3 Query analyzing the track of the steering actions. . . . . . . . . . . . 90
7.4 Query integrating execution, domain, provenance, and steering action

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.5 Plots of monitoring queries for number of GMRES iterations, non-

linear iterations, and mesh elements over time. We highlight the tune
actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6 Plot of monitoring query showing number of elements over time. . . . 92
7.7 Snapshots of 3D visualization of the tanks and the sediments over

time. Steering action occurs at t = 33.53 and user steering data are
recorded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.8 Analyzing the impact of user-steered data reduction comparing Wind
Speed (input) with Fatigue life. . . . . . . . . . . . . . . . . . . . . . 97

7.9 Total data elements, gigabytes, and time consumed by data transfor-
mation with no user steering. . . . . . . . . . . . . . . . . . . . . . . 100

7.10 Reduced resources by data transformation caused by each user-
steered reduction SAi. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.11 Summary of the user-steered reductions (SA1 – SA5) in the workflow. 102
7.12 Results of adaptive monitoring overhead. . . . . . . . . . . . . . . . . 103

xi



List of Tables

2.1 Examples of interactive data analysis integrating domain and prove-
nance data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Examples of interactive data analysis integrating domain, exeuction,
and provenance data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Comparison of approaches for user steering support. . . . . . . . . . . 27
3.1 Comparison of approaches for user steering support. . . . . . . . . . . 28
3.1 Comparison of approaches for user steering support. . . . . . . . . . . 29
3.1 Comparison of approaches for user steering support. . . . . . . . . . . 30
3.2 Comparison of implementation on how the approaches make a CSE

application steerable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Comparison of implementation on how the approaches make a CSE

application steerable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Comparison of implementation on how the approaches make a CSE

application steerable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Methodology for workflow steering. . . . . . . . . . . . . . . . . . . . 60

6.1 User_Query table description. . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Monitoring_Query table description. . . . . . . . . . . . . . . . . . . 79
6.3 Monitoring_Query_Result table description. . . . . . . . . . . . . . 80

7.1 Summary of results of parameter tunings. . . . . . . . . . . . . . . . . 93
7.2 The added overhead in the analysis and adaptation points account

for less than 1%; data extraction account for 1.49%. . . . . . . . . . 94
7.3 Summary of the user-steered reductions (SA1 – SA5) with their user-

defined slice criteria (wind speed is in km/h). . . . . . . . . . . . . . 100

xii



List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability, p. 78

AI Artificial Intelligence, p. 48

CFD Computational Fluid Dynamics, p. 12

CSE Computational Science and Engineering, p. 1

DBMS Database Management System, p. 21

HPC High Performance Computing, p. 1

HTTP HyperText Transfer Protocol, p. 39

ML Machine Learning, p. 13

MPI Message Passing Interface, p. 39

OLAP Online Analytical Processing, p. 64

OLTP Online Transactional Processing, p. 73

O&G Oil and Gas, p. 1

QoI Quantities of Interest, p. 2

W3C World Wide Web Consortium, p. 22

WMS Parallel Workflow Management System, p. 2

xiii



Chapter 1

Introduction

How to enable computational scientists and engineers to monitor and understand
their experiments when they are steering them on large-scale computers? This
is the central question we address in this thesis. With the astonishing evolution
of computer science methods, tools, and hardware, more and more scientists and
engineers, from a wide variety of scientific domains like Physics, Agriculture, and
Geosciences, have gained access to large-scale computers and software that enabled
the conduction of experiments with an ever-growing level of detail and amount of
data. This culminated in the development of an emerging interdisciplinary field of
computing: Computational Science and Engineering (CSE) [16].

CSE combines mathematical models that simulate natural phenomena, numeri-
cal algorithms for solving complex equations, High Performance Computing (HPC)
techniques to develop programs that can take advantage of modern parallel hard-
ware, and data science techniques to analyze huge amounts of scientific data [16].
This allows for both remarkable scientific discoveries – like the detection of Grav-
itational Waves, which led to the Nobel Prize in Physics in 2017 [17] – and game-
changing business impact in industries that depend on such experiments to generate
revenue – like the Oil and Gas (O&G) industry, which leverages CSE experiments
to improve (e.g., increase the precision, reduce the environmental impact) oil explo-
ration and production processes [18].

However, conducting such experiments is far from trivial. They have the ex-
ploratory nature of science, meaning that typically there is a huge solution space
to be explored. An experiment run often lasts for hours or days, even running on
large-scale computers, like HPC machines. That is why the computational scientists
and engineers (CSE users) are often applying HPC techniques in their software, aim-
ing to run in parallel and reduce the execution time. Long execution times means
that not only the HPC machines are executing for longer, but also the qualified
computational scientists and engineers, whose time is quite valuable, are waiting for
longer. So, when investigating new tools to be added to their toolset, these CSE

1



users typically discard any tool that can add significant execution overhead to their
already long experiment executions.

In addition, to ease the complexity of the CSE experiments, a widely adopted
practice is to model them using a scientific workflow (also known as large-scale
workflow or workflow, for short) abstraction [19]. The workflow abstraction helps to
break a large CSE experiment into smaller pieces – such as programs, components,
functions, or meaningful sections of a simulation code – interconnected through a
dataflow (i.e., the data produced by one are consumed by another). These workflows
are typically concretized either as a script, i.e., a sequence of computing commands
that often invoke highly parallel libraries, or as workflows managed by a Parallel
Workflow Management System (WMS), like Chiron [20] and Pegasus [21]. These
are the two typical ways of conducting CSE experiments on large-scale computers.

When modeling the workflows, the CSE users specify the workflow data, which
are the data processed (i.e., consumed and generated) during the workflow execu-
tion, like scientific data files and parameters for the algorithms or numerical meth-
ods. By varying the workflow data, the users investigate different hypotheses for
their experiments, often in a “what-if" basis, analyzing how the variation affects
Quantities of Interest (QoI), like precision, convergence, numerical errors. Thus,
during the execution, they need to analyze the workflow data to verify their hy-
potheses, understand the intermediate results, monitor how variations of data or
parameters affect the QoIs, and check on the experiment’s health. They analyze
the experiment’s health both from a domain perspective (e.g., is there any result
that dissatisfies a physical constraint?) and from a computational perspective (e.g.,
is the workflow consuming memory, disk, CPU as expected?). Depending on the
results, they intervene by changing the workflow data.

In this context, in 2013, MATTOSO et al. [22] suggested using provenance data
as a good alternative to provide for such experiments’ analyses, even at runtime,
which has been successfully explored in real experiments [23–27]. Data provenance
(i.e., data lineage) contains a structured record of the data derivation process, that
is, how data items are consumed and produced, and their data derivation paths [28].
In workflows, provenance data contain not only this historical record but also data
about the computational processes and agents (e.g., users and software) involved in
the workflow execution [29].

Moreover, the interaction of users with large-scale CSE experiments can generate
major improvements in performance, resource consumption, and quality of results.
This idea of putting human intelligence to drive complex computational processes,
as is the case of large-scale CSE experiments, is often referred to as “Human in the
Loop” [30]. Despite the recent breakthroughs in theory and practice of Artificial
Intelligence [31], the complexity of CSE domains makes human knowledge critical

2



for making decisions during an experiment run. Thus, as highlighted in a recent De-
partment of Energy (DOE) report, putting humans in the loop of CSE experiments
is still an open problem [32].

User steering (also known as computational steering) is a powerful concept mean-
ing that users are enabled to interactively and dynamically drive a computational
process while it is still running (i.e., online, at runtime, during execution). In work-
flows, workflow steering is the ability that allows users to interactively analyze (e.g.,
inspect, visualize, monitor) or adapt (e.g., tune parameters, change input datasets)
the workflow data online [23, 25]. We call user steering actions the individual user
interactions performed during workflow steering, like asking a monitoring query (in
case of online data analysis) or tuning a parameter (in case of online data adap-
tation). The goal of workflow steering is to anticipate anomalous behavior and to
intervene in the workflow execution aiming at achieving a satisfactory execution.
The user knows what a “satisfactory execution” means. Some examples of satisfac-
tory executions are the ones that generate results with high accuracy, low error, high
data quality, or simply the ones that execute timely and successfully.

The workflow steering lifecycle is given by: (i) analyzing the workflow data;
(ii) choosing what, when, how to adapt; (iii) adapting the workflow data; and (iv)
analyzing the workflow data again to investigate the consequences of the adaptation
and returning to the first step until the end of the workflow execution.

Often, one steering action is not enough hence requiring several steering actions
to be performed by the users. They repeatedly monitor, fine-tune parameters or
perform multiple other steering actions. Every single steering action generates user
steering action data, which are important information that helps to understand the
steering actions and their influence on the workflow data. They consist of data
informing: when the action happened, why the user decided to act, how the action
occurred, which workflow data were analyzed or adapted, what was happening before
and after the action, who acted, and the type of the action itself. The track of
steering actions is a historical record containing important information that allows
understanding the steering actions and their influence on the workflow data, i.e., it
is the steering action data properly related to the rest of the workflow data.

However, such steering action data generated at each action are typically not
recorded nor are they explicitly related to the rest of the workflow data. Because of
this, it is very easy to lose track of the actions, even for experienced users, especially
considering the huge amount of data, parallel processing, complex algorithms and
software. If users cannot track their steering actions, they find harder to under-
stand how and what needs to be steered, steer in a misleading way (e.g., they can
unintentionally tune the same parameter twice), it can be harder to explain results
that were consequences of steering actions, and it can be impossible to reproduce

3



the results, jeopardizing the overall experiment and failing to support the workflow
steering lifecycle. Therefore, a critical aspect in the workflow steering lifecycle is
to allow for tracking user steering actions to enable users to understand how their
steering actions are influencing a running workflow. With such understanding, users
have more information available to help them to steer. The importance of allowing
for tracking the interaction of users with large-scale workflows has been highlighted
in several surveys [19, 32–34].

In our extensive literature review (Chapter 3), we find that the state-of-the-art in
the context of supporting CSE experiments lacks concepts and techniques to allow
for tracking steering actions in large-scale workflows, which would significantly assist
in understanding the steering actions online, which is critical to support the workflow
steering lifecycle. As a result, users are left to register the track manually by, for
instance, annotating in a separate digital spreadsheet or even in a sheet of paper.
Thus, the track is often incomplete, isolated from the workflow data, and not stored
in a structured way, which would facilitate data analysis. Therefore, the general
problem this thesis addresses is: “how to allow for tracking user steering actions in
large-scale workflows?”. This is hard because to allow for tracking steering actions,
steering action data must be managed, which means to capture the steering action
data, relate them to the workflow data accordingly, and store in a database ready for
online data analysis. There are several challenges associated with managing steering
action data. We can group them as follows.

(I) Steering actions characteristics. Considering the complexity of the data, the
computational tools, methods and software used or developed by the compu-
tational scientists and engineers, how to characterize: how users interact with
the workflow data, what constitutes the steering action data, and the data
relationships between the actions and the rest of the workflow data?

(II) Enabling the capture and queries. How to capture the steering action data in
a running large-scale workflow and build a database with the steering actions
related to the workflow data so users can query it online?

(III) Efficient capture. Since attaining high performance in the workflow executions
is an essential requirement in CSE, how to manage steering action data while
not adding significant execution overhead to the already long execution even
in HPC?

The general hypothesis of this thesis is that by managing user steering action
data, users can track their actions, which enables online analysis of the steering
action data, hence allowing users to understand how their steering actions are in-
fluencing a running workflow. Since provenance data management techniques and

4



concepts have been successfully explored to support user steering even in CSE [35–
37], we could use provenance for the management of user steering action data. We
can further distinguish user steering action data management between two important
aspects: one is to capture steering actions, create the explicit data relationships with
the workflow data, and store in a database for online analysis; and the other is to do
this while incurring low overhead for efficient performance of the workflow execution.
Furthermore, our hypothesis encompasses the two typical ways CSE users conduct
their experiments on large-scale computers, i.e., using workflow scripts and WMSs.
To validate this hypothesis, we propose Workflow Steer (WfSteer), an approach that
leverages provenance data to manage user steering action data in large-scale work-
flows. It resulted from a combination of new concepts, techniques, definitions, and
design principles for the management of user steering action data with low execution
overhead. More specifically, we can list the following contributions.

(I) A characterization of user steering actions and steering action data, which are
the two main concepts introduced in this thesis, along with their corresponding
definitions, and definitions on how steering action data explicitly relate to
workflow data. We also introduced provenance data management concepts,
the notion of provenance of steering actions, and a corresponding data diagram
to model steering action data following a widely adopted standard, the W3C
PROV. This data diagram gives the data structure for any workflow database
that can persist steering action data. Such concepts and definitions can be
utilized by workflow scripts or in WMS.

(II) Distributed systems techniques to manage steering action data when users
steer a running large-scale workflow, considering the specific requirements for
workflow scripts and WMS.

(III) Design principles to maintain low execution overhead while managing steering
action data. These principles can be adopted by steering action data manage-
ment software engineers for building rich workflow databases while adding low
execution overhead.

We organize the validation of our hypothesis by considering its two aspects (i.e.,
to allow for tracking actions and doing it with low execution overhead). For this,
we carry out two classes of experiments: one class is to qualitatively investigate
whether WfSteer allows for tracking steering actions, using real-world workflows as
driving use cases; and the other is to quantitatively evaluate the added data capture
overhead. Additionally, since the hypothesis encompasses both workflow scripts
and WMS, within each class of experiments we design and build two instances of
WfSteer: one, called DfAdapter, is to support users who use scripts to conduct

5



their experiments; and the other, implemented within a WMS, is to support WMSs’
users. Then, through the practical use of WfSteer using these two instances in real
use cases running on large HPC machines, among many other findings, we found
that WfSteer in the WMS enabled users to understand how input data were reduced
online to yield reduction of 32.4% of the total execution time, hence significantly
saving resources; and that DfAdapter allowed users to understand which parameters
were tuned that made the workflow finish successfully without memory overflow. We
also found that design principles to implement WfSteer, both for scripts and WMS,
helped to maintain the execution overhead as low as 1%.
Thesis Organization. During the course of this thesis, some scientific papers in
the context of supporting user steering in large-scale workflows have been published
[24, 25, 36–45], among which the papers SOUZA et al. [25, 37, 38] compose the core
contribution of this thesis and drive its organization. In addition to this introduction,
the remainder of this manuscript is organized as follows. First, in Chapter 2, we
present the background for this thesis, i.e., user steering in large-scale workflows in
CSE. We present the fundamental concepts, terminology, details on how CSE users
conduct their experiments using scripts or WMSs, and characterize the scientists
and engineers in CSE. Second, in Chapter 3, we show a thorough literature review
on user steering support from a data analysis perspective. It is a first of this kind
that investigates approaches both for WMSs and scripts in CSE. Third, in Chapter
4, we introduce WfSteer, our theoretical framework. Forth, in Chapter 5, we present
DfAdapter, one of our implementations of WfSteer. We explain its design decisions,
general architecture, and implementation details on managing steering action data
in scripts. Fifth, in Chapter 6, we present our implementation in d-Chiron WMS, as
another implementation of WfSteer. Sixth, in Chapter 7, we present the experiments
that support the validation of this thesis’s hypothesis. Finally, in Chapter 8, we
conclude this thesis by sharing lessons learned and proposals for future work.

6



Chapter 2

Background: User Steering in
Large-scale Workflows in CSE

In this chapter, we provide the background for this thesis. We begin with a brief
description on the fundamental concepts of the background (Sec. 2.1), then we
present a dataflow-oriented approach that gives the basis for this thesis (Sec. 2.2),
afterward, we describe CSE applications’ characteristics in detail and showing real-
world cases (Sec. 2.3), then we present how the background work has used data
management techniques to support CSE experiments (Sec. 2.4), and finally conclude
with W3C PROV standard data representation for provenance (Sec. 2.5).

2.1 Basic Concepts and Terminology

This section briefly describes the basic concepts and terminology used in this thesis.
The goal of this section is to provide a glossary with informal definitions for the
fundamental concepts. Formal definitions and more detailed descriptions with rich
examples are presented in the following sections and chapters.

Workflow

CSE experiments are characterized by the execution of one or more CSE appli-
cations, which are software that implement complex algorithms and process large
volumes of scientific data in large-scale computers. These CSE applications can be
modeled using a scientific workflow (also known as large-scale workflow or workflow,
for short) abstraction. Modeling CSE applications as workflows contributes to the
overall CSE experiment because it makes explicit the workflow data, which need to
be analyzed and potentially adapted. In this thesis, we use the term workflow as an
abstract concept that means a composition of pieces interconnected through data.
In traditional workflow literature, these pieces are usually called workflow activities,

7



or activities for short [19]. When concretized, an activity can be either a black-box
program, program functions, methods, or blocks of code in a script, depending on
the CSE applications being modeled as a workflow.

The Two Ways CSE Users Conduct their Experiments: Workflow Scripts
and WMSs

In this thesis, we consider the two typical ways that CSE users conduct their exper-
iments on large-scale computers.

One way is by developing parallel CSE workflow scripts, or workflow scripts for
short. These scripts execute a sequence of computing commands that typically
invoke highly parallel libraries for data processing or performing complex computa-
tions.

The other way is by using WMSs, like Chiron [20], Kepler [46], and Pegasus
[21]. Differently than the previous way, where CSE users write their own scripts
to control the parallelism of their applications, when using a WMS, users typically
rely on it to manage the parallel execution of their applications. Cases for WMSs
are executions of scientific software that process the same computation over large
datasets in parallel, commonly searching for a solution in a large solution space, as a
parameter sweep in an embarrassingly parallel execution exploiting data parallelism.

Workflow Data and Dataflow

When modeling the workflows, the CSE users specify the workflow data, which are
the data processed (i.e., consumed and generated) during the workflow execution,
like scientific data files and parameters for the algorithms or numerical methods.

The workflow data are organized as datasets and the activities operate over the
data to transform them. Thus, in a workflow execution, input datasets are consumed
by data transformations that produce output datasets, which can be consumed by
subsequent data transformations, forming a dataflow.

User Steering

User steering (also known as computational steering) is a concept that means that
users are enabled to interactively and dynamically drive a computational process
while it is still running (i.e., online, at runtime, during execution).

In workflows, workflow steering is the ability that allows users to interactively
analyze (e.g., inspect, visualize, monitor) or adapt (e.g., tune parameters, change
input datasets) the workflow data online [23].

To steer a workflow is the action of performing workflow steering.

8



Steering actions are the individual user interactions performed during workflow
steering, like asking a monitoring query (in case of online data analysis) or tuning
a parameter (in case of online data adaptation).

When users steer, they generate user steering action data, which are important
information that helps to understand the steering actions and their influence on the
workflow data. They consist of data informing: when the action happened, why the
user decided to act, how the action occurred, which workflow data were analyzed or
adapted, what was happening before and after the action, who acted, and the type
of the action itself.

The track of steering actions is a historical record containing important infor-
mation that allows understanding the steering actions and their influence on the
workflow data. In other words, it is the steering action data properly related to the
rest of the workflow data.

To track steering actions is to query (or analyze) the track of a steering action.
To allow for tracking steering actions, one needs to manage steering action data,

which means to capture the steering action data, explicitly relate them to the workflow
data, and store in a database ready for online queries.

Provenance Data

Data provenance (i.e., data lineage) contains a structured record of the data deriva-
tion process [28]. It is a natural way to represent a track. In workflows, the prove-
nance data contain not only provenance information about the data items consumed
and produced, with their data derivation paths, but also data about the computa-
tional processes and agents (e.g., users and software) involved in the workflow exe-
cution [29]. Provenance data helps to explain which and how processes were utilized
to derive each data value, in varying granularities. Provenance data provide for data
analysis, result quality assessment, data authorship, reliability, and reproducibility
of the experimental results [28, 47, 48]. Such features are considered as important
as the scientific achievement or the business value itself, since the CSE experiment’s
reliability can be compromised without provenance [47]. In this thesis, we leverage
provenance data management techniques to allow for tracking steering actions.

One can further subclassify workflow provenance data into prospective and ret-
rospective provenance data [28, 47]. Prospective provenance data provide the spec-
ification (i.e., the definition, the structure) of the workflow, with its composing
activities and possible data derivation paths. Retrospective provenance data pro-
vide the provenance information of the data values that have been consumed or
generated during the workflow execution, together with metadata about the com-
putational processes that consumed or generated them. In summary, prospective
provenance informs what should happen when the workflow executes, whereas ret-

9



rospective provenance informs what happened when the workflow executed. In past
work, prospective and retrospective provenance data combined have been explored
to deliver insightful data analyses to scientists and users from a wide variety of
scientific domains [24, 25, 35, 49–51].

2.2 A Dataflow-oriented Approach for Workflows

Data management in workflows is critical due to the inherent complexity of the
scientific domain data and the HPC requirements, e.g., the exploitation of data
parallelism. For steering, it is essential because it makes explicit the workflow data,
which need to be analyzed and steered by the CSE users. In this section, we provide
the theoretical background for a “dataflow-oriented approach for workflows". It
has been been proposed by SILVA et al. [35], influenced by IKEDA et al. [52] and
OGASAWARA et al. [20], and has been refined and extended in the publications
that compose this thesis. It gives the theoretical foundation for this thesis and is
the basis for the formal definition of “user steering action", to be defined in the
following chapters.

The dataflow-oriented approach provides constructs whose essence is to promote
to first-class-citizens the elements of data flowing throughout the activities, as op-
posed to an approach centered on the parallel execution control. Following this
approach, activities are called data transformations that compose the dataflow in
a workflow, so that the dataflow is the main conceptual artifact to be managed, as
opposed to the parallel execution control, which is typically managed in WMSs. In
this approach, the workflow data, consumed and generated by the data transforma-
tions, are organized as datasets, such as large data files or large matrices or mashes.
In terms of the dataflow-oriented approach, the term dataset has slightly different
semantics: it is a logical representation, concretized as a data view composed of
metadata or scalar data values, of the physical datasets processed by the transfor-
mations. This data view contains only representative data, which can potentially
improve the overall data analysis of the workflow data [35, 37]. For instance, if
a certain data transformation consumes a large matrix as a physical dataset, one
could extract only representative metadata about this large matrix, its shape, and
a reference pointer to the physical dataset (e.g., a file path to where this matrix is
stored in the file system). These metadata would compose the logical dataset of the
physical dataset. From now on, if not explicitly distinguished, the term dataset is
used as a logical dataset, with references to the physical dataset processed by the
data transformation. In this section, we precisely define these concepts.

Definition 2.1. Dataset, Data Elements, and Data Values. A dataset DS is
composed of data elements, i.e.,DS = {e1, ..., em}. Each data element ei, 1 ≤ i ≤ m,

10



is composed of data values, i.e., ei = {v1, ..., vu}. Datasets are further specialized
into Input Datasets (IDS) and Output Datasets (ODS).

Definition 2.2. Data schema and attributes. Data elements in a dataset DS
have a data schema S(DS) = {a1, ..., au}, where each element data value vj has
an attribute aj, 1 ≤ j ≤ u. Thus, a data element can also be represented as a
set of ordered pairs {(attribute, value)}, s.t., ei = {(a1, v1), ..., (au, vu)}. Moreover,
attributes have a data type (e.g., numeric, textual, array).

Definition 2.3. Data Transformation. A data transformation is characterized
by the consumption of one or more input datasets IDS and the production of one
or more output datasets ODS. A data transformation is represented by DT , where
ODS ← DT (IDS).

Definition 2.4. Data Derivation Path. Let DTα and DTβ be data transforma-
tions and let E ⊂ DS be a set of data elements produced in an output dataset
DS generated by DTα. If DTβ consumes the elements E, then DS is also an input
dataset of DTβ. This defines a data derivation path between DTα and DTβ through
E, represented as ϕ = (E,DTα, DTβ).

Definition 2.5. Dataflow. A dataflow is represented by Df = (T,D,Φ), where
T is the set of data transformations participating in the dataflow, D is the set of
datasets consumed or produced by the data transformations in T , and Φ is the
set of data derivation paths between the data transformations in T (adapted from
background work [35, 37, 52]).

DT1 DT2

Data element e1

Data element em

. . .

Data element f1

Data element fn

. . .

Data element g1

Data element go

. . .

Input dataset IDS1 Output/input dataset IDS2 Output dataset ODS2

Figure 2.1: Data derivation paths between data transformations.

Figure 2.1 illustrates these basic concepts, with two chained data transformations,
DT1 and DT2, with a data derivation path between them through data elemets of
the dataset IDS2, which is both an output dataset for DT1 and an input dataset for
DT2.

Definition 2.6. Semantics of attributes. Each attribute ai ∈ S(DS) is grouped
according its semantics Σ(DS), s.t.:

Σ(IDS) = {FI , VI , PI , LI} and

11



Σ(ODS) = {FO, VO, CO, LO}

where:

- FI and FO contain attributes that represent pointers to input and output files,
respectively;

- VI and VO contain attributes for extracted data or metadata from input and
output files, respectively;

- PI contains attributes for general purpose input parameter values of the data
transformation;

- LI contains attributes used by an iteration loop, i.e., used for data transfor-
mations that evaluate a loop;

- LO contains output values especially related to an iteration in case of data
transformations that evaluate a loop; and

- CO contains attributes for any output values that are explicit data transfor-
mation results.

Such added semantics improves the data modeling of the dataflow and allows
specifying which attributes of a dataset are parameters to be steered. For example,
attributes that represent parameters of data transformations, like parameters of a
numerical solver, filter thresholds, ranges, have the semantics PI and are often the
main target of fine tunings.

Attributes with FI and FO semantics represent references to large raw (textual,
imagery, matrices, binary data) scientific data files in a wide variety of formats
depending on the scientific domain (e.g., FITS for astronomy, SEG-Y for seismic,
NetCDF for Computational Fluid Dynamics (CFD) simulations).

VI and VO contain representative data (often scalar values or metadata) that
compose the views over the large raw data files. They facilitate users to have a big
picture of the content of the files through them.

Besides large scientific data files produced by data transformations, they may
produce explicit output results, represented using the CO semantics. They are scalar
values or small arrays that are meaningful for the overall result data analysis. Ex-
amples are QoIs, like errors, convergence, and accuracy;

In data transformations that evaluate loops, each iteration may be modeled as
a loop evaluation execution, like while i < MAX. Examples of attributes with
semantics LI are loop-stop conditions (e.g., MAX in the case loops if the form
of while i < MAX or threshold in case of loops in the form of while error >
threshold). Examples of LO are attributes that contain the current values being
used to evaluate a loop, which are updated at each iteration (e.g., i and MAX).
Moreover, the semantics of a dataset DS may not apply to all attributes. For

12



example, if a data transformation does not evaluate a loop, the semantics Σ(DS) of
the datasets processed by this data transformation do not contain LI or LO.

2.3 CSE Applications

As briefly described in Section 2.1, we consider the two typical ways that CSE
users conduct their experiments on large-scale computers: one is by executing their
applications as workflow scripts and the other is by using a WMS to manage their
applications. In Section 2.3.1, we provide details for workflow scripts illustrating
examples of real-world applications that we use as use cases for our experiments;
Section 2.3.2, for applications for WMSs; and in Section 2.3.3 we characterize the
scientists and engineers involved in CSE.

2.3.1 CSE Applications in Workflow Scripts

Writing and executing CSE applications in workflow scripts is one of the two typi-
cal ways CSE users automate the execution of their CSE experiments in large-scale
computers. This way is typically followed by CSE users who are experts in pro-
gramming complex scientific computing tools, like numerical solvers. The notion of
“script" used in this thesis means that it a sequence of computational steps, devel-
oped by CSE users, which automates a batch execution of a CSE experiment on an
HPC machine. These scripts can be written in a scripting language, like Python or
Shell, or a compiled language. However, as described by SILVA et al. [36], the soft-
ware ecosystem for developing these applications involves more than writing scripts
or invoking a chain of legacy scientific codes. CSE users develop their simulation
codes based on complex mathematical modeling that results in invoking compo-
nents of CSE frameworks and libraries. For example, components are invoked to
provide for: (i) support for partial different equation discretization methods like
libMesh, FEniCS, MOOSE, GREENS, OpenFOAM; (ii) algorithms for solving nu-
merical problems with parallel computations, like PETSc, LAPACK, SLEPc; (iii)
runtime visualizations, like ParaView Catalyst, VisIt, SENSEI; (iv) parallel graph
partitioning, like ParMetis, Scotch; and (v) I/O data management like ADIOS.
More recently, we have witnessed the popularity boom of Machine Learning (ML)
libraries, like TensorFlow and PyTorch, which also process data in parallel, to e.g.,
train ML models and are often invoked in codes written by ML specialists. As a
result, the software code is a workflow script, meaning that to run the underlying
mathematical modeling, it requires invoking functions, components, or APIs from
these libraries or frameworks.

As opposed to the CSE applications that are good cases for WMSs (Sec. 2.3.2),

13



these workflow scripts have intrinsic parallelism, not necessarily embarrassingly, usu-
ally implemented by the CSE users. Thus, WMSs, which are designed to control
the parallel execution, cannot be adopted to manage the execution of these scripts
because there will be conflicts caused by the competition for resources between the
parallel programming libraries invoked by the script the WMS engine. Anyhow,
these CSE users still need provenance data management.

Despite the several solutions available for making workflow scripts provenance-
aware [53–55], capturing provenance data in these workflow scripts in CSE is still
an open issue. The challenges are mainly related to performance and provenance
granularity. Solutions that are easy to deploy collect provenance in very fine grain
and present a significant overhead, while solutions that are based on function calls
present low overhead and granularity is controlled by the code instrumentation [53].
One disadvantage of instrumentation is the need to have access to the code, which is
not an issue for workflow scripts as very often the code to be instrumented is written
by the CSE user, who can assist in instrumenting [36]. In Chapter 3, we discuss the
support for steering in scripts. Next, we present a real case of a workflow script.

Computational Fluid Dynamics in Geoscience: libMesh-sedimentation

libMesh-sedimentation [27] is a Computational Fluid Dynamics workflow in the
Geoscience domain, used in the O&G industry. It implements a simulation solver
built on top of a widely used parallel finite element library, libMesh [56], which
supports parallel simulation of multiscale, multiphysics applications. libMesh inter-
faces with several libraries for Computational Science and Engineering applications
(e.g., PeTSc, Metis, Parmetis, LAPACK). Also, scientific visualization tools like
ParaView [57], are used to help to gain insight from the computations. The result-
ing application can be seen as an iterative workflow, implemented as a script. In
applications like liMesh-sedimentation, users typically set up the QoIs and several
parameters for the numerical methods. Examples of parameters are tolerances for
linear and nonlinear solvers, number of levels for mesh adaptation, tolerances for
space and time error estimates. These parameters have a direct influence on the
accuracy and simulation costs, and bad choices may lead to inaccuracies and even
to a simulation crash. As an example, the number of finite elements predicted by
the mesh adaptation procedure may exceed the memory available in a processor,
and the simulation is halted with an error message. In simulations with complex
dynamics, it is often very difficult to set-up a priori a maximum number of finite
elements per core that will guarantee the necessary accuracy without exhausting
the available resources. Figure 2.2 shows the libMesh-sedimentation solver modeled
as an iterative workflow, composed of six data transformations with a dataset be-

14



tween each transformation. Particularly, the Solver part of libMesh-sedimentation
is modeled as a data transformation that evaluates a time loop.

Adaptive Mesh
Refinement Setup Simulation Setup Solver

Catalyst Adapter XDMF/HDF5 
Writer

AMR

DT4DT3DT2DT1

DT6 DT5I_AMR_Setup

I_Sim_Setup I_Solver I_AMR

I_Catalyst_
Adapter

I_XDMF/
HDF5

while t < tmax

Figure 2.2: libMesh-sedimentation Workflow.

2.3.2 CSE Applications in Workflow Management Systems

(WMSs)

Using a WMS is the other way for automating the execution of CSE experiments in
large-scale computers. Good cases for WMSs comprise experiments that are char-
acterized by the execution of a same program or chaining of programs to process a
very large dataset. Usually, each individual execution of one of these programs is not
parallel, so to speed up the processing of the datasets, one can exploit data paral-
lelism on an HPC machine. This kind of parallel execution is called embarrassingly
parallel and is often found in Parameter Sweep workflows [19]. Applications with
these characteristics can highly benefit from the efficient parallel execution control
provided by WMSs because since there is no parallelism within workflow activity be-
ing managed by the WMS, the competition for computing resources is significantly
reduced. Also, WMSs provide mechanisms that facilitate the modeling of the data
transformations and the dataflow and many WMSs already provide provenance data
management mechanisms. [23].

Another characteristic is that these applications are typically black-boxes, mean-
ing that the CSE users either do not have access to their source code or having the
source code access is not relevant for the overall experiment. Also, even if they
did have access to the code, these users typically do not want to rewrite complex
(already tested, optimized, and stable) scientific software. Thus, although the input
and output datasets of the data transformations are known, the internal computa-
tion, which contains how the data are transformed, is opaque.

In Chapter 3, we discuss the support for workflow steering in existing WMSs.
Next, we describe real-world CSE application examples that can be used within
WMSs and how they can be modeled used our dataflow-oriented approach.

Structure Analysis: Ultra-deepwater’s Risers Fatigue Analysis

15



The Risers Fatigue Analysis is an O&G workflow for ultra-deepwater oil produc-
tion systems. Risers are fluid conduits between subsea equipment and the offshore
oil floating production unit. They are susceptible to a wide variation of environ-
mental conditions e.g., sea currents, wind speed, ocean waves, temperature), which
may damage their structure. The fatigue analysis workflow adopts a cumulative
damage approach as part of the riser’s risk assessment procedure considering a wide
combination of possible conditions. The result is the estimate of riser’s fatigue life,
which is the length of time that the riser will safely operate. The Design Fatigue
Factor may range from 3 to 10, meaning that the riser’s fatigue life must be at least
3 to 10 (according to the factor) times higher than the service life [1].

Sensors located at the offshore platform collect external conditions and floating
unit data, which are stored in multiple raw files. Offshore engineers use specialized
programs (mostly simulation solvers) to consume the files, evaluate the impact of
environmental loads on the risers in the near future (e.g., risk of fractures), and
estimate the risers’ fatigue life. Figure 2.3 shows the Risers Fatigue Analysis work-
flow, composed of seven piped programs (represented by data transformations) with
a dataset in between each transformation.

Data Gathering Preprocessing Stress Analysis

Curvature Critical
Case Selection

Calculate
Fatigue Life Compress Results

Stress Critical
Case Selection

DT4DT3DT2DT1

DT5 DT6 DT7

I_Data
Gathering

I_Preprocessing I_Stress
Analysis

I_StressCase
Selection

I_CurvatureSelection

I_CFatigueLife
I_Compress
Results

O_Results
Compressed

Figure 2.3: Risers Fatigue Analysis Workflow [1].

Risers Fatigue Analysis is modeled as parameter sweep workflow, where each
task of Data Gathering (data transformation DT1) decompresses one large file into
many files containing important input data, reads the decompressed files, and gath-
ers specific values (environmental conditions, floating unit movements, and other
data), which are used by the following data transformations. Preprocessing (data
transformation DT2) performs pre-calculations and data cleansing over some other
finite element mesh files that will be processed in the following data transforma-
tions. Stress Analysis (data transformation DT3) runs a computational structural
mechanics program to calculate the stress applied to the riser. Each task con-
sumes pre-processed meshes and other important input data values (gathered from
DT1) and generates result data files, such as histograms of stresses applied through-
out the riser (this is an output file), and stress intensity factors in the riser and
principal stress tensor components. It also calculates the current curvature of the
riser. Then, Stress Critical Case Selection (data transformation DT4) and

16



Curvature Critical Case Selection (data transformation DT5) calculate the fa-
tigue life of the riser based on the stresses and curvature, respectively. These two
transformations, DT4 and DT5, filter out results corresponding to risers that cer-
tainly are in a good state (no critical stress or curvature values were identified).
Those cases are of no interest to the analysis. Calculate Fatigue Life (data
transformationDT6) uses previously calculated values to execute a standard method-
ology [1] and calculate the final fatigue life value of a riser. Compress Results (data
transformation DT7) compresses output files by a riser.

2.3.3 Computational Scientists and Engineers

This work aims at supporting one type of user, i.e., computational scientists and
engineers, who are the typical users of a user-steered workflow. However, steering
workflows in HPC usually involves several users with different levels of expertise on
each of the aspects involved in the process. We consider three types of users: domain
specialist, computational scientist or engineer, and computer scientist or engineer.

Domain Specialists

Examples are geologists, biologists, and experimental physicists. They are very
familiar with concepts, nomenclature, and semantics of the domain. They are com-
monly very good at understanding the scientific hypothesis, results and data inter-
pretation. They may not have programming or computational skills. The resulting
data of a complex computational simulation are often delivered to them as well or-
ganized, cured, and with some aggregations, visualizations, plots, and dashboards.
Their main work is typically to give sense to these cured data.

Computational Scientists and Engineers

Examples are bioinformaticians, computational physicists, engineers, and par-
allel scientific application developers. They are not domain specialists, but have
knowledge in the domain, although more focused on the computational aspects.
They typically have programming and computational skills. They are more prone
to learning new computing technologies and use new systems that support their
computational simulations. They know how to analyze domain-specific data and
organize large raw data files into analyzed data so they can work together with do-
main specialists to interpret the data. They know how to chain the different data
transformations design a workflow to attend the main goal of a CSE experiment.
They can also operate WMSs or dispatch jobs in an HPC cluster.

17



Computer scientists and Engineers

They are experts in developing tools, methods, or systems that support large-
scale simulations. Examples are HPC, data management, workflow solution spe-
cialists. Often, computer scientists or engineers work closely with computational
scientists or engineers to obtain the best performance for an HPC simulation and
achieve the goal of the CSE experiment. They can analyze performance, linked
with domain and provenance data to help to tune the system, debugging, and fixing
errors.

2.4 Supporting Workflow Steering in CSE with

Data Management Techniques

There are at least six aspects of computational steering in scientific workflows: online
analysis, monitoring, adaptation, notification, interface for interaction, and comput-
ing model [23]. Despite the importance of them all, the first three are essential and
are the ones this thesis focuses on. Online adaptations driven by the user is at the
core of user steering. However, users will only know how to fine-tune parameters
or which subset needs further focus if they can explore partial result data during a
long-lasting execution. The workflow steering lifecycle is therefore given by:

(i) Analyzing the workflow data online;

(ii) Choosing what, when, how to adapt;

(iii) Adapting the workflow data online; and

(iv) Analyzing the workflow data again to investigate the consequences of the adap-
tation and returning to the first step until the end of the workflow execution.

In this section, we explain how users can steer the workflow based on data
management techniques. A major issue to manage data in CSE is to address the
different types of data that need to be managed. We can group the workflow data
into three types: execution, domain, and provenance, explained as follows.

Managing Execution Data

Tasks are the basic unit of control in a workflow execution. Lower level execution
engine information, such as physical location (i.e., virtual machine or cluster node)
where a task is being executed, can highly benefit data analysis and debugging
in large-scale HPC executions. Users may want to interactively investigate how
many parallel tasks each node is running. Tasks run domain applications that

18



can result in errors. If there are thousands of tasks in a large execution, how to
determine which tasks resulted in domain application errors and what the errors
were? Furthermore, performance data analysis is very useful as users are frequently
interested in knowing how long tasks are taking, how much computing resources
(memory, CPU, disk IO, network throughput, etc.) are being consumed. These
workflow execution data are important to be analyzed and can deliver interesting
insights when linked to domain dataflow data [24, 50]. When execution data is
stored separately from domain and provenance data, these steering queries are not
possible or require combining different tools and writing specific analysis programs
[35]. To support this, a dataflow-oriented approach allows for recording parallel
workflow execution data in a way that they can be linked to domain and provenance
data.

During workflow execution, typically there are many tasks to be scheduled or
executed. Considering our dataflow-oriented approach (Sec. 2.2), for each execution
of a data transformation (also known as data transformation execution), there is a
task. Although tasks are more closely related to the execution control, there are
essential metadata that should be captured and coherently related to the domain
data so that the user can steer the workflow. Information such as which tasks
should execute on which computing nodes, number of tasks per node, tasks’ input
data, task duration, and how much memory or computing power it consumed are
examples of execution data to be managed, which can increase the user’s awareness
on the CSE experiment being conducted. Execution data can be further divided
into three basic categories: (i) list of tasks to be executed along with data about
them, (ii) computing nodes to which tasks must be executed, and (iii) performance
data [20, 24, 50, 58]. Here, we briefly describe each category:

(i) List of tasks and their associated data. This category refers to tasks and
relevant data about them. Relevant data include: domain data to be processed
by each task; status (ready for execution, running, completed); program to be
executed, its version, versioning information; command lines and arguments, if
any; and any other data that can be used to improve the steering capabilities.

(ii) Computing nodes that will execute the tasks. This category refers to where each
task will be executed, i.e., which computing node will process it. For this,
a list of available computing nodes in the HPC machine with relevant data
about them. Relevant data about a computing node include its IP address
or hostname; processing capacity e.g., number of instructions per second);
available memory; and the total number of CPU cores. These data are useful
for analyzing major execution bottlenecks associated with specific computing
nodes.

19



(iii) Performance data. This category refers to the amount of resources each task
consumed. Examples are the amount of CPU used in the task, memory, and
network; the size of files manipulated in a specific task; and how long a task
took to be completely executed. These data can be used by monitoring and
debugging tools to analyze the scientific application’s performance associated
with the domain dataflow. Users can make decisions based on them.

Managing Domain Data

The datasets that are produced and generated in the flow between data transforma-
tions are part of the domain data that compose the dataflow. To analyze interme-
diate data with context, the domain data must be available for steering. Keeping
track of the raw data files while keeping their context and relating their content to
provenance improves online data analyses [35].

However, this is hard. The data size is large, as in a single file may achieve
terabytes of data and there may be multiple files in a single run. The scientific
data typically contain huge numerical values with dimensional data, which can be
stored as large plain text files or binary formats in proprietary or domain-specific
scientific file formats, such as FITS for astronomy, SEG-Y for seismic, NetCDF for
fluid simulations, or others like HDF5. Often, the workflows expect that those files
are stored at runtime on an HPC shared file system (e.g., GPFS, Lustre) for data
communication between data transformations. Capturing data references to these
large raw data files and associating the references with relevant, meaningful data
values in the dataflow is a significant assist in runtime workflow data analysis [35].

Managing Provenance Data

To manage provenance data, provenance data management systems (including com-
ponents of WMSs responsible for managing provenance and provenance capture tools
that can be coupled to workflow scripts) capture provenance data during workflow
execution to build a workflow database This requires log files or other data struc-
tures. When provenance data are enriched with domain data and the database
is made user-accessible for queries, the aforementioned analytical capabilities are
highly enhanced [20, 35, 44, 49].

Managing execution, domain, and provenance in a same database

When execution data, domain data, and provenance data are stored in the same
database at runtime, the database provides for online data analysis via monitor-
ing, debugging, performance analysis, and interactive domain data analysis. Let
us call this database as “workflow database". Any database is often managed by a

20



Database Management System (DBMS), like MySQL, MongoDB or Neo4j. Using
the Risers Fatigue Analysis workflow (Sec. 2.3.2) as a real-world example, Figure 2.4
illustrates how the scientific domain data are managed in our dataflow-oriented ap-
proach, showing how the data elements flowing between transformations are stored
as datasets linked with workflow execution data and provenance data in the workflow
database.

Data Gathering Preprocessing Stress Analysis

Curvature Critical
Case Selection

Calculate
Fatigue Life Compress Results

Stress Critical
Case Selection

DT4DT3DT2DT1

DT5 DT6 DT7

I_Data
Gathering

I_Preprocessing I_Stress
Analysis

I_StressCase
Selection

I_CurvatureSelection

I_CFatigueLife
I_Compress
Results

O_Results
Compressed

I_Preprocessing

Domain
Data

Execution
Data

Provenance
Data

Workflow Database

/tmp/5S.DAT

File System

Figure 2.4: Integrating domain, execution, and provenance data in a workflow
database.

Users can analyze the data by running queries in the database query interface at
any time during execution or using any application that connects to the database
to plot data visualization. To exemplify some possible interactive data analyses,
Table 2.1 has some typical analyses that are executed for the Riser Fatigue Analysis
workflow involving domain and provenance dataflow analysis. For Queries Q1–Q4,
there is a history of the data elements generated in DT4 and DT5 since the begin-
ning of the flow, linking each element-flow in between. For example, environmental
conditions (Q1) and hull conditions (Q2) are obtained in DT1, and stress- and
curvature-related values are obtained in DT4 and DT5, respectively. To correlate
output elements from DT4 or DT5 to output elements from DT1, provenance data
relationships are required. Table 2.2 shows interactive data analysis that integrates
domain, execution, and provenance data. For such, the core idea is to relate task
scheduling data with domain data at runtime and make these data available for
online queries.

21



Table 2.1: Examples of interactive data analysis integrating domain and
provenance data.

Q1
What is the average of the 10 environmental conditions that are leading to the largest
fatigue life value?

Q2
What are the water craft’s hull conditions that are leading to risers’ curvature lower
than 800?

Q3
What are the top 5 raw data files that contain original data that are leading to lowest
fatigue life value?

Q4
What are the histograms and related finite element mesh files when computed fatigue
life based on stress analysis is lower than 60?

Table 2.2: Examples of interactive data analysis integrating domain, exeuction,
and provenance data.

Q5

Determine the average of each environmental conditions (output of Data Gathering
— DT1) associated to the tasks that are taking more than the double of the aver-
age execution time of Curvature Critical Case Selection – DT5), grouping the
results by the machines (hostnames) where the tasks of DT5 were executed.

Q6
Determine the finite element meshes files (output of Preprocessing — DT2) associ-
ated to the tasks that are finishing with error status.

Q7
List status information about the 5 computing nodes with the greatest number of
Preprocessing tasks that are consuming data elements that contain wind speed val-
ues greater than 70 km/h.

Without such structured query support, users need to look for files in their direc-
tories, open and analyze them, and try to do this analysis in ad-hoc way. Frequently,
they write scripts to search in these result files. They often interrupt the execution
to fine-tune input data and save execution time. This user behavior is observed not
only in the O&G domain, but also in several other domains, such as bioinformatics,
computational physics, and astronomy. More examples exploring how managing do-
main, execution, and provenance data in a same workflow database enables powerful
online data analysis in workflows are found in background work [24, 29, 35, 49, 50].

2.5 W3C PROV and its Extensions

To model domain, execution, provenance data in a workflow database, it is useful to
follow existing standard data diagrams to model the data entities and relationships
in such a database. A major advantage in following standards is that it enables
data interchange, interoperability, and ease of communication among scientists and
engineers from different communities or that use different provenance data manage-
ment systems that follow the same standard. The World Wide Web Consortium

22



(W3C), acknowledged for defining standards and recommendations on the web, rec-
ommends the PROV family of documents [2]. Particularly, the Provenance Data
Model (PROV-DM) is the general entity-relationship provenance data diagram that
gives basis to other PROV documents, such as the PROV-O for ontologies and RDF
data. PROV-DM models generic concepts like agents, entities, and activities, and
how they relate to each other (Figure 2.5), which are useful concepts for the general
management of provenance data.

used

endedAtTime

wasAssociatedWith
actedOnBehalfOf

wasGeneratedBy

wasAttributedTo

wasDerivedFrom

wasInformedBy

Activity

Entity

Agent

xsd:dateTime

startedAtTime

xsd:dateTime

file:///Users/rfsouza/tmp/starting-points.svg

1 of 1 03/11/19, 18:22

Figure 2.5: PROV-DM General Overview [2].

To model the specific concepts for workflows, there are specializations of PROV-
DM that are PROV-compliant provenance data diagrams for workflows, like the
ProvONE [59] and further specializations that model workflow execution data and
domain data related to provenance data, like the PROV-Wf [29] and PROV-Df [35].
These provenance data entity-relationship diagrams can be implemented by systems
that manage provenance data using DBMSs with various data models, varying from
triple stores [60] to relational DBMSs [49].

To give a concrete example, d-Chiron [44] is a WMS that manages provenance
data in a relational database with an instantiation of PROV-Wf. When controlling
the execution of a workflow, say the Risers Fatigue Analysis (Sec. 2.3.2), the WMS
populates a database with a relational database schema whose excerpt is illustrated
in Figure 2.6. Relations (tables) in light gray represent domain data and those in
dark gray represent both execution and provenance data. Domain data are part of
the schema used for running the workflow. A complete instantiation of the Risers
Analysis workflow in a relational database schema used by d-Chiron WMS is avail-
able on GitHub, where we also show concrete examples of SQL queries used to steer

23



Figure 2.6: An excerpt of a relational database schema that implements PROV-Wf.

this workflow [61].
For execution data, the main supporting relation is Task, which has the list

of tasks to be executed and their associated data. Task has a relationship with
the Worker relation that keeps track of which worker (usually a computing node)
executed which task. Metadata about the files that were processed or generated
by each task execution are maintained in the File relation. Performance relations
store data about resource consumption by each task. Since these data are related,
a user can run analytical queries to help users to steer the workflow at runtime [24–
26, 49, 50].

24



Chapter 3

The State-of-the-Art in User
Steering Action Data Analysis

As discussed in the introduction (Chap. 1), steering actions are the individual in-
teractions that the user performs while they are steering a CSE application running
on a large-scale machine. Several surveys, both old [5, 62] and recent ones [63, 64],
have analyzed multiple approaches to support user steering and others, also re-
cent [19, 23, 32–34], further highlight the importance of dynamic steering in work-
flows. Particularly, MATTOSO et al. [23] analyzed approaches implemented within
WMSs analyzing their steering and provenance data management support. In this
chapter, we extend the analyses done by these surveys by examining several ap-
proaches, within a WMS or not, concerning how they support steering (online anal-
ysis and adaptation) and, more importantly, their support for allowing for tracking
steering actions. To the best of our knowledge, this is the first state-of-the-art analy-
sis in the context of user steering in large-scale workflows that examines approaches
both within and without WMSs.

We begin by investigating the types of steering actions supported in the state-
of-the-art. We could identify two main types: online data analysis and online data
adaptation. These two can be further classified as shown in Figure 3.1, and detailed
as follows.

User Steering Action

Online Data 
Analysis

Monitoring Runtime 
visualization

Interactive 
Analysis

Online Data 
Adaptation

Parameter 
tuning

Data 
Reduction

Checkpointing 
and Rolling 

back
Performance 
optimization

Code 
replacement

Figure 3.1: A taxonomy for user steering actions.

25



In case of online data analysis, we can further identify the following actions:

- Monitoring — a predefined data analysis plotted as charts in a dashboard or
tables, whose results are refreshed in predefined time intervals. Usually, users
follow the monitoring results passively, with less interaction. Depending on
the monitoring results, users can interact with the workflow;

- Runtime visualization — a data analysis where there are scientific data visual-
ization techniques involved, often combined with computer graphics tools and
HPC techniques that allow for visualizing the large scientific data at runtime;

- Interactive analysis — a data analysis that allows users to perform ad-hoc
exploratory analysis over the workflow data. This is different from monitoring
in the sense that the former requires predefined specification of what is going
to be analyzed, whereas the latter enables more interactive queries as the user
can change what is being analyzed as they analyze the partial results.

In case of online data adaptation, we can further identify the following actions:

- Parameter tuning — dynamic changes of parameter values of data transforma-
tions in a dataflow, such as fine-tune simulation parameters of a computational
model, change loop-stop conditions;

- Data reduction — dynamic removal of input data that the user decided that
should not be processed, such as pruning possible solutions of a large solu-
tion space being explored in parallel that are no longer interesting (e.g., the
solutions are unfeasible or not optimal).

- Checkpointing and rolling back — specification of certain points, during work-
flow execution, that the user marked “safe" or had the expected results. If
a failure happens, e.g., program crash, function not con-verging as excepted,
or even failure caused by external factors, such as hardware failure, the user
would be able to request a rollback to one of the check-pointed states. This
facilitates “what-if” exploration [65].

- Performance optimization — dynamic tunes in the application data or com-
puting resources at runtime aiming at improving performance or saving re-
sources, e.g., change the load of processor units that are overloaded.

- Code replacement — modification of parts of a running code (also known as
“live programming”).

Then, in the following sections, we analyze the approaches available in the liter-
ature, in the context of user steering support.

26



3.1 Approaches for Online Analysis, Adaptation,

and User Steering Action Data Management

Table 3.1 summarizes the approaches on online data analysis support, which online
adaptations they support, and whether or not they allow for tracking user steering
actions. We particularly investigate, for example, if they manage steering action
data or any other data for data analysis or reproducibility.

Table 3.1: Comparison of approaches for user steering support.

Approach
Online Data
Analysis

Online Data
Adaptation

Tracking
Steering
Actions

DfAnalyzer
[27, 35, 66]

Monitoring,
interactive data
analyses, runtime

visualization

X X

VASE [67] Monitoring
Parameter tuning,
Code replacement

X

SCIRun [68]
Monitoring and

runtime
visualization

Parameter tuning X

CSE
[8, 10, 69]

Monitoring and
runtime

visualization
Parameter tuning X

Progress
and

Magellan
[70]

Monitoring and
runtime

visualization
Parameter tuning X

CUMULVS
[71]

Monitoring and
runtime

visualization

Parameter tuning,
Check-pointing and

Rolling-back
X

VIPER [72]
Monitoring and

runtime
visualization

Parameter tuning X

MOSS [73] Monitoring
Parameter tuning,
Data reduction

X

27



Table 3.1: Comparison of approaches for user steering support.

Approach
Online Data
Analysis

Online Data
Adaptation

Tracking
Steering
Actions

gViz [74]
Monitoring and

runtime
visualization

Parameter tuning X

DISCOVER
[75]

Monitoring Parameter tuning X

MoSt [76] Monitoring
Parameter tuning
and performance
optimization

X

GRASPARC
[77]

Monitoring
Parameter tuning,
Check-pointing and

Rolling back

History Tree for
maintaining the
track of the

simulation after
a steering

action, which is
used to go back
to a safe state.

ParaView
Catalyst

Live [57, 64]

Monitoring and
runtime

visualization
Parameter tuning X

PathFinder
[78]

Monitoring
Parameter tuning
and performance
optimization

X

Extempore
[79]

Runtime
visualization

Code replacement X

Cactus [80]
Monitoring and

runtime
visualization

Parameter tuning,
Data reduction

X

EPSN [81]
Runtime

visualization
Parameter tuning X

pV3 [82]
Runtime

visualization
Parameter tuning X

RealityGrid
[4]

Monitoring and
runtime

visualization

Parameter tuning
with Check-pointing
and Rolling back

X

28



Table 3.1: Comparison of approaches for user steering support.

Approach
Online Data
Analysis

Online Data
Adaptation

Tracking
Steering
Actions

EPIC [83]
Monitoring and

runtime
visualization

Parameter tuning X

CS_Lite
[84]

X Parameter tuning X

I-WAY [85] X Parameter tuning X
Falcon [11] Interactive analysis Parameter tuning X
Autopilot

[86]
Runtime

visualization
Parameter tuning X

WBCSim
[12–14]

Monitoring and
interactive analyses

Parameter tuning X

YI et al.
[87]

Monitoring and
runtime

visualization
Parameter tuning X

MA et al.
[88]

Runtime
visualization

Data reduction via
down sampling

X

HAN and
BROOKE

[7]
Monitoring Parameter tuning X

MATKOVIC
et al. [89]

Monitoring and
runtime

visualization

Data reduction of
parameter space

exploration
X

BUTNARU
[90]

Monitoring and
runtime

visualization
Data reduction X

KNEZEVIC
et al. [91]

Runtime
visualization

Parameter tuning X

DANANI
and

D’AMORA
[6]

Monitoring and
runtime

visualization
Parameter tuning X

Chiron
WMS

[26, 92, 93]

Monitoring and
interactive data

analyses

Parameter tuning,
code replacement

X

29



Table 3.1: Comparison of approaches for user steering support.

Approach
Online Data
Analysis

Online Data
Adaptation

Tracking
Steering
Actions

WorkWays
(on top of

Nimrod/Ke-
pler WMS)

[46]

Monitoring and
runtime

visualization

Parameter tuning,
Data reduction

X

gridMon
Steer (on top

of Triana
WMS) [94]

Monitoring Parameter tuning X

Table 3.1 shows that all approaches surveyed provide partial support for online
data analyses, as at least monitoring is provided by almost all of them and many
provide runtime visualization. However, these approaches provide little support for
managing steering action data, as discussed next.

Approaches without a Workflow Management System

GRASPARC [77] maintains a history tree, but it is used for checkpointing and rolling
back. Falcon [11] collects trace data and stores in a database. It also has Trace data
collector, Trace data analyzer, and a Trace data database. These traces are used
for debugging and post-hoc analyses. Its runtime data capture is limited, with no
integration with domain, and performance. Steering action data are not captured.
There is no support for exploratory online data analyses. There are no explicit data
relationships between the user’s steering actions with the results of a steering action.
Furthermore, they show little use of the traces database in their paper, making it
harder to evaluate the benefits of having such a database.

DANANI and D’AMORA [6]’ work uses a DBMS for registering user records and
generic application data. Despite the data analytical component in their architec-
ture, it is not clear if it can be used for online data analyses to facilitate knowledge
discovery in large amounts of scientific data and to relate to user steering data.
SHU et al. [13, 14] use a DBMS to facilitate development of WBCSim. It stores
simulation input and results, thus can be used for analyses.

DfAnalyzer [27, 35, 66] allows for rich dataflow online analysis in large-scale
workflows. It contributes by providing workflow provenance data analysis enriched
with execution data and domain data through runtime data extraction and indexing

30



techniques. DfAnalyzer materializes dataflows by relating elements from raw data
files. Through manual instrumentation of workflow script, users add lightweight
library calls with negligible overhead to the workflow execution. It can be combined
with ParaView Catalyst to allow for in-situ data capture and runtime visualization.
Based on data analysis provided by DfAnalyzer, CSE users were able to steer a
running workflow [27]. However, like all the other approaches, DfAnalyzer does not
manage user steering action data, thus users cannot understand how their actions are
influencing a running workflow, which is a critical aspect that needs to be supported
in the workflow steering lifecycle.

Therefore, none of these approaches manage steering action data, i.e., they do
not capture steering action data, relate to the workflow data, and store in a database
available for analysis at runtime, which would allow users to analyze steering action
data online, supporting the workflow steering lifecycle.

Approaches with a Workflow Management System

Data managed by current WMS execution engines are separate from data for prove-
nance and analyses. During the execution, the WMS manages its internal scheduling
data to be efficient for parallel performance and generates logs to be structured for
queries for provenance data analyses after the execution ends. That is, execution
data are not available for online queries when a workflow is running. There are im-
portant limitations with this approach of not making execution data available from
data analyses at runtime.

A major shortcoming is the lack of support for monitoring queries involving do-
main data from data structures or repositories, which remain isolated from execution
data. This prevents a WMS from providing support for monitoring queries like “how
many tasks are still pending to be scheduled for the workflow activity 3?" or “what
is the average execution time for the tasks that have already executed?", and debug-
ging queries like “how long was the average execution time for tasks that produced a
result value greater than x?". The problem is that the user who models a workflow
often needs to fine-tune its configuration. Analytical queries, with performance data
(e.g., task duration, memory or CPU consumption by task, etc.) and domain data,
can show whether the workflow is in the right direction or needs further adjustments.
When these data are separated, submitting monitoring or debugging query is quite
complex, leading to the classic problem of data integration for data analysis.

Besides, if performance data are not adequately registered during workflow ex-
ecution, they will no longer be available for analyses when the execution finishes.
Another problem is the difficulty for providing runtime data analysis since prove-
nance is only registered in log files, which are much harder to be queried than
structured or semi-structured data. To facilitate dealing with data management

31



issues, WMS solutions often make use of DBMS. In this section, we briefly discuss
how DBMS take part in existing WMS architectures and which role they play in
terms of user steering capabilities.

Swift/T [95, 96] is a highly scalable approach that uses a distributed key-value
store to enforce data dependencies between tasks during scheduling execution, but
it does not allow for tracking user steering action. To keep its high scalability,
Swift/T stores analytical data in log files, which are loaded to a DBMS only when
the workflow execution finishes. Still, there are two databases, which use different
DBMS to manage them and the user does not have access to the database used by
Swift’s engine for scheduling.

Pegasus [21] is also a scalable WMS that has been used for many real-world
workflows, like LIGO for gravitational wave discovery [97]. Pegasus uses a DBMS
to store execution data, which is available for the user to do runtime execution
monitoring, but does not provide for data analyses based on runtime ad-hoc queries.
Like Swift, Pegasus also stores provenance data in log files to be made available for
user queries only after the workflow finishes.

Stampede [98] is a DBMS-based execution monitoring tool that can be plugged
into WMSs. Stampede adopts a centralized DBMS solution and has been evalu-
ated with two different WMSs, Pegasus and, Triana, to show its monitoring facili-
ties. However, it is also a solution that does not integrate monitoring to domain or
provenance data, and does not allow for tracking steering actions.

FireWorks is a scalable WMS [99] that also has a DBMS-driven workflow ex-
ecution engine. FireWorks has a JSON-based approach to state management and
uses MongoDB to support scheduling queues and queries JSON documents to mon-
itor workflow execution. FireWorks’s approach shows scalable results when mon-
itoring concurrent workflows’ executions. Even though MongoDB is a distributed
document-oriented DBMS, FireWorks communicates with MongoDB as a centralized
database server, which suffers from many concurrent accesses. Also, as a document-
oriented DBMS, MongoDB has limited query capabilities for relating different work-
flow data and limited ad-hoc analytical queries.

Chiron [20, 26] collects provenance data and uses a centralized, relational DBMS
to integrate and manage data required for parallel execution and data for analytical
queries. It the only WMS that manages execution, domain, and provenance data
in the same database, making it an exception among the approaches within WMSs.
SciCumulus [58] is a lightweight middle on top of Chiron that adds capabilities to
exploit cloud computing environments. d-Chiron [44, 100] is a version of Chiron that
employs a highly efficient in-memory distributed DBMS to accelerate the parallel
execution control in Chiron. However, as the other WMSs, neither Chiron or any of
its versions can manage steering action data without the concepts and techniques

32



introduced in this thesis.
Therefore, we are not aware of any WMS approach that managers steering ac-

tion data, do not allow the users to track their steering actions, compromising the
workflow steering lifecycle support.

Other Approaches for User Steering

Other approaches [101–103] provide some user steering support, like parameter tun-
ing, reduction of parameter space, performance tuning, and monitoring. However,
they provide little or none data analytical support, no provenance data management,
and no steering action data management.

Moreover, while most approaches that enable data reduction aim at avoiding
data to be generated, e.g., by enabling users to prune useless solutions in a large
solution space, there is an intense area of data reduction research focused on reducing
data already generated by the simulation. For example, initiatives like CODAR
[104], Melissa [105], DimStiller [106], and the work by JIN et al. [107], propose data
reduction strategies such as dimension reduction, outlier detection and compression
also based on online data analyses, which are complementary to our approach. Other
approaches provide steering support but are too application or domain-specific, such
as Computational Fluid Dynamics [108], whereas we aim to design a domain and
application-independent solution.

SPINUSO [109] has investigated the importance of capturing provenance data
at runtime for steering in scientific workflows, in an approach called Active. Among
several contributions, he proposes S-PROV, a provenance data diagram extension of
W3C PROV, to represent workflow abstractions and concretization in the execution
of real use cases. The main difference between Active and our approach WfSteer is
that we aim at supporting computational steering in large-scale workflows, such as
the ones found in CSE applications that require large HPC machines, which adds
new challenges as already discussed. Additionally, another difference is that we
addressing the challenge to enable efficient capture and query of provenance data
considering use cases both with and without WMSs, which adds a new complexity to
the problem. Therefore, we believe our detailed characterization of steering actions,
along with the notion of provenance of the steering action data and our proposed
W3C PROV-compliant representation of these concepts, and the design principles
for efficient steering action data capture in HPC considering both with and WMSs
is complimentary to the Active approach.

Recent works [110–113] have explored user steering concepts for parameter tun-
ing; data capture for analysis, monitoring, and debugging; and data reduction ap-
plied to Machine Learning life cycle (e.g., data preprocessing, training, models, result
analyses).

33



Figure 3.2: User steering approach for optimization [3].

Figure 3.2 [3] shows a conceptual interactive optimization approach, such as
human-guided search, for Operations Research. Because an optimization model
“may underestimate or ignore some aspects of the real problem”, resulting in com-
putation of either “unrealistic or unfeasible solutions, or solutions that do not capture
domain-related characteristics”, several contributions in Operations Research have
been made to overcome this. For example, robust optimization to deal with the
inherent uncertainty of a decision context. However, even with such improvements
in Operations Research, there are still limitations such as to find an efficient opti-
mization method or, regardless the optimization model previously designed, there
may be specific decision criteria that remain unknown and will only be found during
the decision-making process. For this, interactive optimization can be used and they
share the same motivations as ours. However, most of the approaches that provide
some support for interactive optimization do not use an online approach, requiring
the simulation to stop, tune, and re-submit. Also, making sense of very large raw
datasets is not a focus.

ADIOS [114], GLEAN, Damaris/Viz, Qiso, Nessie, Strawman, Decaf [115] en-
able strong monitoring and online data visualization features, but no adaptation,
nor steering action tracking. WMSs like WINGS/Pegasus [21], Swfit [95, 96], Nim-
rod/Kepler [116], VisTrails [117] have monitoring and data analyses support, but
no adaptation nor steering action tracking. In the next section, we analyze these
WMSs in detail regarding their data analysis and provenance management support.

3.2 Making a CSE Application Steerable

In Table 3.2, we summarize how each analyzed approach makes a CSE application
steerable. We want to understand how they expose the data to be steered by the user.

34



For instance, if they use message passing-based or data-oriented implementation
for communication between the running parallel application and the user who is
steering. The importance of this in the context of this thesis is that to be able
to capture steering action data, our solution needs to be aware of how the CSE
application is made steerable.

Table 3.2: Comparison of implementation on how the approaches make a CSE
application steerable.

Approach
How the approach implements steering in a CSE

application

DfAnalyzer
[27, 35, 66]

Manual source code instrumentation. Communication
between the user application and the backend is done via

HTTP RESTful API calls.

VASE [67]

Manual source code instrumentation. Addition of steerable
points in the data dependencies of a dataflow.

Communication between the user application and the backend
is done via simple file-based communication.

SCIRun [68]
User has to write a C++ abstract program using the system’s

structure
CSE

[8, 10, 69]
User needs to write “satellites" and plug to their application

to communicate with the “Data Manager"
Progress

and
Magellan

[70]

Via manual source code instrumentation, user specifies only
relevant data structures (called “steering object model") to be
exposed for steering. The server executes as a separate thread

in the same memory space of the application.
CUMULVS

[71]
Manual source code instrumentation to indicate data

dependencies and steerable parameters.
VIPER [72] Manual source code instrumentation.

MOSS [73]
Moss provides high-level abstractions for manual source code
instrumentation of steerable data structures and parameters.

It provides performance and consistency control studies.
gViz [74] Manual source code instrumentation via a steering library.

DISCOVER
[75]

Manual source code instrumentation. It supports
geographically distributed users steering. It uses MPI for data
collectors and adaptors between the running code and the

steering server. Uses Java RMI between the server and the UI.
MoSt [76] It allows for dynamic source code instrumentation.

GRASPARC
[77]

Manual source code instrumentation.

35



Table 3.2: Comparison of implementation on how the approaches make a CSE
application steerable.

Approach
How the approach implements steering in a CSE

application

ParaView
Catalyst

Live [57, 64]

Manual source code instrumentation. In time-loop
simulations, the simulation data structures are re-mapped at

each time step in a time-loop.
PathFinder

[78]
Manual source code instrumentation.

Extempore
[79]

Users need to use a specific programming language.
Just-in-Time compilation. “Hot-swapping" or “live

programming" of a main loop.
Cactus [80] Manual source code instrumentation.
EPSN [81] Manual source code instrumentation.

pV3 [82]
Manual source code instrumentation of a main loop code. It

uses API to communicate with the backend.

RealityGrid
[4]

APIs for manual source code instrumentation. It addresses
consistency issues. File-based and Socket-based between

running application and server. SOAP for messages between
client and server.

EPIC [83] Manual source code instrumentation.
CS_Lite

[84]
Manual source code instrumentation. It uses socket-based

communication between the user application and the backend.
I-WAY [85] Manual source code instrumentation.

Falcon [11]
Manual source code instrumentation. It is concerned with
performance, can control overheads, turn on and off each

steering point, selective monitoring
Autopilot

[86]
Manual source code instrumentation. It is toolkit with data

collectors and adaptors.
WBCSim
[12–14]

Manual source code instrumentation.

YI et al.
[87]

File-based implementation.

MA et al.
[88]

File-based data communication.

HAN and
BROOKE

[7]
Manual source code instrumentation.

36



Table 3.2: Comparison of implementation on how the approaches make a CSE
application steerable.

Approach
How the approach implements steering in a CSE

application

MATKOVIC
et al. [89]

Users need to develop inside a monolithic system

BUTNARU
[90]

Both non-intrusive and source code instrumentation are
provided.

KNEZEVIC
et al. [91]

Manual source code instrumentation of CSE applications.
MPI-based between user steering and the running application.

Examples in CFD use cases.
DANANI

and
D’AMORA

[6]

Modification of RealityGrid source code to use the UI inside a
HPC machine network. Useful for HPC machines that do not
accept external connections, like Blue Gene/Q (the one they

used) and Lobo Carneiro.
Chiron
WMS

[26, 92, 93]

Dataflow-oriented WMS. Non-intrusive. As any WMS, it can
conflict with applications that already are parallel.

WorkWays
(on top of

Nimrod/Ke-
pler WMS)

[46]

Science Gateway. Non-intrusive. As any WMS, it can conflict
with applications that already are parallel.

gridMon
Steer (on top

of Triana
WMS) [94]

Non-intrusive. As any WMS, it can conflict with applications
that already are parallel.

Users can develop their own ad-hoc way to implement an adaptable application,
such as using a simple file-based approach [27]. Such implementations are usually
lightweight but unsuitable for reuse, as argued by BAUER et al. [64]. General-
purpose systems or frameworks or libraries that provide user Steering support are
more suitable for a universal reuse [64]. We investigate how such approaches can
modify a running code. Approaches that eases data parallelism control, like WMSs
with steering support [25, 26, 118], provide non-intrusive strategies to support pa-
rameter sweep workflows, but cannot support applications that run as workflow
scripts, like the ones we describe in Section 2.3.1. Other approaches and libraries
enable users to manually instrument their source code for external invocations to a

37



steering library [5, 63, 64]. Although “manually” may seem a problem, in a way that
there are solutions that aim to enable autonomous ways to instrument a source code
[55], manual instrumentation is a typical routine in the daily life of CSE application
developers [36, 64]. Users that develop such applications are used to writing exter-
nal calls to parallel libraries in their application source code. They know very well
where to add such calls in their code so they know which aspects should be steered
during execution. Manual instrumentation allows users to customize the solution to
their specialized needs, as argued by GU et al. [11], who developed steering support
in Falcon.

Solutions that provide autonomous code instrumentation to capture data at run-
time may pollute the source code and the online data analysis as they may collect
more data than the data that are actual relevant for the users, and they can add
unnecessary overheads by collecting data that the user will likely never use [36, 53].
These approaches that support steering by allowing the user to manually instrument
their application in strategic “steerable” points of their application code are suitable
for CSE applications, which is a limitation for the WMSs that support steering.
However, if the added code for instrumentation is overwhelmingly complex for the
user, too many lines need to be added, or significant performance overheads are
added, this may be a problem for adoption of the solution, as discussed by the
authors of CS_Lite [84].

3.3 System Design of an Approach that Supports

User Steering

By surveying these approaches, we identify two main strategies to implement steer-
ing: data-oriented or message passing. In the data-oriented strategy, there is a
shared data space between the running parallel application and the system sup-
porting steering. The majority of these approaches using the data-oriented strategy
adopt a file-based implementation, i.e., files in the file system are the “shared data
space”. The file is accessible both by the user steering the running application and
by the application itself. If the user changes the file, the application reloads its
settings based on the new values in the file. The advantages of this implementation
are that it is very simple and lightweight, and it does not require extra software or
libraries [4]. However, if there are multiple checks in this file in a very short time,
or if there are multiple modifications at once, or if a high performance shared disk
(e.g., Lustre, GPFS) is not available, this may impact the overall performance of
the simulation. In addition to performance, another issue that may arise is consis-
tency. If a user modifies an application while it is running, how to guarantee that

38



the adaptation will not cause an error or lead to an inconsistent state? For instance,
during execution often there are thousands of tasks to run in parallel. Some of
them are already running, others have already executed, and others are waiting to
be executed. If the user tries to steer the execution affecting an already executed
task, the steering action may not take effect; or if the user tries to modify a task
that is executing, like performing calculations or writing data files on disk, this may
lead the execution and data (e.g., overwriting files that were being written) to an
inconsistent state. Moreover, when designing a steerable application, one needs to
be concerned with a “steering lag” [119], which is the elapsed time between the user
interaction and the steering action to take place in the running parallel application.

In addition to data-oriented, other implementations use a client-server architec-
ture, via Message Passing Interface (MPI), sockets or HyperText Transfer Protocol
(HTTP) for message passing between the user interface, the running application,
and the system providing steering support. We explain which implementation each
approach uses in Table 3.2. In these implementations, there are no disk accesses for
steering, which may be a better strategy for in-situ steering. However, we found
no performance and consistency issues being further addressed in those works. As
mentioned by AYACHIT et al. [63], there was no focused effort to study the scalabil-
ity of these approaches nor the overhead they add to parallel workflow script (i.e.,
the simulation code). Besides, some approaches [62, 70] use the terms “sensors”
and “actuators” to signify runtime relevant data capturers and adapters of steerable
data.

3.4 Further Discussion on the Analyzed Approaches

We analyzed several approaches and their support for steering. The publications
of three of them, RealtyGrid [4], Magellan [70], and Mulder’s [5], contain high-level
illustrations (Figures 3.3, 3.4, and 3.5, respectively) of an approach that provides
traditional user steering support. In common, they have three main components:
the user interface (from where users analyze and steer the parallel application); the
system that supports steering; and the parallel application that is going to be steered
by the user.

39



Figure 3.3: Basic components of an approach that supports user steering,
according to PICKLES et al. [4].

Figure 3.4: User steering concepts, according to MULDER et al. [5].

40



Figure 3.5: Conceptual view of a approach that supports steering according to
MULDER et al. [5].

Figure 3.6 shows a general architecture for interactive optimization, which considers
human feedback for building a preference model to help users to steer [3].

Figure 3.6: User steering for Operations Research [3].

In Figure 3.3 [4], we also see that they provide a library to be used as external
calls in the running code for visualization and steering. According to DANANI and

41



D’AMORA [6], who deployed RealityGrid in Blue Gene/Q HPC machine, Reality-
Grid has a client-side that runs on the user’s desktop whereas the server runs on the
same machine that the parallel simulation runs. This is a limitation for Blue Gene/Q
and several other HPC machines, like Lobo Carneiro1, which disallows connections
form external networks for security reasons. Thus, they modified RealityGrid’s open
source code [120], in the client component, to run it on Blue Gene/Q. Then, they
were able to run RealityGrid in OpenFOAM, a highly parallel CFD toolbox that
contains numerical solvers. They were able to control two parameters using Reality-
Grid: deltaT and nCorr, which are used in the inner loop of the solver. They provide
a general architecture (Figure 3.7) for computational steering and data analyses for
large volumes of raw data, which they call “Future of Steering Workflows”.

Figure 3.7: DANANI and D’AMORA [6]’ view on “the future of steering
workflows”.

Figure 3.8, extracted from HAN and BROOKE [7]’s work, shows a dynamic data-
driven architecture for steering. There is a Calibrator component that is controlled
by humans and can change the parameters and variables at runtime of a legacy source
code previously instrumented manually. Data are captured at runtime for Machine
Learning-based prediction and monitoring. They use a DBMS to store data for the
Machine Learning models. Based on analysis of the Predictor and Monitoring, users
can steer. HAN and BROOKE are co-authors of another application [121] that
runs on Blue Gene/Q. This application has a similar architecture to the one that
uses RealityGrid, which we previously discussed. This application demonstrates an
interesting modern use of this Computational Steering: users using a mobile device,
such as a smartphone, to steer a CFD simulation running on the IBM Blue Gene/Q
HPC machine.

1http://www.nacad.ufrj.br/recursos/sgiicex

42



Figure 3.8: Dynamic data-driven steering architecture [7].

Another classic approach that supports steering is the so-called “Computational
Steering Environment”, developed in the nineties [8–10], whose architecture is shown
in Figure 3.9. It is one of the first approaches with user steering support. It also
relies on the idea of manual application source code instrumentation. It uses a
data-driven approach for steering. “Satellites” are interfaces between the user and
the Data Manager. Satellites can read and write variables (scalars or arrays) from
a database managed by a Data Manager component. When a variable is changed
as a result of a satellite command, the Data Manager sends back a notification to
confirm the change. The database managed by the Data Manager is stored as files
on disk. In this way, users of parallel applications develop their mechanisms for
reading/writing variables to this file.

Figure 3.9: “Computational Steering Environment” system architecture [8–10].

Falcon [11] is a lightweight toolkit that supports monitoring and steering. Its
architecture is shown in Figure 3.10. It has runtime libraries for information cap-

43



ture, collection, filtering, and analysis, and a graphical user interface. In Falcon, the
application code is instrumented. The user specifies monitoring to expose relevant
simulation parameters to be monitored and steered. Falcon also captures perfor-
mance data. Partially processed monitoring information is used by the user to help
to decide on what to steer. One of the main functionalities in Falcon is to allow
users to control at runtime any added functionality to the user’s running applica-
tion. Users can dynamically turn on and off any runtime data capture or steering
capabilities previously added during source code instrumentation.

Figure 3.10: Falcon’s architecture [11].

WBCSim (Figure 3.11) has been developed since 1999 [12]. It is another approach
that supports user steering in legacy workflow script codes. It provides a lightweight
library for source code instrumentation. It has a monitor that alerts users when it
is time to steer. It has a data visualization of simulation results. Analyzing the
behavior of the execution after a steering action, the addition of multiple steering
points, and the addition of support of a database in an idea that is similar to the
track of steering action data to compare steering results to other results are pointed
as future work [13]. Despite the important contributions for general concepts of
user steering, WBCSim’s papers [12–14] promote deeper specialized discussions on
how to support wood science and legacy FORTRAN application codes instead of a
wider variety of scientific domains. Moreover, one of its design goals is to provide

44



user steering for small-scale Problem Solving Environments, which differs from our
motivations as we aim at large-scale parallel applications.

Figure 3.11: WBCSim approach architecture [12–14].

VIPER (VIsualization of Parallel numerical simulation algorithms for Extended
Research) [72] is mainly designed for parameter space exploration. Users annotate
the program to identify data and input parameters as steerable objects. When
a steerable object is found in the code at runtime, VIPER server is notified. It
extracts data from the application or restores input parameters. They test steering
in a parallel CFD application.

MoSt (The Monitoring and Steering Environment) [76] provides powerful data
visualization and enables users to adapt the running code. It also allows for steer-
ing performance optimization. One interesting feature is its ability to instrument a
running application. This allows dynamicity even without pre-defined code instru-
mentation.

Extempore [79] is a live-programming environment. Users add calls to Extem-
pore in their main simulation loop. Then the loop is controlled by Extempore.
Thereafter, the user can interactively send statements to the Extempore compiler.
They are “just-in-time” compiled (C, C++, Fortran) into native machine code, in-
cluding MPI, and immediately executed.

ParaView Catalyst Live [57] is designed to run synchronously with the simula-
tion. There is MPI communication between simulation and analysis and it is the
application developer’s responsibility to write an additional communication routine
during code instrumentation. It has efficient in-situ data visualization capabilities
as analysis and simulation run alongside, in the same address space. ParaView Cat-

45



alyst Live enables monitoring and steering the simulation workflow. The simulation
data structures are re-mapped at each time step [64].

Therefore, as surveyed by BAUER et al. [64], many of these approaches are no
longer maintained. As discussed by FIGUEIRA and BUI [84], some of them are
very hard to be used, as there are several lines of code that need to be added in the
user’s application code. HART and KRAEMER [119] mention that consistency in
modifying a running parallel code needs to be considered by the steering systems
developers, but we found that most of these approaches do not address consistency
problems, as mentioned in Table 3.2. Thus, although many approaches provide
steering support and some of them were proposed over twenty years ago, there are
issues such as performance, consistency, and enabling multiple steering actions that
are not yet addressed. Furthermore, none of these approaches allows for tracking
steering actions, compromising the workflow steering lifecycle support. Except for
DfAnalyzer and the WMS approaches, provenance data management techniques,
which could be a solution for this, is not mentioned at all in the publications de-
scribing the approaches surveyed in this chapter.

46



Chapter 4

WfSteer: An Approach for Managing
User Steering Action Data

We informally defined steering actions as interactions that the user performs during
workflow steering, like online data analysis and online data adaptation, in Section
2.1 and presented formal definitions on the dataflow-oriented approach in Section
2.2. Here in this chapter, we introduce WfSteer, our approach for managing user
steering action data in large-scale workflows. We begin by motivating the need for
management of a new type of data, steering action data, to support steering in CSE
(Sec 4.1). Then, we extend the dataflow-oriented approach to formally define user
steering action and steering action data (Sec. 4.2) and define instances of steering
actions following these definitions (Sec. 4.3). Finally, in Section 4.4 we introduce the
notion of provenance of steering actions and present a new W3C PROV-compliant
data diagram to model it. The conceptual parts that encompass the two typical ways
of conducting CSE experiments on large-scale computers (i.e., workflow scripts and
WMSs) have been unified here in this chapter. Then, in Chapters 5 and 6, we
introduce the specific details on how WfSteer is instantiated to manage steering
action data in workflow scripts and in a WMS, respectively.

4.1 User Steering Action Data: a new type of data

that needs to be managed

After users have analyzed partial data and gained insights, they may decide to
adapt the workflow execution online. In this thesis, an online data adaptation, or
adaptation for short, is a steering action performed by a user that causes a change
in the flowing data elements in the dataflow. Adaptations bring powerful abilities
to users, putting the human in control of a scientific workflow execution. They
can significantly reduce overall execution time, since users are able to identify a

47



satisfactory result before the programmed number of iterations. The adaptable
aspects range from computing resources involved in the execution (e.g., adding or
removing nodes), to check-pointing and rolling-back, reducing datasets, tuning of
filter thresholds, loop-stop conditions, and parameter values.

Populating a workflow database (Sec. 2.4) during workflow execution enables
both online data analysis and adaptation. For example, it is possible to analyze
or monitor the data being continuously generated as the workflow executes [35],
change filter conditions during execution [122], and adapt loop conditions of iterative
workflows (e.g., modify number of iterations or loop stop conditions) [26].

In a long-running execution, many interactive data analysis and adaptations may
occur. When a user adapts the dataflow, new data type of data, steering action data,
are generated and, hence, must be managed, i.e., captured, related and stored in
a database, integrated with the rest of the workflow data (i.e., execution, domain,
and provenance). Since provenance data are so beneficial, we consider that when a
user interacts with the workflow execution, the provenance of the generated steering
action data must be stored in a database as well. By bot doing so, users can easily
lose track of what and how they have steered in the past, negatively impacting
results reliability, validation, and reproducibility. For example, if a user removes
subsets of a dataset (data reduction-kind of adaptation), the tasks (execution data)
that would consume them will not need to be executed, leading to inconsistencies
or spending unnecessary time if the tasks are executed [25]. In another example, if
a user fine-tunes parameters of a program, the overall result may be changed.

Furthermore, enriching the workflow database steering action data, jointly with
provenance, execution, and domain data, enables future interaction analysis. In
addition to reliability and reproducibility, having such data enables users to learn
from their own adaptations: they may find that when they tune certain parameters
to a given range of values, the convergence of the solver improves by a certain
amount. Finally, these steering action data allow for building Artificial Intelligence
(AI)-based systems that help users while they are steering simulations [123], as
they can extend their training database with provenance of adaptations. Thus,
the computational steering systems, including WMSs with steering support, should
manage steering action data, which has never been done before.

4.2 User Steering Action and Data Definitions

As defined in Definition 2.5, a dataflow Df is represented as Df = (T,D,Φ). Given
this, we define User Steering Action as follows.

Definition 4.1. User Steering Action. A user steering action SA is an interac-
tion between a user who analyzes or monitors or dynamically adapts one or more

48



elements of DS:
DS ′ ← SAα(DS)

where DS ∈ D is a dataset in the dataflow that the user can steer, α is a steering
action clause that delimits the scope of the steering action resulting in DS ′.

For instance, in a parameter sweep workflow steered by a user, an input dataset
IDS can have its composing data elements dynamically adapted by the user. In
this case, α contains the criteria to specify which elements would be affected by the
action, resulting in the dynamically modified dataset I ′DS. This example is explored
in the next section.

To allow for tracking a user steering action SA, steering action data need to be
managed, i.e., captured, related to the rest of the workflow data, and stored in a
database ready for online data analysis. User steering data consist of data informing:
when the action happened, why the user decided to act, how the action occurred,
which workflow data were analyzed or adapted, what was happening before and
after the action, who acted, and the type of the action itself (e.g., parameter tuning,
data reduction, query).

Definition 4.2. User Steering Action Data. User Steering Action Data SD
are important information that helps to understand the steering actions and their
influence on the workflow data. User Steering Action Data SD are represented as:

SD = (DS,DS ′, α, U,Γ, µ, ψ)

where:

- DS, DS ′ and α are the datasets and the clause, respectively, involved in the
action SA;

- U contains data about the user who performed SA;
- Γ is a set of data transformation executions (tasks) related to SA;
- µ contains metadata of the steering action SA itself, such as the type of the
action, wall time during which the action lasted, descriptions informed by the
user at the moment of the action; and

- ψ is an optional argument representing any other data, in the same context of
the steering action SA, which can benefit the register of the steering action.

4.3 Definitions for Online Data Adaptations

Adaptations have a characteristic of either update (we call them U-adaptation), or
insert or delete (called I/D-adaptation). U-adaptations are steering actions that
update data values, like adjustments, fine-tunings, or any modification one or more

49



data elements in the dataflow. Parameter tuning is an example of U-adaptations.
I/D-adaptations are steering actions that cause addition or deletion of data elements
in the dataflow. Data reduction is an example of I/D adaptations. In this section,
we define these two examples of adaptations as special cases of the Steering Action
general Definition 4.1.

Definition 4.3. Tune. Tune is a steering action for tuning parameters, represented
as follows:

I ′DS ← Tune(η,C)(IDS)

where:

- IDS contains old values of attributes being tuned into I ′DS with the new values.
I ′DS follows the same schema S(IDS) and semantics Σ(IDS) of the input dataset
IDS;

- (η, C) is the steering action clause;
- η is a set of ordered pairs (p, v), where p ∈ PI ⊂ Σ(IDS) is the parameter being
tuned and v is its new value; and

- C expresses a predicate to address a specific data element that is having its
parameters tuned. In case of an IDS that contains a single data element, C is
optional.

To register a Tune action, the steering action data SDTune managed are:

SDTune = (IDS, I
′
DS, (η, C), U,Γ, µ, ψ)

Definition 4.4. Cut. Cut is a steering action for data reduction. It cuts data
elements of an input dataset IDS. It is represented as follows:

I ′DS ← CutC(IDS)

where:

- IDS is the input dataset that is having its data elements being removed by the
cut, resulting into I ′DS, s.t. |I ′DS| < |IDS|, which is the new dataset after the
cut. I ′DS follows the same schema S(IDS) and semantics Σ(IDS) of the input
dataset IDS ;

- C is the criteria that addresses the slice of input data elements that are re-
moved. C may either be a simple predicate (e.g., a1 = FATIGUE) or a
min-term predicate (e.g., a2 > 38 ∧ a3 > 0.1).

To register a Cut action, the steering action data SDCut managed are:

SDCut = (IDS, I
′
DS, C, U,Γ, µ, ψ).

50



4.4 Modeling Steering Action Data using W3C

PROV Concepts

In Section 2.5, we discussed W3C PROV and its specializations for workflows, like
PROV-Wf [29] and ProvONE [59]. SILVA et al. [35] have modeled the dataflow
concepts presented in Section 2.2 using another PROV specialization, called PROV-
Df. In this thesis, instead of creating a completely new provenance model, we
first begin by consolidating a base model using several past contributions to the
W3C-compliant provenance data diagrams PROV-Wf and PROV-Df [25, 29, 35, 49]
to introduce a W3C PROV-compliant provenance data diagram that specializes
PROV concepts to model user steering actions. We call it PROV-DfA. By adhering
to the well-established W3C PROV standard, our approach aims at allowing for
interoperability among other provenance databases. In addition, another important
principle is that the W3C PROV and its extensions PROV-Wf and PROV-Df are
abstract and flexible enough to be used in different domains or applications, such
as Astronomy, Bioinformatics, and O&G [25, 29, 35, 124]. A general overview of
PROV-DfA using an UML class diagram is illustrated in Figure 4.1. For the sake of
comprehension of the figure, we only show the classes and their relationships. The
relevant classes’ attributes are not shown in the figure, but discussed in the text.

Figure 4.1: PROV-DfA overview. A larger visualization is on GitHub [15].

PROV-DfA’s General Concepts

We use prov: namespace to indicate the PROV classes or relation-
ships. Each ExecuteDataTransformation consumes (prov:used) and produces
(prov:wasGeneratedBy) AttributeValues. These values may have been extracted

51



by an ExecuteExtractor [35]. Data elements compose the dataset (Dataset). For
prospective provenance, the dataset has an associated DatasetSchema, which is com-
posed of Attribute. Attributes describe the AttributeValues generated during
execution. They have a data type (e.g., integer, text) and may have extra fields
in the Attribute class to allow for attribute specification (e.g., determine if the
attribute semantics is in {FI , FO, VI , VO, PI , LI , LO, CO} — Def. 2.6). Data about
execution, such as task’s (i.e., data transformation execution) wall time and perfor-
mance data (CPU, memory), linkage to subsequent and previous tasks, and their
related prospective and retrospective provenance can be stored relating to instances
of ExecuteDataTransformation.

Next, PROV-DfA adds specialized classes and relationships to represent
steering actions and steering action data. PROV-DfA introduces the classes
SteeringAction, Analysis, Adaptation, and Adapter; and the relationship
WasSteeredBy. We use a UML class diagram, where the «stereotypes» in classes
specify PROV superclasses (mainly Agents, Entities, and Activities); and the
«stereotypes» between classes specify relationships. Classes in white background
represent prospective provenance, whereas in gray represent retrospective prove-
nance. prov:Entity in yellow means that classes in PROV-DfA that are subclasses
of prov:Entity (prospective or retrospective) can be used in place, as explained
next.

In PROV-DfA, adaptation is represented by Adaptation, a subclass of Steering
Action, subclass of prov:Activity. An adaptation was steered by (wasSteeredBy)
a prov:Person, occurred at a specified time (class attribute prov:startedAtTime),
had an adaptation characteristic (class attribute adaptationCharacteristic) that
can be “update" or “insert/delete", in case of U-adaptations or I/D-adaptations,
respectively. Users may add a description to the adaptation to describe, e.g., what
was going on in the experiment when they decided to perform a specific change.
Also, as inherited by SteeringAction, an Adaptation may have been informed by
another Adaptation, hence the auto-relationship prov:wasInformedBy. This is the
case, for example, of a rollback adaptation, requested by a user, that happened right
after the user modified parameters in a simulation, which is another adaptation.

Since adaptations in the dataflow occur while the workflow is executing, it is
important to manage the execution state data. The most representative PROV-
DfA activity that represents the execution state is ExecuteDataTransformation.
When an adaption occurs, these instances carry information about time, pointers
to domain data being consumed or produced, and computational resources being
consumed. Thus, being able to track which specific data transformation was running
at the moment of the adaptation may be very useful for analyses that integrates
adaptation with provenance, domain, and execution data. For this, we relate which

52



ExecuteDataTransformation instances were influenced (prov:wasInformedBy) by
adaptations. How adaptations relate to ExecuteDataTransformation, as well as
how prov:Entities are affected depend on characteristic of the online adaptation,
as explained next.

Adapter is a software service (can be implemented, e.g., as a function in a work-
flow script or a method in the WMSs code) that knows the communication protocol
capable of adapting the running workflow following the command issued by the user.
That is, it knows how to adapt the elements of the dataflow in a running workflow.
Since it is a software service, it is a subclass of prov:SoftwareAgent. When the
user decides to adapt an element of the dataflow, the Adapter is responsible for
modifying the requested element. Any information that describes the Adapter (e.g.,
which element of the dataflow it adapts, where the program can be located in the
file system, how it can be invoked) may be stored relating to the Adapter class.
Adapter relates to classes that are subclasses of prov:Entity and to the adaptation
itself (via prov:wasAssociatedWith).

When the user performs a U-adaptation, a new instance of Adaptation is
created. Also, a new instance of one of the prov:Entity subclasses in PROV-
Df is created (e.g., AttributeValue, DataTransformation) containing the new
data, which will replace the old data in the dataflow. The newly created entity
is related (prov:wasInformedBy) to the adaptation. Moreover, the newly cre-
ated data is related to the old one via prov:wasRevisionOf, so that the asso-
ciation between the new and old data is maintained. Additionally, to relate the
adaptation with execution state, PROV-DfA relates (prov:wasInformedBy) the
ExecuteDataTransformation instances that were in “running" state at the mo-
ment of the adaptation. Finally, Adapter is related to the prospective entity (e.g.,
Attribute, DataTransformation) that specifies the entity adapted.

When the user performs an I/D-adaptation, a new instance of Adaptation is
created and there is a relationship (prov:wasInformedBy) between the Adaptation
and the added or deleted instances of a prov:Entity subclass. In case of dele-
tions, the entity is not physically deleted from the workflow database, for the sake
of provenance. Rather, it is assumed that when an Adaptation is a deletion, the
deleted instance is logically deleted from the dataflow. This enables tracking en-
tities deleted online. Since adding or deleting elements affects the execution, the
instances of ExecuteDataTransformation directly affected by the added or deleted
elements of the dataflow are related (prov:wasInformedBy) to the Adaptation in-
stance. For example, in a data reduction, data transformations that are supposed
to execute are not executed because of a adaptation. These not executed instances
of ExecuteDataTransformation are related to the Adaptation instance. Finally,
Adapter and Adaptation are related similarly as in U-adaptations.

53



In summary, in PROV-DfA, an Adaptation is a prov:Activity steered
by a prov:Person, which influenced instances of classes that are subclasses of
prov:Entity, and influenced instances of ExecuteDataTransformation. The
Adapter software relates to the prospective entity being adapted and to the adap-
tation.

Modeling Specific Steering Actions using PROV-DfA

In this section, we specialize PROV-DfA concepts to represent online parameter
tuning, changes in loop control, and data reduction as PROV-DfA’s U and I/D-
adaptations.

Parameter Tuning

Parameter tuning refers to the action of steering parameters of a data transforma-
tion in a dataflow, like numerical solver parameters or machine learning model hyper-
parameters. In PROV-DfA, ParameterTuning is a specialization of Adaptation. Pa-
rameter tunings are adaptations in attribute values (AttributeValue) that are related
to data elements (DataElement) related to IDS (Dataset) of a certain data trans-
formation (DataTransformation). The attribute value modified must have been
derived from (prov:wasDerivedFrom) an Attribute whose attribute specification
is PI . As a U-adaptation, a new instance of ParameterTuning is created and related
to the new instance of its adapted entity, i.e., AttributeValue, with the new value
for the parameter. The new value is related to the old one via prov:wasRevisionOf.
ExecuteDataTransformation instances running at the moment of the adaptation
are related to the Adaptation instance. Finally, since users tune parameters of
data transformations, the Adapter relates to the DataTransformation associated
to DatasetSchema that had the Attribute modified.

Online Adaptation of Iterative Simulations

Workflows with an iterative workflow execution model have data transforma-
tions that evaluate loops. Using the dataflow-oriented approach concepts, values
for these loop-stop conditions are modeled as an attribute in LI of a data transfor-
mation that evaluates a loop and the iteration counter is modeled as an attribute
in LO of the data transformation. Moreover, each iteration generates an instance
in ExecuteDataTransformation for the loop evaluation. During execution of each
iteration, a relationship between the output of this data transformation, containing
the current iteration value, and the ExecuteDataTransformation instance is par-
ticularly useful for such workflows, as it identifies a specific part of the workflow

54



execution, and often users can analyze results as the workflow iterates. Such control
information is important for the adaptation, as users can associate their specific ac-
tions with execution data, such as which point in workflow elapsed time that action
happened or what memory or CPU consumption were.

In PROV-DfA, such adaptations are represented as LoopAdaptation, a subclass
of Adaptation. Similarly to ParameterTuning, its instance is related to the new
instance of AtrributeValue, containing the new value for the loop control con-
dition, relating (prov:wasRevisionOf) to the old one. The adapted instance of
AttributeValue must be derived from an Attribute whose attribute semantics is
LI . Additionally, the generated ExecuteDataTransformation instance related to
the output of the last iteration (i.e., last execution of the data transformation for
loop evaluation) is related to the LoopAdaptation instance. Finally, the adapter
must be able to dynamically modify the data transformation that represents the
loop evaluation. That is, Adapter in this case relates to DataTransformation.

Data Reduction

Online user-steered data reduction is very useful for reducing execution time and
amount of data to be processed during a simulation [25]. DataReduction is a sub-
class of Adaptation. In the dataflow-oriented approach, data files are represented as
pointers in FI , whereas VI contain extracted domain values from those files specified
in FI . An approach to reduce data is to specify a criteria based on VI values to elimi-
nate files in FI to be processed, enabling the adapter program to logically delete data
elements in IDS. This makes the application not to execute the data transforma-
tions for the removed elements. Analogously, in PROV-DfA, reducing data means
to logically remove instances of DataElement (and consequently AttributeValues)
of a Dataset (IDS). This can be the result of an I/D adaptation. Thus, there is a re-
lationship (prov:wasInformedBy) between the removed instances of DataElement
and AttributeValue and the adaptation. The ExecuteDataTransformation in-
stances that would use (prov:used) the removed AttributeValue instances are
related to the DataReduction instance. Additionally, the criteria to remove data
elements is stored within the adaptation instance. Finally, as users remove data
elements in IDS, the adapter is related to the DataTransformation associated to
the Dataset that had the DataElement and AttributeValues removed.

Applying the Dataflow-oriented Approach with PROV-DfA

Now we apply the concepts defined in Sections 2.2 and 4.2 to put the PROV-DfA
provenance data diagram into practice to illustrate with a concrete example of its
use in the libMesh-sedimentation workflow.

55



In Figure 4.2, we show large raw input files (with mesh data) stored on disk,
with pointers in the solver’s input dataset IDS. IDS has over 70 parameters, among
which only two are displayed in the figure (flow linear and non-linear tolerance).
These solver parameters are extracted from a configurations file, which is read at
each iteration. Yet, the maximum number of iterations (tmax) is a LI attribute of
the data transformation solver. Metadata are extracted (VI) from input raw files
at runtime to allow for tracking their contents while they are processed. Elements
of ODS of each data transformation are also collected (via raw data extractors and
source code instrumentation) and stored in the database. For example, the solver
ODS contains calculated values, such as linear and non-linear results, as well as the
current time iteration value. In addition to online data analyses, the user performs
several adaptations during the simulation.

Adaptive Mesh 
Refinement Setup Simulation Setup Solver

while t < t_max

AMRXDMF/HDF5 WriterCatalyst Adapter

Input mesh

PI solver input parameters PI loop pmtr VI FI
flow lin. tol. flow nlin tol. t_max mx my File Pointer

1e-6 1e-5 16200 7319820 48901090 /data/mesh1.msh
6058355 60735564 /data/mesh2.msh
7509750 71327500 /data/mesh3.msh

/data/mesh1.msh
/data/mesh2.msh
/data/mesh3.msh
/home/bob/set.in extracted from

User Steering Action

Workflow Database

excerpt of
solver IDS

Dataflow

Data 
Transformation

IDS and ODS capture

I solver

extracted from

Icatalyst adapter
Ixmdf/hdf5

Iamr

Isimsetup

Iamr set

Isolver

Figure 4.2: Dataflow in the libMesh-sedmentation simulation using the
dataflow-oriented approach with PROV-DfA.

In Figure 4.3, we present a visualization of an excerpt of the data in a workflow
database implementing PROV-DfA. It shows a user tuning the flow linear tolerance
parameter from 1e−5 to 1e−3 and a data reduction with criteria mx < 7e6.

By using data in a relational workflow database implementing PROV-DfA, users
can run the following queries (their SQL codes are on GitHub [15]).

- Inspecting parameter tunings (“who", “when", “what")

How many tunings did the user do? Which parameters did the user change?
What were the values when the user changed and what values did the user
change into? When did each adaptation happen?

56



pt1

<<ParameterTuning>>

new_a1

<< AttribteValue>>
value: 1e-3

old_a1

<< AttributeValue>>

value: 1e-5

flow_linear_tol

<< Attribute>>

spec: pI

a: input parameter

dtype: float

solver_i_ds_schm

<< DatasetSchema>>

hadMember

solver_i_ds

<< Dataset>>

solver_dt

<< DataTransform.>>
wasDerivedFrom

de1

<< DataElement>>

hadMember

exec1_solver_dt

<< Exec.DataTransf.>>

startedAtTime: t1 

endedAtTime: t3

exec2_solver_dt

<< Exec.DataTransf.>>
startedAtTime: t4 

startedAtTime: t2 

charact: U-adaptation

used
wasInformedBy Bob

<<Person>>

hadMember

solver_dt_adapter

<<SoftwareAgent>>

wasAttributedTo

dr1

<<DataReduction>>
startedAtTime: t6

charact: I/D-adaptation

criteria: mx < 7e6

wasRevisionOf

de2

<< DataElement>>

a3

<< AttributeValue>>
a4

<< AttributeValue>>
a5

<< AttributeValue>>

value: 6058355 value: 60735564

value: /data/

mesh2.msh

exec3_solver_dt

<< Exec.DataTransf.>>
startedAtTime: _

used
used used

wasInformedBy

wasInformedBy

hadMember hadMemberhadMember

wasInformedBy

wasAssociatedWith

wasSteeredBy

hadMemberwasDerivedFrom

wasDerivedFrom

used

wasInformedBy

wasInfluencedBy

wasSteeredBy

wasInformedBy

Figure 4.3: Visualization of data using PROV-DfA.

- Inspecting parameter tunings (“how")

In parameter tuning 3, how was the main solver output values 10 iterations
before and after?

- Data reduction (“how", “which")

On average, how long iterations were lasting before and after the user reduced
input files from the input data? Which files were affected?

These queries show the potential of PROV-DfA for workflow databases allowing
for tracking user steering action data in large-scale workflows.

4.5 Adaptive Monitoring Concepts

In this section, we present an adaptive monitoring approach that combines moni-
toring and adaptation. It helps users following the evolution of the workflow data
being generated during execution, interesting parameters, QoIs, and result data.
Since what users find interesting may change over time, this approach allows the
user to adapt the monitoring definitions, such as which data should be monitored
and how. The adaptive monitoring relies on online queries to the continuously pop-
ulated workflow database. Users can set up queries (such as the ones in Tables
2.1 and 2.2) to monitor the data, analyze monitoring results, and adapt monitoring
settings.

Monitoring works as follows. There is a query set QS composed of monitoring
queries qi, 0 ≤ i ≤ |QS|, each one to be executed at each ∆ti > 0 time intervals.
Users do not need to specify queries at the beginning of the execution, since they
do not know everything they want to monitor. This is why QS starts empty.

57



After users gain insights from the data, after interactive data analyses, they can
add monitoring queries to QS in an ad-hoc manner. Each ∆ti can be adapted,
meaning that users have control of the time frame of each qi during execution. The
monitoring queries and settings are stored in the workflow database.

Each qi execution generates a monitoring query result set qrit, t = {k∆ti|k ∈
N≥0}, at each time interval ∆ti. This result set is also stored in the workflow
database. The users have the flexibility to adapt the monitoring during workflow
execution. To do so, at each time instant t after each monitoring query result
qrit has been generated, the values for ∆ti and qi are reloaded from the workflow
database. If any change has happened, it will be considered in the next iteration
t + ∆ti. Moreover, at each certain time during execution (also configured by the
user), there is a check to verify if the user has added new monitoring queries in QS.
This approach takes advantage of the data stored online in the workflow database to
enable users to adapt monitoring settings, including which data will be monitored
and how.

58



Chapter 5

Managing User Steering Action Data
in Workflow Scripts

The first instantiation of WfSteer, called DfAdapter, aims at allowing for track-
ing steering actions with low execution overhead in large-scale workflow scripts.
DfAdapter is a lightweight tool whose goal is to capture provenance of online steer-
ing actions in dataflows and storing the related dataflow provenance to enable un-
derstanding of the impacts of the actions. Section 5.1 presents DfAdapter’s method-
ology and general conceptual architecture; Section 5.2 has the main system design
principles followed by DfAdapter; Section 5.3 has implementation details; Section
5.4 shows how DfAdapter is utilized; and Section 5.5 concludes with a methodology
to analyze the incurred overhead.

5.1 Methodology and General Architecture

Methodology

In this section, we briefly describe a methodology that defines the steps that need to
be followed to enable steering action data management in an adaptable application.
Some of these steps occur offline, before the execution starts, whereas others occur
online. The offline steps are mainly related to manually inserting the APIs calls in
the workflow to capture data when the workflow executes. We extend our previous
methodology [36] to add steering action data management support. The method-
ology presented in this thesis has been adapted from our paper SOUZA et al. [37].
Table 5.1 summarizes the high-level steps for enabling tracking of steering actions.

59



Table 5.1: Methodology for workflow steering.

1 Identify the workflow
Before execution2 Add analysis points in the workflow

3 Add adaptation points in the workflow

4 Online data analysis

During execution
5 Execute a steering action
6 Steering action data management
7 Steering action data analysis

In Step 1, users identify inputs and outputs of relevant parts of their application
that form a workflow. That is, they identify and specify the data transformations,
the datasets, and the data derivation paths. In Step 2, API calls are inserted in the
workflow to add analysis points, which are the regions in the workflow that contain
relevant (for the users) data for analysis at runtime. These data consist of relevant
input and output data elements in the dataflow, to be analyzed online, either for
monitoring or interactive analysis. In Step 3, users identify parts of the workflow
that can be dynamically adapted at runtime and add adaptation points in those
parts. Adaptation points should be added to safe points of the workflow to avoid
execution or data inconsistencies. Usually, users know where to add adaptation
points. A typical example occurs in iterative workflows where each new iteration is
an opportunity to redefine parameters or input datasets preset beforehand. In this
case, an adaptation point is added at the beginning of the iteration. Each iteration is
often executed as a whole. When a user adapts, the adaptation will take effect only
at the next iteration, rather than changing values during an iteration. This helps
to make data and execution consistent with what the user decided to adapt during
the iteration. After these three initial offline steps, the workflow is submitted to
parallel execution in an HPC machine. In Step 4, the workflow data specified in the
analysis points at Step 2 are captured and can be analyzed online. In Step 5, based
on the analyses, users may decide to execute a steering action. In Step 6, the system
captures the steering action data and relates the steering action to the rest of the
workflow data being captured, and stores in the database. Finally, in Step 7, users
analyze the consequences of their actions relating to domain-specific relevant data
and execution data. In our experiments (Sec. 7.1), we provide concrete examples of
how these steps are carried out in a real workflow.

General Conceptual Architecture

In this section, we present DfAdapter’s general conceptual architecture (Figure 5.1).
We describe its components as follows.

60



Data Capture APIs
Steering Action 

Data Capture API

Workflow Data 
Capture API

Analysis 
points

Adaptation 
points

Workflow 
Execution

Steering APIs

Monitor API

Query API

Adapter API

User 
Interface

Adapter Service

Data Management Services
Query 

Executor
Steering Action 
Data Manager

Steering 
command

Da
ta

 a
na

ly
sis

 co
m

m
an

d

Data adaptation command 

Data elements 
being captured

Adaptation being 
captured

Steering action data being related to 
execution, domain, and provenance

Related steering 
action data 

being stored

Adapt the dataflow

Workflow 
Data Manager

Related 
workflow data 
being stored

Legends
Sequence of steps triggered by the user

Sequence of steps triggered by the running workflow

Query 
execution

Monitor 
Manager

Workflow Database

Figure 5.1: DfAdapter’s General Conceptual Architecture.

Data Capture APIs

The Data Capture APIs are Workflow Data Capture API and Steering Action
Data Capture API. The Workflow Data Capture API has the programming interfaces
containing the methods to insert workflow data (mainly domain data values) into
the workflow database. Calls to this API are inserted in the analysis points in the
workflow. Steering Action Data Capture API has the programming interfaces with
the methods to capture steering action data, when a steering action is issued by
the user. Calls to this API are inserted in the adaptation points. These APIs are
inserted in the workflow, called by workflow at runtime, and call the steering data
management services.

Data Management Services

There are three main services composing the Steering Data Management Ser-
vices: Query Executor, Monitor Manager, Workflow Data Manager, and Steering
Action Data Manager. The Workflow Data Manager is responsible for receiving the
calls from the Workflow Data Capture API with the captured data during workflow
execution. Then, it provides the data relationships to the other data in the workflow
database, integrating provenance, domain, and execution data, and finally stores the
related workflow data in the workflow database. The Steering Action Data Manager
listens to calls from the Steering Action Data Capture API. This service is respon-
sible for consistently adding the data relationships between the captured steering
action and the remainder of the workflow data, and storing the related steering
action in the workflow database.

The Query Executor is only called by the Steering API. When the client, i.e.,
the user or a data visualization application, performs a data analysis command,

61



like analysis or interactive analysis, the Query Executor is issued. It then builds
the needed queries according to the client’s requests and executes the query to the
DBMS managing the workflow database to retrieve the requested data. The Monitor
Manager is to implement the adaptive monitoring concepts (Sec. 4.5). The user
programs the monitoring query by using the interface that calls the Monitor API,
which calls the Monitor Manager service. This service is responsible for managing
the monitoring queries, for submitting the queries to the Query Executor at each
time interval programmed by the user, and for returning the query results to the
requesting client, i.e., the Monitor API.

Steering APIs

The Steering APIs are composed of three APIs: Monitor API, Query API, and
Adapter API. The Monitor and Query APIs call the Query Executor for data analy-
sis, either for workflow analysis or for interactive analysis, respectively. They contain
programming interfaces that allow users to submit queries to the Query Executor.
The Adapter API has the interfaces for calling the Adapter Service, which is the
component in the adaptable application that knows how to adapt the workflow
(Sec. 4.4). The interfaces in the Adapter API are implemented according to the
data communication implemented for the adaptable application, as we see in the
next section (Sec. 5.2). The Steering API’s submodules are called by the user using
the User Interface, which concentrates the available commands the user can issue
using the Steering API. It can be exposed as a command line interface, graphical
user interfaces, or as a RESTful API.

5.2 Design Principles

In this section, we explain the core design principles followed by DfAdapter.
Asynchronous Service Calls. DfAdapter can be coupled to adaptable ap-

plications, like the ones proposed by approaches that allow for online adaptation
(Table 3.1) or adaptable workflow scripts. In either case, to enable steering action
data analysis, the Steering Action Data Capture API is used so it can be called
from the adaptation points in the adaptable application. Similarly, to enable online
workflow data analysis, Workflow Data Capture API calls are placed in analysis
points in the workflow script to capture data elements flowing in the dataflow and
execution data of data transformations.

Since CSE users typically discard any tool that can add significant overhead to
their already long workflow executions, attaining low performance overhead is a basic
requirement in DfAdapter. For this, calls to DfAdapter are asynchronous, meaning

62



that when the user adapts the running workflow, the steering action data capture
is done in such a way that the main computational process will not wait until the
steering action data are completely stored. The same strategy is followed for any
added Workflow Data Capture API in the workflow. Also, the most computationally
costly components in DfAdapter, such as the ones that relate and store steering
action data in the database during workflow execution, are deployed in separate
hardware, different from where the main computational process runs, but in the
same internal network (e.g., the nodes in the HPC machine has local access to the
node that runs the Data Management Services) to reduce communication costs,
following in-situ and in-transit approaches [64]. This avoids making DfAdapter and
the main computational process compete for resources.

Data Communication between DfAdapter and the Running Workflow.
To be able to capture steering action data, DfAdapter needs to access the data being
adapted in a steering action. For this, we characterize here the data communica-
tion between the Adapter Service and the adaptable application. By analyzing the
state-of-the-art (Chapter 3), we identified three ways to implement such data com-
munication. To access the data being adapted, DfAdapter needs to intercept this
communication. We characterize these implementations as follows.

i. File-based checks — This is a simple yet widely used way to implement data
communication [64]. In this case, there are files in a storage resource that are
accessible both by the Adapter API and by the Adapter Service. That is, the
Adapter API modifies a file that is accessible by the running workflow. When the
program pointer in the running workflow reaches an adaptation point, the Adapter
Service verifies if files were modified and, in case of modification, the application
is adapted. Then, the Steering Action Data Manager service is called to relate
and store the adaptation. Although file-based checks are a simple approach, it is
widely used especially by users that implement their own ad-hoc way to make their
simulation steerable. However, it requires that the Adapter API and the Adapter
Service share access to files in a storage resource, which may not be always possible.
This is the way libMesh-sedimentation (Sec. 2.3.1), used in our experiments (Sec.
7), implements the data communication.

ii. Message passing — In this case, the Adapter API sends a message to the
Adapter Service in the running workflow. When the adaptation point is achieved,
the Adapter Service verifies if a message has arrived and effectuates the adaptation
accordingly, and DfAdapter is called to relate and store the steering action data.
MPI, sockets, or RESTful HTTP messages can be used as communication protocol
to implement this. Many systems that enable adaptation use message passing to
implement the data communication [4, 84, 91]. This is an alternative to file-based
checks, as it does not require files to be shared in a storage resource by the adapter’s

63



front and back ends.
iii. DBMS-driven — It is similar to file-based checks in the sense that there is

a DBMS that is accessible both by the Adapter API and the Adapter Service in
the running workflow. It is similar to message passing in the sense that it does not
require files to be shared in a storage resource. Rather, data that can be modified at
runtime are managed by the DBMS that can even run in-memory, depending on the
DBMS. In this implementation, when the user uses the user interface to adapt, the
Adapter API modifies the data in the DBMS. When the program pointer achieves
the adaptation point in the running workflow, the Adapter Service checks if the data
have been modified, effectuates the adaptation accordingly, and DfAdapter is called
to relate and store the steering action data. We tested this implementation in a
synthetic workflow example using the parallel framework Apache Spark and Redis,
a lightweight in-memory Key Value store, as the DBMS between the workflow and
DfAdapter. The source code is available on GitHub [125].

DBMS and Data Model for the Workflow Database. DfAdapter needs
a DBMS to manage the workflow database. Several data models can be used for
workflow databases, such as graph and relational data models. The usage pattern
in DfAdapter is that the running workflow only produces insertions to the database,
while the user typically runs provenance queries for online data analyses to support
decision-making, i.e., Online Analytical Processing (OLAP) queries. This usage
pattern, both by the running workflow and by the user, is benefited from column-
oriented relational DBMSs, as shown in previous works [27, 35]. Moreover, since
there may be many appends to this database during execution, the DBMS must be
able to handle parallel requests from clients. One available option for this is the
open source DBMS MonetDB1, which is the one currently in use by DfAdapter.

5.3 Implementation Details

This section describes the implementation details of DfAdapter. The steering action
currently implemented in DfAdapter is the user-steered parameter tuning, which is
by far the most supported one by user steering approaches, as we surveyed in Chap-
ter 3. Here we describe the sequence of steps that are executed to manage steering
action data, as illustrated in the sequence diagram in Figure 5.2. First, during
the workflow execution, (0) the data specified in the analysis points are sent to
the Workflow Data Manager Service via Workflow Data Capture API calls. Then,
(1) Workflow Data Manager service relates and stores the data in the Workflow
Database. While the workflow runs, the user can call Query or Monitor APIs to
follow the intermediate data results and decide for an adaptation action. If the

1https://www.monetdb.org

64



user decides for an adaptation action, (2) the user sends a steering command us-
ing DfAdapter’s steering command line interface (implemented as a program called
WfSteerCtl), which (3) calls the Adapter API, which (4) calls the Steering Action
Data Manager service to (5) register the beginning of an adaptation intention. The
Adapter API also (6) communicates with the Adapter Service, which (7) effectuates
the adaptation. When (8) the running workflow notices that an adaptation occurred
(e.g., it verifies that a file or a data structure, depending on the data communication
implementation, has been changed because of a steering action), the (9) Steering
Action Data Capture API inserted in the adaptation point is called to send the
captured adaptation data to the Steering Action Data Manager service. (10) The
service receives the call, relates the steering action with the workflow data being
processed, and stores in the Workflow Database. After that, the workflow continues
to run, and finally (11) the user can run user steering action analysis.

User

2. steering command
3. Call adapter 4. initiate steering 

intention

0. analysis data 
capture 1. store analysis data 

provenance

6. Communicate 
adaptation 7. adapt

9. adaptation 
data capture 10. store adaptation 

data provenance

5. store steering 
provenance

8. notice 
adaptation

11. steering action and dataflow analysis

WfSteerCtl Adapter API
Data 

Management 
Services

Adapter 
service 

Running 
Workflow

Workflow 
Database

Figure 5.2: Sequence diagram for managing steering action data with DfAdapter.

The Tune operator (Def. 4.3) is implemented to call the Steering Action Data
Capture API. Before the call, the steering action data need to be prepared. Algo-
rithm 1 defines how the steering action data need to be prepared before sending
them to the Data Management Services. The iteration data at the moment of the
action is denoted by ξ; the wall time at the moment of the action is denoted by t; and
the set of ordered pairs with the old values for the tuned parameters are denoted by
θ. The algorithm registers new domain data that were modified in the adaptation as
well as their corresponding old values. It captures current execution data, iteration
counter values (in case of iterative workflows), and user data. Then, it stores user
steering data relating to the rest of the workflow data being continuously captured
during workflow execution.

Workflow Database Schema

To implement the PROV-DfA provenance data diagram presented in Section 4.4,
we use the relational data model. An excerpt of the relational database schema

65



Algorithm 1: Capturing User Steering Action Data for Tune.
Input:
IDS : The input dataset in the dataflow containing the parameters to be tuned.
η: key-value data structure containing the parameters and their new values.
C < optional >: criteria to specify the data element that is being adapted.
µ < optional >: metadata about the steering action, such as annotations.

1 import data_capture_api
2 θ ← ∅
3 ξ ← ∅
4 Γ← data_capture_api.get_running_tasks()
5 U ← data_capture_api.get_user()
6 t← data_capture_api.get_current_wall_time()
7 current_data_element← data_capture_api.get_element(IDS , C)
8 attribute_semantics← data_capture_api.get_semantics(IDS)
9 for all key-value pairs (p, current_value) in current_data_element do

10 if p ∈ keys(η) then
11 θ[p]← current_value
12 if p ∈ attribute_semantics[LI ] and ξ = ∅ then

// Tuning a loop attribute. Get iteration data
13 ξ ← data_capture_api.get_current_iteration_data(IDS)

14 data_capture_api.send_steering_action_data(IDS , η, C, U,Γ, µ, ξ, t, θ)

in use by DfAdapter is in Figure 5.3, whereas a complete figure can be found on
GitHub [125]. Whenever a user issues a steering command to tune parameters,
a new instance of parameter tuning action is stored in the ParameterTuning ta-
ble. Since a parameter tuning may modify one or many attributes, and the same
attribute may be modified by many steering actions, there is a many-to-many re-
lationship between ParameterTuning and Attribute tables. The associative table,
ParameterTuned, has fields to store old and new values. The IDS is a specialization
of the table Dataset. Each tuple in the Dataset table is a data element. Each
ParameterTuning instance may directly affect one or many data elements in IDS

and a same data element in IDS may be affected by many parameter tuning actions,
hence there is a many-to-many relationship between ParameterTuning and Dataset

tables, via the ModifiedDataElement associative table. Moreover, as ODS is also
specialization of Dataset, we use InfluencedDataElement associative table be-
tween another many-to-many relationship between ParameterTuning and Dataset

tables to store output data elements directly influenced by a tuning, such as itera-
tion counter data in case of parameter tunings in data transformations that evaluate
loops. Finally, we relate execution data about the current state of the execution
when a tuning action happened via the associative table InfluencedTask. Tasks
are directly mapped to ExecuteDataTransformation in PROV-DfA, and execution
data are further extended with performance data via the relationship between Task

and Performance tables. The Person who steered and the Adapter service used

66



in that specific steering action are related and stored to ParameterTuning. Thus,
because of these entities and relationships being populated during the workflow ex-
ecution in a user-accessible database, users can drive their analyses and decisions at
runtime using these data.

Figure 5.3: Workflow Database Schema for DfAdapter.

Combining DfAdapter with DfAnalyzer

DfAdapter needs a Workflow Data Manager to provide the data that will give the
context of the steering actions, by relating the actions with the overall workflow
data being generated during execution. DfAnalyzer [27, 35, 66] follows the dataflow-
oriented approach (Sec. 2.2), which is the basis for DfAdapter. Also, DfAnalyzer
follows the same design principles presented in Section 5.2 to make data capture effi-
cient, with low execution overhead, and with efficient analytical queries. Therefore,
DfAdapter uses DfAnalyzer as its Workflow Data Manager service with its corre-
sponding Workflow Data Capture API. In DfAnalyzer, the Workflow Data Manager
service is called Provenance Data Extractor and it is accessible via calls from its
RESTful data capture API inserted into the workflow script in the analysis points.
Together with the Steering Action Data Capture API inserted in the adaptation
points, DfAdapter and DfAnalyzer capture steering action data and data elements
in the dataflow from the running workflow, respectively. Both use the same work-
flow database, although we modify its schema to add the steering action data-related
tables, following the PROV-DfA as in Figure 5.3. Finally, during workflow execu-
tion, DfAdapter relates and stores the steering action data captured by its Steering
Action Data Capture API to the workflow data captured by DfAnalyzer’s Workflow
Data Capture API in the same integrated workflow database, ready for provenance
analyses of the steering actions.

67



5.4 Utilization

To describe how DfAdapter is used, we resort to the methodology in Section 5.1.
We explain how it can be added to dynamic workflows before execution and how it
can be used to manage steering action data.

Before execution. The user identifies a workflow by specifying parts of the
workflow that can be modeled as data transformations and their datasets, and the
data derivation paths. Analysis and adaptation points are added into the workflow
script, with their corresponding calls to capture workflow data and steering ac-
tion data. Listing 5.1 shows an example using an excerpt of libMesh-sedimentation
workflow script (Sec. 2.3.1) with the added data capture calls. In this example, a
programming library to capture the data is imported into the workflow script. To
capture workflow data, it calls DfAnalyzer’s Workflow Data Capture API and to
capture steering action data it implements the Algorithm 1, which calls the Steer-
ing Action Data Capture API. The underlying implementation details, e.g., usage
of a programming library, will depend on the workflow script being instrumented
with our API calls. This step is usually done in collaboration between the workflow
specialists and the CSE users, who know how the code of their workflow script and
know which data should be captured and how the calls should be placed in their
script.

1 . . .
2 for (unsigned int t_step = p . i n i t_t s t ep ;
3 ( t_step < p . n_time_steps ) && ( time < p . tmax) ; t_step++) {
4 data_capture_lib . init_time_loop ( ) ;
5 i f ( parameters_modif ied ( ) ) {
6 p = reload_parameters ( ) ;
7 data_capture_lib . capture_steering_time_loop ( ) ;
8 }
9 . . .

10 for (unsigned int nonl inear_step = 0 ;
11 nonl inear_step < p . max_nonlinear_steps ; ++nonl inear_step ) {
12 data_capture_lib . i n i t_ f l u i d_so l v e r ( ) ;
13 flow_system . s o l v e ( ) ;
14 . . .
15 data_capture_lib . f i n a l i z e_ f l u i d_ s o l v e r ( ) ;
16 }
17 . . .
18 data_capture_lib . f ina l i zeTimeLoop ( ) ;
19 }

Listing 5.1: Excerpt of libMesh-sedimentation code with Data Capture API calls.

68



During execution. When the workflow is running, the user can send an
adaptation command using DfAdapter’s user interface, which implements the calls
to the Adapter API. DfAdapter’s command line-based interface, WfSteerCtl, to be
used in a terminal connected to the HPC machine where the workflow runs. In the
command line, users only need to inform the input dataset IDS to be adapted, and a
simple key-value data structure containing the parameters and their new values. For
flexibility, the key-value data structure can be passed directly using the argument
--p or can be written into a file to be passed argument. We provide an optional
argument --reason to allow users to annotate that specific steering action. Listing
5.2 shows an example of DfAdapter’s command line interface.

1 $> WfSteerCtl −−user="Bob"
2 $> WfSteerCtl −−tune
3 −−datase t=" I_Iteration_Params"
4 −−p= ' {"max_l inear_iterat ions " : 500} '
5 −−reason=" check ing how l i n e a r i t e r a t i o n s a f f e c t s
6 convergence "
7 $> echo ' {
8 " f l ow_in i t i a l_ l i n ea r_so l v e r_to l e r anc e " : 1 . 0 e−6,
9 "amr/ c_f rac t i on " : 1 . 0 e−5

10 } ' > new−va lue s . j son
11 $> WfSteerCtl −−tune
12 −−datase t=" I_Solver "
13 −−p="new−va lue s . j son "

Listing 5.2: Command lines to use DfAdapter.

5.5 Methodology to Analyze the Overhead

The adoption of our approach depends on how much execution time overhead it
implies. The overhead depends on the data needed for analysis and adaptation.
For analysis, it depends on the workflow data identified in the workflow script that
needs to be captured. That is, which input and output data values, for each data
transformation, should be monitored during execution. For adaptation, which adap-
tation points should be added and how many adaptation actions happened during
execution. In both cases, the overhead depends on data collected for analysis and
adaptation actions, always based on user decisions.

We use the dataflow-oriented concepts (Secs. 2.2 and 4.2) to express the over-
head. Let γ be a data transformation execution, i.e., a task. When a task γ is
executed to perform a data transformation DTy, the execution cost of γ, c(γ), is

69



given by its actual computational cost comp(γ) (i.e., the inherent cost of executing
DTy) plus the overhead o(γ) introduced because of the utilization of our approach:

c(γ) = comp(γ) + o(γ) (5.1)

Let the overhead o(γ) of a task γ be expressed as a function of analysis anl(γ) and
adaptation adp s(γ) overhead introduced in the analysis and adaptation points in
the workflow script code, respectively:

o(γ) = anl(γ) + adp(γ) (5.2)

The overall overhead is given by the sum of o(γ) for all tasks γ, of all data transfor-
mations DTy ∈ T . Next, we detail the analysis and adaptation components.

Analysis overhead. Analysis overhead anl(γ) is defined by the data capture
overhead anlpoint(γ) and raw data extractions ext(γ) during each data transforma-
tion execution identified by the user as relevant for analysis:

anl(γ) = anlpoint(γ) + ext(γ) (5.3)

Provenance data capture overhead anlpoint(γ) depend on the number of data values
of each data element captured at a task execution γ. Each execution γ of a data
transformation DTy consumes input data elements in IDS and produces output data
elements in IDS. In DfAdapter, data elements are stored at once in the beginning
(input data elements) and at the end (output data elements) of each task γ.

Raw data extraction overhead ext(γ) depends on the number of data values the
user wants to extract from raw data files at each execution of a data transformation
DTy. Let Vγ be the set of all data values extracted when γ is executed. Each
extracted data value vi ∈ Vγ has an associated data attribute ai has semantics in VI
or VO, depending on if vi is in a data element in IDS or ODS, respectively. Therefore,
the extraction overhead ext(γ), for each γ to execute a data transformation DTy is
therefore given by the summation of costs to extract each vi ∈ Vγ:

ext(γ) =
∑
vi∈Vγ

ext(vi) (5.4)

The cost to extract a data value depends on application-specific raw data extractors
[35].

Adaptation overhead. The adaptation overhead occurs in data transforma-
tions that have an adaptation point. Adaptation overhead also depends on when an
adaptation action happens. When an adaptation action happens, all those opera-
tions presented in the sequence diagram in Figure 5.2 are triggered. Let T ′ ⊂ T be

70



the subset of the data transformations that have adaptation points. Then,

adp(γ) = adppoint(γ) + action(γ) (5.5)

where adppoint(γ) is the overhead associated to adding adaptation points to DTy,
action(γ) is the overhead associated to computing that an adaptation action hap-
pened, and adppoint(γ) = action(γ) = 0,∀DTy /∈ T ′.

Putting it all together. The overall cost c(Df) to compute a dataflow Df is
given by the sum of costs to compute the actual computation comp(Df), provenance
capture anlpoint(Df), raw data extractions ext(Df), adaptation points adppoint(Df),
adaptation actions action(Df) for the entire dataflow Df . That is:

c(Df) = comp(Df) + o(Df)

= comp(Df) + anl(Df) + adp(Df)

= comp(Df) + anlpoint(Df) + ext(Df) + adppoint(Df) + action(Df)

(5.6)

where c(Df) =
∑

γ c(γ), for all tasks γ, for all DTy ∈ T . Analogously, the compo-
nents of c(Df) can be obtained by the summation of each individual component for
all tasks. That is, anlpoint(Df) =

∑
γ anlpoint(γ), ext(Df) =

∑
γ ext(γ), and so on.

In CSE applications, tasks are often a complex, meaning that for a task
γ, comp(γ) takes at least a few seconds, but often minutes long [126].
Experimentally analyzing the individual elapsed time of the components,
anlpoint(γ), adppoint(γ), adpaction(γ) of the overhead o(γ), we observe that, on av-
erage, they are close to constant and typically milliseconds-long. Therefore, we
can assume that in typical CSE applications comp(γ) >> o(γ), which leads to the
generalization that overhead of capturing user steering action data is negligible.
Also, because such operations occur asynchronously and in a different computing
resource, the time for the individual components of o(γ) is “hidden” by the actual
computation, which is significantly higher. This contributes to reduce the impact
on the workflow execution performance. If we consider ext(Df) which depends on
the user settings, it is still typically very much smaller than the raw data that is
being generated and stored on files. As we show in our real case study (Sec. 7.1.3),
the overall o(Df), including the costs for ext(Df), is less than 2%, which is still
negligible.

71



Chapter 6

Managing User Steering Action Data
in a WMS

The second instantiation of WfSteer aims at allowing for tracking steering actions
with low execution overhead in a large-scale execution in a WMS. The main differ-
ence from the implementation for workflow scripts is that WMSs are responsible for
controlling the parallel execution of the workflow on the HPC machine. Because of
this, an important part of a WMS philosophy is to provide services that alleviate
the burden to the users concerning parallel execution control issues, such as efficient
exploitation of the parallel hardware and consistent execution. The importance of
this for steering action data management is that the WMS must not only provide
services to capture, relate, and store steering action data, but must also address
issues related to keeping the execution consistent when the user is performing an
adaptation and, as any WfSteer implementation, keep the introduced overhead low.
In this chapter, we present our implementation in d-Chiron. We discuss design prin-
ciples (Sec. 6.1), implementation details related to consistency control when the
user is adapting the workflow (Sec. 6.2), then how the user utilizes the WMS for
steering (Sec. 6.3).

6.1 Design Principles

In this section, we present the design principles that drive the architectural, tech-
nological and implementation decisions of WfSteer in a WMS.

A Data-centric WMS. A data-centric WMS follows a similar philosophy pro-
posed by our dataflow-oriented approach in the sense that the dataflow, rather than
the execution flow, is a first-class-citizen (Sec. 2.2). Chiron [20, 26] is the only
existing WMS that implements a data-centric approach for workflow management.
As any WMS, it must manage the parallel execution control, however its main pur-

72



pose is to provide for powerful online data analytical capabilities to users so they
can steer a running workflow. Chiron always has the most up-to-date data for
analysis during an experiment run, ready for joint analysis of domain, execution,
and provenance data because it uses a single, unified workflow database both as its
only source of data for parallel task scheduling data management and to provide for
data analysis. d-Chiron [44] is a highly distributed, scalable version of Chiron. Its
main differentiator compared to any other WMS is that it relies on an efficient in-
memory distributed DBMS to deal with distributed and parallel concurrency control
in a large-scale execution. It is a good alternative to keep the execution overhead
low while allowing for workflow steering. For these reasons, we choose d-Chiron to
implement WfSteer concepts.

Fast Hybrid Transactional and Analytical Workloads. When the user
sends an adaptation command, the WMS needs to react and attend the user call as
soon as possible. The steering action is delimited by a clause α (Def. 4.1), which
often delimits the subset of the dataset in the dataflow that is being steered. Thus,
to implement the steering action in a WMS, the DBMS managing the workflow
database needs to implement efficient indexing and Online Transactional Process-
ing (OLTP) querying capabilities to search for specific subsets in large sets of data.
Additionally, after the users adapt, they can analyze the consequences of the adapta-
tion. In this case, efficient analytical queries to perform joins over multiple datasets,
aggregations, sorting, and filters are required to enable users to perform complex
data analyses. Therefore, the DBMS must allow for both OLTP and OLAP work-
loads.

Consistency Control during a Steering Action. It is essential that the data
remains consistent within a user steering action. It is quite complex to guarantee
a consistent execution when a user decides to adapt the workflow, in particular
in a large HPC execution and without stopping the workflow execution. On the
other hand, distributed relational DBMS natively provide atomicity, consistency,
isolation, and durability (ACID) transactions [127]. The WMS can take advantage
of this capability and implement the steering actions in a way to outsource to the
DBMS complex transaction control that guarantees consistency.

The in-memory distributed DBMS in d-Chiron is the MySQL Cluster1, a rela-
tional DBMS that ensures strong-consistent ACID transactions, has a high through-
put to deal with multiple concurrent tasks, and it supports both transactional and
analytical workloads. Thus, MySQL Cluster is a good choice to follow the discussed
principles

1https://www.mysql.com/products/cluster

73



6.2 Implementation Details

In this section, we discuss the implementation details for user steering action data
management in d-Chiron. The steering action we implemented in d-Chiron is user-
steered data reduction. Since it is a WMS and as such it follows the philosophy to
alleviate the burden to the users concerning execution control issues, a significant
part of the implementation efforts are dedicated to addressing consistency problems
when the user is adapting the workflow (Sec. 6.2.1). Then in Section 6.2.2 we
discuss further implementation details on steering action data management in d-
Chiron. Finally, in Section 6.2.2 we present our implementation of the adaptive
monitoring concepts.

6.2.1 Addressing Steering Action Data Consistency Issues

This section describes how a consistent data reduction is implemented in a data-
centric WMS.

Consistency Issues in a User-steered Data Reduction

The data reduction steering action follows the Cut definition (Def. 4.4). Cut can
only operate on input data elements that are waiting to be processed in the workflow.
When a Cut happens, the dataset IDS that will be reduced is a shared resource
between the WMS engine that is normally processing the workflow in a batch job
and the user who wants to remove a slice, delimited by the criteria C, from IDS;
hence, race conditions can occur. Suppose, for example, that at a given instant t
in time, the WMS finishes processing a set of data elements and then needs to get
new data elements that were waiting to be processed. If at the same time t, the
user decides to cut off some of those input data elements that were waiting to be
processed, the WMS may go to an inconsistent state because it could try to process
elements that were removed. Or, the user may try to remove a slice that the WMS
already considered to process, thus generating errors. These inconsistencies are even
more likely to occur in a highly concurrent execution, such as executions on large
HPC clusters with thousands of computing cores, as the ones we use for typical CSE
workloads.

To address this problem, we define a safe subset of an input dataset IDS to which
the data reduction is applied. We split IDS into two subsets G ⊂ IDS and H ⊂ IDS,
where G has the input data elements that have already been processed and H has
the elements waiting to be processed. That is, IDS ← G ∪H|G ∩H = ∅. H is the
subset of IDS that is safe to remove a data slice from. To guarantee this, the WMS
must provide lock controls so that only the subset H will be reduced, as we show

74



next. Figure 6.1 illustrates the separation of the safe subset and the general view of
how a data-centric WMS executes a data reduction using the Cut operator, using
an excerpt of the Risers Fatigue Analysis workflow (Sec. 2.3.2) as example.

Data Gathering

WAVE_LEN WAVE_FREQ WIND_SPD IFILE

8.4 2.4 12.4 /tmp/1S.DAT
11.5 3.1 13.7 /tmp/2S.DAT
25.5 2.7 13.7 /tmp/3S.DAT
43.4 0.4 13.8 /tmp/4S.DAT
44.6 0.8 14.1 /tmp/5S.DAT
39.3 1.5 14.2 /tmp/6S.DAT
27.9 0.6 14.8 /tmp/7S.DAT

I_Preprocessing

Preprocessing

GI_Preprocessing

HI_Preprocessing

WAVE_LEN WAVE_FREQ WIND_SPD IFILE

8.4 2.4 12.4 /tmp/1S.DAT
11.5 3.1 13.7 /tmp/2S.DAT
25.5 2.7 13.7 /tmp/3S.DAT
43.4 0.4 13.8 /tmp/4S.DAT
27.9 0.6 14.8 /tmp/7S.DAT

I_Preprocessing’

I_Stress_Analysis

/tmp/5S.DAT
/tmp/6S.DAT

File System

Cut

𝑪 = 𝑾𝑨𝑽𝑬_𝑳𝑬𝑵 > 𝟑𝟗. 𝟎	𝒂𝒏𝒅	𝑾𝑰𝑵𝑫_𝑺𝑷𝑫> 𝟏𝟒.𝟎

𝐬𝐥𝐢𝐜𝐞	

Original dataflow

User-steered dataflow

Original Data 
Transformation

Dynamically inserted
User Steering Action

Legend

Figure 6.1: User-steered data reduction using the Cut operator. The input dataset
I_Preprocessing is split into subsets GI_Preprocessing and HI_Preprocessing. A slice
following the criteria C = WAV E_LEN > 39.0 ∧WIND_SPD > 14 is cut off

from I_Preprocessing transforming it into I_Preprocessing′.

Addressing Consistency Issues using a Relational DBMS

Before diving into the details of consistency issues when effectuating a data reduc-
tion at runtime, we explain how the slice delimited by the criteria C is defined in
d-Chiron, using its relational DBMS, so it can later be safely removed while guar-
antying consistency after reduction.

Input data elements are consumed by the many parallel tasks (usually thou-
sands in Many-Task Computing workflows [126]) that need to be scheduled by the
WMS engine. To represent the dataflow-oriented approach (Sec. 2.2) in a relational
database schema, the datasets DS ∈ D map to input and output specializations of
Dataset relations (i.e., tables), according to the domain modeling of the managed
application. The tuples of the Dataset relations map to the data elements ei ∈ DS.
The data transformation executions (i.e., tasks) are mapped to a Task table, where
each task is related to one or more data elements of a dataset.

Thus, for a certain input dataset IDS ∈ D, the join IDS ./ Task returns a set
containing tasks with their input data elements in IDS. Moreover, among other
attributes, each task has an important state attribute that determines if a task is
READY to be executed (already knows its input data to start, but is waiting for a
free CPU so it can be scheduled), RUNNING, COMPLETED (already been successfully
executed), BLOCKED (even though there may be free CPUs, the task does not have

75



the input to start yet), or any other state a task may assume. Depending on the data
transformation, each task may consume one or more input data elements. Therefore,
we distinguish between (i) data transformations in which each task consumes one
data element (we denote such tasks as tasks1:1, and (ii) data transformations in
which each task consumes more than one data element (we denote them as tasks1:n).

(i) In data transformations with tasks1:1, removing input data element means
“informing” the WMS not to execute the tasks that would consume them, hence
reducing overall execution time. To implement the separation of the input dataset
IDS into G and H, a semi-join relational operation [127] is used to join input data
elements from the input dataset IDS with tasks in READY state to only select the
domain data elements that still need to be processed. Then, after having H, the
WMS can obtain the elements in H that follow the criteria C. Since a set containing
both the input data elements together with the related tasks that will consume them
is important for the implementation of data reduction, we denote this set as §1:1:

§1:1 ← σC(IDS) n σstate=READY (Task)

where the ratio 1:1 means that the tasks in this set are tasks1:1 and the criteria C is
defined in the Cut operator. Finally, the WMS will know that tasks in §1:1 should
not be processed.

(ii) In data transformations with tasks1:n, a data reduction in an input dataset
IDS can only occur if the task that will consume them is in a BLOCKED state. The
task has not started yet because the needed input data for it to start is still being
generated by a running task in a previous data transformation. When this running
task finishes, it signals that the BLOCKED task can start. While it is still blocked and
the input data elements are being generated, the user can analyze them and identify
data values that can be removed. In this case, we denote the set §1:n similarly to the
previous one, but it rather returns the input data elements in IDS that are being
consumed by the tasks in BLOCKED state:

§1:n ← σC(IDS) n σstate=BLOCKED(Task)

where the ratio 1:n means that the tasks in this set are tasks1:n. Finally, the WMS
will know that tasks in §1:n should not be processed. This is different for tasks1:1

because they cannot be executed if their input datasets are removed. The WMS
will know how to handle the tasks in sets §1:1 or §1:n as long as it knows the type of
data transformation of the data transformation that would consume the elements
defined by the criteria C. Such verification is important to guarantee consistency
during reduction.

76



6.2.2 Further Details

Implementing Steering Action-related Consistency Control in d-Chiron

To ease slice removal in d-Chiron, we developed a program to be used as a command
line-based user interface to steer the workflow in d-Chiron. Similarly to what we did
for DfAdapter, we call this program as WfSteerCtl. With WfSteerCtl, users can
issue command lines to inform the name of the input dataset IDS and the criteria
C. The slice delimited by C is added to the where clause in the SQL query that will
form the select expressions. As an implementation decision, instead of physically
removing the input data elements (either in §1:1 or §1:n) from the workflow database,
we move them to a Modified_Elements table, maintaining the relationships. Like-
wise, the tasks in §1:1, which cannot be executed, are not physically removed, but
they have their state marked as REMOVED_BY_USER. By doing so, we enable these
tasks and data elements to be later analyzed with provenance queries.

To guarantee consistency, we take advantage of d-Chiron’s DBMS with ACID
transactions. In a user-steered data reduction, both d-Chiron’s engine and the
WfSteerCtl program need to concurrently update shared resources: Task and
Dataset tables in the workflow database. The WfSteerCtl program knows if it
is about to reduce data elements within a slice of the type §1:1 or type §1:n, since it
depends on the dataset being reduced, which is a parameter to the module. Consid-
ering the input data elements (either in §1:1 or in §1:n), while d-Chiron’s engine gets
the input data elements to execute, the WfSteerCtl program needs to concurrently
move the cut off input data elements to the Modified_Elements table. Considering
the tasks in §1:1, the Task table is a shared resource because while d-Chiron’s engine
updates the runnable tasks (select them, update their status to RUNNING, execute
them, and mark them as completed), WfSteerCtl needs to update the Task table
to mark the tasks as removed by the user, so that the engine will not get them
for execution. These concurrent actions make concurrency control critical. Figure
6.2 illustrates these steps with a sequence diagram. The WfSteerCtl program acts
concurrently with the WMS engine on the shared resources, which are in red in the
figure. The steps 1–3 in WfSteerCtl are put together in a single DBMS transaction,
i.e., it is atomic.

77



WFSTEERCTL DBMS WMS

Select runnable tasks with their 
data elements

4. save provenance

2. move data elements in §1:1 or §1:n 

from Domain Data to Modified_Elements

execute tasks

modify tasks' status to 
RUNNING

modify tasks' status to 
COMPLETED

loop [while there are runnable tasks]

save provenance

send reduction 
success message

atomic

USER

3. modify tasks' status in §1:1  
to REMOVED_BY_USER

optional [if tasks are Tasks1:1]

1. select tasks and data elements 
§1:1 or §1:n 

request to cut 
using criteria C

Figure 6.2: Sequence diagram showing what happens in a user-steered data
reduction.

The workflow database’ tables are distributed, thus making concurrency con-
trol of the tables’ partitions even more complex. In d-Chiron engine, distributed
concurrency control in these tables is outsourced to the DBMS that guarantees the
Atomicity, Consistency, Isolation, Durability (ACID) transaction properties [127].
We developed the WfSteerCtl program in d-Chiron to also exploit the DBMS in
a way that the concurrency caused by the aforementioned updates is controlled by
the DBMS. Therefore, we implement our approach such that both d-Chiron engine
and the WfSteerCtl rely on the DBMS to outsource those complex distributed locks
and releases of shared resources to guarantee that both execution and data remain
consistent before and after a user-steered reduction.

Workflow Database Schema

The data schema that governs the data organization in the workflow database
follows PROV-Wf [29], but d-Chiron has extensions to PROV-Wf to accommo-
date the steering action data. Particularly, User_Query, Monitoring_Query, and
Monitoring_Result. Using PROV nomenclature, User_Query is a PROV Activity

that stores the slice that represents sets of data elements that will be removed.
Monitoring_Query is a PROV Activity that contains the monitoring queries sub-
mitted by the user in specific time intervals. The monitoring queries generate PROV
Entity Monitoring_Result that stores the query results. These extensions, pre-
sented in 2017 [25], are the first extensions to a PROV data diagram for managing
steering action data and are the basis for what we defined later for the PROV-DfA

78



data diagram [38] (Sec. 4.4).
To store provenance of removed data elements, we extend the workflow database

schema with the table User_Query to store the queries that select the slice of the
dataset to be removed. The description for each User_Query column is described
in Table 6.1. The removed data elements are stored in table Modified_Elements,
which is a table that represents a many-to-many relationship between User_Query

and Dataset.

Table 6.1: User_Query table description.

Column Name Description

query_id Auto increment identifier
slice_query Query that selects the slice of the dataset to be removed.

tasks_query
Query generated by the WMS to retrieve the ready tasks asso-
ciated.

issued_time Timestamp of the user interaction.

query_type
Field that determines how the user interacted. It could be
“Removal”, “Addition”, and others.

user_id Relationship with the user who issued the interaction query.

wkfid
To maintain relationship with the rest of workflow execution
data.

To store the queries in set QS of our adaptive monitoring approach (Sec. 4.5),
we create the Monitoring_Query table, shown in Table 6.2. The main advantage
of storing monitoring results in the workflow database (and adequately linking the
results with the remainder of the data already stored in this database) whenever a
monitoring query result is executed is that users can query the results immediately
after their generation. The workflow database can also serve as data source for
data visualization applications. We add another table: Monitoring_Query_Result,
shown in Table 6.3, to store monitoring results in the workflow database.

Table 6.2: Monitoring_Query table description.

Column Name Description

monitoring_id Auto increment identifier.
interval Interval time (in seconds) between each monitoring query (di).
monitoring_query Raw SQL query to be executed.

wkfid

Relationship between the monitoring queries and the current
execution of the workflow. In d-Chiron’s workflow database,
there may be data from past executions for a same workflow.

79



Table 6.3: Monitoring_Query_Result table description.

Column Name Description

monitoring_query_id Auto increment identifier.

monitoring_id
Relationship with the monitoring query that generated
this result.

monitoring_values Results of the monitoring_query.

result_type
Data type of the result values of both queries. Cur-
rently, “Integer", “Double", “Array".

Adaptive Monitoring Implementation

Now we provide implementation details for the adaptive monitoring concepts pre-
sented in Section 4.5. We implemented a Monitor Manager service that can access
the same workflow database used by d-Chiron. A command line starts the Monitor
Manager service that runs in the background. Connection settings are provided in
a configuration file. Then, the Monitor Manager keeps querying the Monitoring_-
Query table at each s time units to check if a new monitoring query was added.
The default value for s is 30 seconds, as the time interval to check if monitoring
queries were added or removed. After the service has started, users can add (or
remove) monitoring queries to (or from) the Monitoring_Query table. Currently,
users can add monitoring queries using a command line to inform which SQL query
will be executed at each time interval and the time interval itself. Whenever the
Monitor Manager service identifies that the user added a new monitoring query, it
launches a new thread. Each thread is responsible for executing each monitoring
query qi ∈ QS, stored in table Monitoring_Query at each defined time interval
∆ti. A thread is finished when a monitoring query is removed or when the workflow
stops executing (in that case, all threads are finished). Figure 6.1 shows the steps
executed at each time interval.

1 Execute the monitor ing query qi .
2 Store query r e s u l t s in the workflow database .
3 Reload in fo rmat ion f o r qi from the workflow database f o r the next time

i t e r a t i o n t+ ∆ti . The user could have adapted any o f t h i s
in fo rmat ion .

4 Wait f o r ∆ti seconds .

Listing 6.1: Steps executed by each thread within a time interval.

To enable these steering capabilities, three of these steps represent queries to the
workflow database, including reads and writes. The stored results can be further

80



analyzed a-posteriori or, more interestingly, used as input for runtime data visual-
ization tools, since results are immediately made available after they are generated.
In our experiments, Section 7.2.2, we show how users can interact with d-Chiron to
add monitoring queries and use the WfSteerCtl program.

6.3 Utilization

The ultimate goal of this work is to contribute with user-steered workflows in HPC.
As discussed, MATTOSO et al. [23] explain that there are at least six aspects
that need to be considered for this: interactive analysis, monitoring, user-steered
adaptation, notification, interface for interaction, and computing model. In this
work, we mostly focus on the first three, considering user-steered adaptation as
the core of user steering and the one we mostly contribute with. As most related
contributions to putting the human in the loop of HPC workflows [23, 26, 46], we
focus on the efforts for designing and implementing concepts behind the backend
enabling technology for user steering in an HPC workflow. More specifically, we
contribute with allowing users to steer data reductions in scientific workflows online,
focusing on providing a consistent execution within a data reduction, managing
provenance data of user steering actions, and minimizing performance overheads
in the HPC system. Enabling such features without jeopardizing performance in
an HPC environment is hard. However, besides engineering the backend enabling
technology, the interface for interaction is another important aspect to be considered.

Designing good interfaces requires usability studies to determine whether the
interfaces are in fact good for the target user profile i.e., computational scientists in
our case. This would need a comprehensive user experience test to understand user
behavior while interacting with their workflows, then we would develop interfaces
based on the gathered design insights, and evaluate the usability. For a valid and
comprehensive usability evaluation, we would need to ask multiple users to use the
system and the modules developed, observe how they use, and interview them. How-
ever, the general context that this work is inserted in very complex. Our target-user
profile is quite rare (compared with general business applications) and the results
depend on the domain and the application in the domain. For example, if we want
to measure the time a user takes to identify that a certain slice will not contribute
to the final results and then remove it, a valid evaluation would require analyzing
multiple users of the same application, in the same domain. Finding users of a same
specific application is so rare that it makes a comprehensive usability test extremely
hard. Also, many other questions need to be addressed. For instance, “does the user
expertise in the domain-application interfere in the results? — perhaps the more
experienced the user is, the faster she will find which slice to remove and the better

81



she understands the consequences of a reduction”; or “what if the tests were carried
out on a different application for the same domain?”; or “what about a different
domain?”. Besides, using an HPC cluster requires scheduling. For an usability test,
the analyzer needs to observe the user while she is interacting with the HPC work-
flow, and thus the analyzer’s and the user’s scheduling must match the HPC job
scheduling time, for each user. In other words, a valid and comprehensive usability
test would require observing users of the same application, of different domains,
of different expertise levels, and matching scheduling times with the HPC cluster.
Combining these requirements makes it very hard and out of the scope of this work,
which focuses on enabling backend technology for steering an HPC workflow.

Therefore, instead of usability tests, in this section, we show how users can use
WfSteerCtl in d-Chiron. Before developing, we interviewed a few computational
scientists. We found that they are very used to command line interfaces and they
frequently have to learn new computational tools. They often browse logs in termi-
nals and follow the execution status of their simulations. To reduce data, they need
to stop their workflow process, modify the input datasets by hand, and restart exe-
cution. For some users, this means resubmitting a job to an HPC cluster subject to
scheduling. This may take a long time (even weeks). Therefore, developing a tech-
nology that allows them to reduce data online, based on provenance data analysis
through structured queries (rather than Unix-like shell commands to filter multiple
logs in the file system) is very desirable. Thus, we developed simple command line
interfaces to enable them to steer monitoring queries and reduce data online. Since
developing the best interface and analyzing its usability is out of the scope, the
command line interfaces are our current best effort to make the technology usable.
As we show in the experiments (Sec. 7.2.2), for validation purposes, a user is able
to use the system, after a d-Chiron specialist trains him and provided support.

In d-Chiron, computer scientists who are experts in operating d-Chiron work
closely with CSE users, the target-user of this work. However, computational sci-
entists are can operate d-Chiron and steer the running workflow. Before steering
a workflow, the workflow has to be modeled. The user identifies the input and
output data elements of each of those activities and gives a name to the dataset
that contains those elements (following the dataflow-oriented approach — Sec. 2.2).
When this is done, d-Chiron creates tables corresponding to those datasets, where
each table column is an element produced or consumed by a data transformation. If
needed, application-specific extractor scripts are built to collect output data to be
stored in the workflow database [35].

The aspects of computational steering workflows tackled in this work are strongly
related to how d-Chiron manages the data and the dataflow. It is all about the
workflow database being populated online by the WMS. The workflow execution

82



Figure 6.3: Using MySQL Workbench to query the workflow database at runtime.

plan depends on the data in this database (hence can be adapted at runtime) and
the workflow database is available for user queries immediately after the workflow
has started to run and data elements in the domain-dataflow are stored while they
are generated. Then, they are linked to execution and provenance data in the
workflow database to enable queries that integrate all these data.

Therefore, the main way users can interact with a workflow execution in d-
Chiron is through query interfaces, generally provided by the DBMS, to query the
workflow database. It helps to run the queries when the user understands the
database schema that logically organizes data in d-Chiron. Computational scientists
or engineers can work with computer scientists (d-Chiron specialists in this case) so
they can build complex analytical SQL queries to interactively analyze the dataflow.
From our experience, computational scientists do not take much time to learn how
to write simple queries to a relational database and they later learn how to write
complex analytical queries on their own. d-Chiron uses MySQL Cluster to manage
its workflow database. MySQL users are accustomed to using MySQL Workbench
as a visual interface to the DBMS. They can see the relational database schema,
build and run SQL queries, and get their tabular results in the interface as the
workflow runs. Figure 6.3 shows how MySQL Workbench can be used to write Q5
(described as natural language in Table 2.2), which integrates domain, provenance
and execution data in a same query. More queries with their natural language
descriptions are on GitHub [61].

83



However, such user interactivity does not need to use SQL queries only. Some
users prefer graphical user interfaces, so there are many other ways to interact with
a DBMS: graphical interfaces with drag and drop boxes to help building queries,
Natural Language to Database solutions to translate regular English sentences into
SQL queries or dashboards that plot results from a query. In this work, discussing
the usability of interfaces is not the focus. However, we show how users currently
use command line interfaces for the WfSteerCtl program.

For adaptation, a user uses WfSteerCtl program (Figure 6.3) to inform who is
going to interact (this information is stored in the workflow database for provenance)
and passes a configuration file that contains information about the workflow, the
HPC cluster, and the DBMS connection settings. After that, a user can run as
many dataflow steering commands as necessary informing the input dataset IDS in
the workflow that will be reduced and the C criteria to select the slice (operands
from Cut Definition 4.4). These steering action data are stored in the workflow
database for provenance. The output messages allow the user to understand what
is happening after a command line is issued. In particular, after a Cut action, the
output message informs the user of the number of data elements that were removed
from the dataset to be processed. For more complex analyses on the consequences of
those reductions, users can query the workflow database using the tables introduced
in this work to verify, for example, if there were files and their sizes to quantify the
number of bytes that were not processed. We show these analyses in the experiment
section (Sec. 7.2.2).

1 $> WfSteerCtl −−user="Peter "
2 Output : Next workflow i n t e r a c t i o n s w i l l be i s su ed by user Peter .
3 $> WfSteerCtl −−cut −−datase t=" opr ep roc e s s i ng " −−c r i t e r i a="wind_speed <

12 .0 and wave_freq > 2 .0 "
4 Output : 177 data e lements were cut o f f from OPREPROCESSING datase t .
5 $> WfSteerCtl −−cut −−datase t=" opr ep roc e s s i ng " −−c r i t e r i a="wind_speed <

11 .3 and wave_freq > 1 .8 "
6 Output : 55 data e lements were cut o f f from OPREPROCESSING datase t .

Listing 6.2: WfSteerCtl command line interface for data reduction.

For the Monitor Manager service (Figure 6.2), a user runs a command to start
it as a background service on any cluster node that has access to the DBMS, usu-
ally the same node from which the WMS execution was launched. Then, users can
add monitoring queries at any time. The monitoring query results are also properly
stored in the workflow database, as they are generated. Dashboard graphic visual-
ization applications can query these results to deliver better data visualization for
the user.

84



1 $> WfSteerCtl −−monitor −−s t a r t
2 Output : Ready to accept new monitor ing qu e r i e s .
3 $> WfSteerCtl −−monitor −−add −−mq="` cat q1 . sq l `" −− l a b e l="q1" −−

i n t e r v a l=30
4 Output : Monitoring query q1 w i l l be executed every 30 seconds .
5 $> WfSteerCtl −−monitor −−add −−mq="` cat q2 . sq l `" −− l a b e l="q2" −−

i n t e r v a l=20
6 Output : Monitoring query q2 w i l l be executed every 20 seconds .
7 $> WfSteerCtl −−monitor −−update −− l a b e l="q2" −− i n t e r v a l=5
8 Output : Monitoring query q2 was updated . I t w i l l be executed every 5

seconds .
9 $> v i q1 . s q l

10 $> WfSteerCtl −−monitor −−update −− l a b e l="q1" −−mq="` cat q1 . sq l `"
11 Output : Monitoring query q1 was updated .

Listing 6.3: WfSteerCtl command line interface for monitoring.

In this example, after the user starts the monitoring service (line 1), two moni-
toring queries are added with intervals 30 and 20 seconds, respectively (lines 3 and
5). The user wrote the queries in text files (q1.sql and q2.sql), which are loaded
in the WfSteerCtl --monitor --add commands, using cat Unix command. Those
query files are only to facilitate the command lines and they are not a requirement.
A user could write the query string directly in the command line. After some time,
the user decides to decrease the time interval in the monitoring of query with label
“q2” by issuing the command at line 7. In line 9, the user decides to modify a specific
query aspect (e.g., increase the result limit) by editing the query text file and in line
10 he modifies the monitoring query. As for the management of steering actions,
these user interactions are properly stored in the workflow database for provenance.

85



Chapter 7

Experimental Evaluation

In this chapter, we design and conduct the experiments to support the validation
of our approach, WfSteer, to address the problem and hence the validation of this
thesis’s hypothesis. Our hypothesis encompasses WfSteer’s instantiation both for
workflow scripts and for WMS, and within each instantiation we further distin-
guished between allowing for tracking steering actions and keeping the execution
overhead low. This chapter follows this separation. Section 7.1 presents the valida-
tion of WfSteer for workflow scripts, showing a qualitative analysis on allowing for
tracking steering actions and a quantitative evaluation on the execution overhead,
using real-world use cases in the O&G industry. Analogously, Section 7.2 has the
validation of WfSteer’s instantiation into a WMS, following this same organization.

7.1 Managing Steering Action Data in Workflow

Scripts

In this section, we present the experiments to aid the validation of one of the
instantiations of WfSteer, DfAdapter, in a real-world workflow script, libMesh-
sedimentation. DfAdapter has been introduced in Chapter 5 and libMesh-
sedimentation has been briefly introduced in Section 2.3.1. We show how users
can monitor and understand, at runtime, the impact of their steering actions by
relating steering action data with provenance, domain, and execution data, then
we evaluate the added overhead in a workflow script. We begin by providing im-
plementation details of how DfAdapter is coupled with libMesh-sedimentation (Sec.
7.1.1), afterwards we present steering action data analysis in libMesh-sedimentation
workflow (Sec. 7.1.2), and conclude with an overhead evaluation (Sec. 7.1.3).

86



7.1.1 Use case: Computational Fluid Dynamics in Geo-

science with libMesh-sedimentation

libMesh-sedimentation provides a real and rich case for parameter tuning for the fol-
lowing reasons. First, it is a CSE application that requires HPC to run a simulation
with over 70 parameters, which may be modified by the user for better performance
and accuracy of results [27]. Second, as this simulation may last for weeks, the user
does several tunings and there is no tracking for them. Third, there is a strong
potential for richer online data analyses with steering action data by correlating the
steering data to domain-specific values (mainly QoIs) and other data in the workflow
database.

To use DfAdapter in libMesh-sedimentation, we follow the utilization guide de-
scribed in Section 5.4. The first step is modeling libMesh-sedimentation simulation
as a workflow and identifying analysis and adaptation points. Workflow data are
captured by DfAnalyzer. Application-specific data are modeled as new tables of
the relational database schema for the workflow database (Sec. 14). The main
input dataset that the user adapts is the input for the loop evaluation data trans-
formation, named I_Iteration_Params, which contains input parameters for the
numerical solvers. The users specify parameters in a setup configuration file. The
workflow script checks, at every time step, if any modification has been made to this
file. If a modification occurred, the parameters are redefined according to the new
values. That is, libMesh-sedimentation implements a file-based checks approach for
the adapter service (Sec. 5.2). Modifications in this file happen within an implemen-
tation of the Adapter API. The implementation receives parameters and new values
and modifies the file according to the inputs. The last step is to insert steering
action data capture API calls in the adaptation points. In libMesh-sedimentation
code, it is inserted immediately after the parameters are reloaded when there is
a modification in the configuration file. Finally, when the user steers, DfAdapter
captures provenance, domain and steering action data every time it detects user
steering actions. Figure 7.1 shows the instrumentation of libMesh-sedimentation
with workflow data capture calls (using DfAnalyzer’s API — Sec. 14) and steering
action data capture calls.

87



...
…
…
for (unsigned int t_step = p.init_tstep; 

(t_step < p.n_time_steps)  && (time < p.tmax);
t_step++) {
data_capture_lib.init_time_loop();
if ( parameters_modified() ) {

p = reload_parameters();
data_capture_lib.capture_steering_time_loop();

}
...
for (unsigned int nonlinear_step = 0; 

nonlinear_step < p.max_nonlinear_steps; 
++nonlinear_step) {
...
data_capture_lib.init_fluid_solver();
flow_system.solve();
data_capture_lib.finalize_fluid_solver();
...

}
...
…

data_capture_lib.finalizeTimeLoop();
}

libMesh-sedimentation source code instrumentation

XDMF/HDF5 file pointers

AMR Setup

Simulation Setup

Fluid Solver

Sediment Concentration Solver

Adaptive Mesh Refinement

Input Mesh

Loop 
Evaluation

( mesh size, AMR parameters )

( maximum time, flow linear 

tolerance, flow non-linear tolerance)

( final linear residual, 

final non-linear residual )

( final linear residual, 

final non-linear residual )

( before active elements, 

after active elements )

XDMF/HDF5 Writer

( points, velocity, pressure, 

sediment concentration )

Catalyst Adaptor

param_settings.in

while  t < tmax

libMesh-sedimentation workflow

Workflow 
Database

adaptation point

online 
data analyses

Dataflow Data Transformation

In-situ visualization

analysis point

online 
data adaptation

Figure 7.1: libMesh-sedimentation workflow script code with added API calls
along with its workflow representation.

HPC Environment and Deployment. The experiments in this section were
conducted on Lobo Carneirno cluster1, an SGI ICE X with 252 nodes, each with
a 24-core processor and 64 GB RAM, summing 6,048 cores and 16 TB RAM. The
nodes are interconnected via FDR InfiniBand and share a Lustre file system with
500 TB. The Data Management services and MonetDB are deployed on a separate
node in the cluster, different from the ones used by the main computational process
for libMesh-sedimentation. libMesh-sedimentation is implemented in C++ and its
code with instrumentation for analysis and steering is available on GitHub [128]
along with with DfAdapter’s code [125].

7.1.2 User Steering Action Data Analysis

Small-scale case

The small-scale experiment is used by scientists as a benchmark to evaluate sedi-
mentation solvers. It simulates the laboratory test carried out by DE ROOIJ and
DALZIEL [129] with a lock-exchange configuration. The objective of this experiment

1http://www.nacad.ufrj.br/recursos/sgiicex

88



is to show the data analytical potential of our solution, how we record structured
parameter-tunings, and how users can query the steering action data to enhance
their analyses.

The computational setup used in this test case consists of a plane channel with
dimensions 20 ∗ 2 filled with sediments in suspension and clear fluid at rest. In the
laboratory, a lock-gate is used to separate the fluids before the beginning of the
experiment. When the gate is removed, a mutual intrusion flow develops in which
the particle-laden front travels along the bottom to the right. In this simulation,
the lock-gate is located at x = 0.75. The non-dimensional parameters used are
Grashof number = 5.0e−6, Schmidt number = 1.0, and Settling velocity = 0.02.
Adaptive mesh refinement is used to track the interface between sediments con-
centration and clear water. Figure 7.2 shows the concentration of sediments in
suspension and the adapted mesh at simulation time t = 10.

Figure 7.2: 2D visualization of the tank and the concentration of sediments. This
figure was generated at simulation time t = 10.

In this simulation, the user is interested in analyzing possible performance gains
when the number of nonlinear and linear (in this case, GMRES) iterations is tuned at
runtime. Specific fine-tunings on different input parameters may impact the solvers
and hence the simulation time considerably. During the execution, the user submits
analytical queries. Based on the analyses of nonlinear and GMRES iterations, the
user decides to fine-tune the solver’s parameters. In total, the user chooses to do
six fine-tunings in 10 hours of simulation. Figure 7.3 shows a query that tracks
the steering action. The query lists the parameters tuned by a user (say, Bob),
correlated to the time steps. By running this query, other researchers are aware
that Bob adapted this workflow execution six times. The times and values are
well-structured and recorded in the workflow database.

89



Figure 7.3: Query analyzing the track of the steering actions.

To inspect the consequences of adaptations, a more sophisticated analytical query
is needed. Figure 7.4 shows the query results of the average values of strategic
quantities ten iterations before and after each of the fine-tunings. The results include
nonlinear and linear (GMRES) iterations, which are output values of the solver, and
the number of finite elements, which is an output of the mesh refinement process and
depends on other inputs of the solver. This query shows an integration of provenance,
domain, and execution data, and the new steering action data we introduced.

Figure 7.4: Query integrating execution, domain, provenance, and steering action
data.

The results in Figure 7.4 (we highlight the main findings) show that the Tunes
#3, #4, and #6 impacted the average elapsed time and the average number of
GMRES iterations, which are of high interest to the user. Tune #5 barely changed
the other values but reduced the number of mesh elements by about 11.15%. This
reduction is important because when there are too many elements, out-of-memory
errors may happen (see the large-scale case next). In Figure 7.5, we plot the evolution

90



Figure 7.5: Plots of monitoring queries for number of GMRES iterations,
non-linear iterations, and mesh elements over time. We highlight the tune actions.

of these variables over time and annotate the tunings (Tune #1 to Tune #6) so the
user can evaluate the adaptations.

Based on the online analyses of user steering action data, the user decides whether
new tunes are needed. Moreover, considering a scenario where another research
team analyzes the provenance of the results, the team sees the abrupt changes in
the results and can correlate these results with Bob’s steering actions through SQL
queries in the workflow database. They can check if sudden changes are related to
one of the adaptations Bob did. Thus, they will have a better understanding of the
results.

Large-scale case

In a large-scale experiment, the user sets up the libMesh-sedimentation workflow
with a simulation of the deposition of sediments carried by a turbidity current over
a real experimental channel. A mixture of sediments is continuously injected into a
channel that deposits sediments in the tank. The tank has length = 135, width = 40,
and height = 50 (dimensionless units).

The dimensionless simulation parameters are Settling velocity = 5.36e−6,
Grashof number = 3.42e7, Schmidt number = 1.0, and fixed time step = 0.01.
It uses a 3D simulation with a spatial discretization using an initial unstructured

91



mesh with 1.2 million tetrahedra. AMR/C is employed and three levels of uniform
refinement are applied before the time loop. The user specifies input parameter val-
ues for the sedimentation solver (i.e., linear and non-linear tolerances, the maximum
number of linear iterations, tolerances for AMR/C error estimation and refinement
and coarsening fractions) aiming at attaining a high-fidelity simulation. One strate-
gic simulation data that quantifies such level of detail is the number of elements
obtained in the mesh refinement data transformation (the second one in the time
loop). Although a large number of elements in the mesh means a high level of detail,
it also means more memory and time consumed by the simulation. Depending on
the parameter values specified for the solver, the simulation may run out of memory.
Thus, the user does not know beforehand which range of parameters is best for a
good level of detail with acceptable memory consumption.

To support the user in following the evolution of strategic values, we use our
monitoring approach by setting up queries to the workflow database at specified
time intervals (each simulation’s time step). One query shows linear and nonlinear
iterations, residual norms, and the number of elements in the mesh at each time step.
Additionally, ParaView Catalyst is set up to plot 3D visualizations of the channel
and the sediment deposits over time. Then, the user sees, for example, that the
number of elements generated by the AMR/C is close to a maximum preset number
of elements. At that rate, the simulation may crash, running out of memory. The
user knows that by changing some of the solver parameters, the number of elements
tends to decrease. Thus, the user issues a command to adapt the solver parameters
and DfAdapter automatically tracks and registers this tuning.

In Figure 7.6, we show the plot of the monitoring query for the number of
elements. We see how the number is increasing when the user decided to fine-tune
the input parameters online aiming at reducing the number of elements. This action
prevented the simulation to result in an out-of-memory error, which would interrupt
the simulation, requiring offline tunings and job resubmission to the HPC machine.

Steering at t = 33.52 TIME

N
U

M
BE

R 
O

F
EL

EM
EN

TS
(in

m
ill

io
ns

)

Number of elements in the mesh

Figure 7.6: Plot of monitoring query showing number of elements over time.

92



Parameter
Before
steer

After
steer

Flow nonlinear tolerance 1.0e-4 1.0e-3

Transport nonlinear tolerance 1.0e-4 1.0e-3

Flow initial linear solver tolerance 1.0e-6 1.0e-1

Transport initial linear solver tolerance 1.0e-6 1.0e-1

t = 
24.5

t = 
58.0

t = 
83.0

t = 
108.0

Steering action

Flow Final linear residual: 1.68641e-13 
Flow Final nonlinear residual: 2.03266e-08 
Sediment Final linear residual: 1.49932e-13
Sediment Final nonlinear residual: 1.51098e-08
Number of elements in the mesh: 2463183

Flow Final linear residual: 4.46403e-14
Flow Final nonlinear residual: 7.10668e-09 
Sediment Final linear residual: 4.06513e-14
Sediment Final nonlinear residual: 9.09405e-09
Number of elements in the mesh: 1743485

Flow Final linear residual: 6.09749e-14
Flow Final nonlinear residual: 9.20302e-09 
Sediment Final linear residual: 4.75423e-14
Sediment Final nonlinear residual: 7.4835e-09
Number of elements in the mesh: 1700729

Flow Final linear residual: 5.78688e-14 
Flow Final nonlinear residual: 8.11125e-09 
Sediment Final linear residual: 6.5936e-14
Sediment Final nonlinear residual: 6.40164e-09 
Number of elements in the mesh: 2335832

time

t = 
33.52

Figure 7.7: Snapshots of 3D visualization of the tanks and the sediments over
time. Steering action occurs at t = 33.53 and user steering data are recorded.

In Figure 7.7, we show the 3D visualizations and the evolution of the strategic
values and how the sediments flow in the channel over time. Then, the user can run
analytical queries to analyze the consequences of the fine-tunings, like the queries
in Figures 7.3 and 7.4.

In Table 7.1, we show a small excerpt of these results, where we can see that
the simulation time is cut down to 17 days, thanks to the fine-tunings made by the
user. If we consider the average solver time by iteration before the fine-tunings,
the simulation time would be approximately 27 days, i.e., a reduction of 37%. The
ability our approach gives to the users for them to have a detailed understanding
of their steering actions and the consequences of their actions (e.g., a reduction of
about 10 days in the total execution time) improves the users’ awareness, putting
them in the loop of their simulations. These findings contribute to validating that
WfSteer allows for tracking steering actions in workflow scripts.

Table 7.1: Summary of results of parameter tunings.

Before After Reduction

Avg. Solver Time
by iteration

3.82 min 2.21 min 42.14%

Avg. Number of
elements

2.4e6 1.7e6 29.24%

Total execution
time

(expected) ∼ 27

days
(real) ∼ 17 days 37%

93



7.1.3 Overhead Evaluation

We use the concepts and equations presented in Section 5.5 to evaluate the over-
head added to execute DfAdapter coupled with libMesh-sedimentation workflow. In
this experiment, the added overhead is caused by workflow data capture, raw data
extraction, adaptation capabilities, and steering action data capture. Results are
in Table 7.2. To obtain them, we first calculate each overhead component per task
applying the Equations 5.1 to 5.5 using DfAdapter’s logging data joining with tasks’
performance data in the workflow database. Finally, we sum each contribution to
the overall computational time as in Equation 5.6.

Table 7.2: The added overhead in the analysis and adaptation points account for
less than 1%; data extraction account for 1.49%.

Total CPU
time (s)

Total time
(%)

Application computation
comp(Df)

1,407,967.18 98.18%

Analysis
Analysis points anlpoint(Df) 4,259.18 0.3%
Data extraction ext(Df) 21,367.60 1.49%

Adaptation
Adaptation point adppoint(Df) 473.24 0.03%

Action action(Df) 2.44 1.75e-5%
Total c(Df) 1,434,069.64 100%

For analysis, workflow data capture overhead (analysis points) account for 0.3%
caused by preparing the tuples to be sent to the Data Management services. Since
data management services and the database system run in a separate computing
resource and sending provenance data to be stored occurs asynchronously, the data
capture overhead account only for preparing tuples to be sent. This represents a
very low overhead, in the order of few milliseconds per task. libMesh-sedimentation
workflow has an adaptation point at the beginning of the time loop iteration. Raw
data extractors, provided by DfAnalyzer, extract convergence values from raw data
files written as XDMF/HDF5 so the user can monitor and detect possible misbe-
havior of nonlinear and linear solvers. Extracting data values from raw data files to
store in a database for analysis is done synchronously. Depending on the amount of
data and how the raw data extractor is implemented, overhead may not be negli-
gible. Here, these raw data extractions account for 1.49% of the total computation
time. For adaptation points, since libMesh-sedimentation uses a file-based checks
implementation, it verifies if a file has been modified at each new time iteration. This
file verification is synchronous because the workflow script must verify if a change
has happened before it can continue. In total, this check at each new iteration adds

94



0.03% overhead. When a steering action happens, the internal data structure that
contains the solver parameters is reloaded and steering data are captured and sent to
the Data Management services. Since the user steered 6 times during the execution
of this workflow, the overhead for steering action tracking is close to 0%.

Besides, as a CSE application, in libMesh-sedimentation, tasks last for seconds-
long on average (Figure 7.4) and the distributed CPUs spend significantly more
time computing the application tasks than computing our data capture operations.
Therefore, considering approximately 17 days of total execution time (about 1.4e6

seconds as shown in Figure 7.4), workflow data capture and steering action data
capture together account for less than 1% overhead, whereas summing with raw
data extractions, the total overhead is less than 2%.

Such reduced overhead is due to our system design principles related to asyn-
chronicity and to the fact that the most costly data tracking operations, which give
the structure and data relationships, occur in the data management services run-
ning on a separate node in the HPC machine. Anyhow, any overhead caused by
any WfSteer implementation is greatly compensated by the benefits it makes to the
user. For example, allowing for tracking the adaptations benefited reproducibility,
validation, and interpretation. Also, observing at runtime that the adaptation re-
duced the execution time in ten days is relevant for further online tunings and result
analyses. These findings contribute to validating that WfSteer allows for managing
steering action with low execution overhead in workflow scripts.

7.2 Managing Steering Action Data in a WMS

In this section, we present the experiments to aid the validation of one of the imple-
mentations of WfSteer, data reduction using d-Chiron WMS, introduced in Chapter
6. For these experiments, we use the Ultra-deepwaters’s Risers Fatigue Analysis
workflow as the real-world application 2.3.2. We show how users can run data anal-
ysis and understand, at runtime, the impact of their steering actions in a WMS.
We present the case for data reduction in the Risers workflow (Sec. 7.2.1), then we
show steering action data analysis in this workflow (Sec. 7.2.2), and conclude with
an overhead evaluation (Sec. 7.2.3)

7.2.1 Use case: Ultra-deepwaters’ Risers Fatigue Analysis

As described before (Sec. 2.3.2), the Risers Fatigue Analysis workflow has seven
data transformations. Except for the last one, they generate result data (both raw
data files and some other domain-specific data values), which are consumed by the
subsequent data transformations. These intermediate data need to be analyzed

95



during workflow execution. More importantly, depending on a specific range of data
values for an output result data (e.g., fatigue life value), there may be a specific
combination of input data (e.g., environmental conditions) that are more or less
important during an interval of time within the workflow execution. The specific
range is frequently hard to determine and requires a domain expert to analyze partial
data during execution. For example, an input data element for DT2 is a file that
contains a large matrix of data values, composed of thousands of rows and dozens of
columns. Each column contains data for an environmental condition and each row
has data collected for a given time instant. Each row can be processed in parallel and
the domain application needs to consume and produce other data files (on average,
about 14 MB consumed and 6 MB produced per processed input data element).
After many analyses online, the user finds that, for waves greater than 38 m with
a frequency less than 1 Hz, riser fatigue will never happen. Thus, within the entire
matrix, any input data element that contains this specific uninteresting range does
not need to be processed. Therefore, by reducing the input dataset, the overall data
processed and generated are reduced and thus the overall execution time.

HPC Environment and Deployment The experiments in this section were
conducted on Grid50002, using a cluster with 39 computing nodes, containing 24
cores each (summing 936 cores). Every node has two AMD Opteron 1.7 GHz 12-
core processors, 48 GB RAM, and 250GB of local disk. All nodes are connected
via Gigabit Ethernet and access a shared storage of 10 TB. d-Chiron was executed
with MySQL Cluster 7.4.9 as its in-memory distributed DBMS. The code to execute
d-Chiron and setup files are available on GitHub [61].

7.2.2 User Steering Action Data Analysis

Running case

Let us consider the following scenario. Peter is an offshore engineer, expert in
riser analysis and learned how to set up monitoring, analyze d-Chiron’s workflow
database, and use d-Chiron’s WfSteerCtl program to steer the workflow. In Peter’s
project, the Design Fatigue Factor is set to 3 and service life is set to 20 years,
meaning that fatigue life must be at least 60 years. Peter is only interested in
analyzing risers with low fatigue life values as they are critical and might need
repair or replacement. During workflow execution, it would be interesting if Peter
could inform the WMS which input values would lead to low risk of fatigue so they
could be removed. However, it is hard to determine the specific range of values i.e.,
the slice, to be cut off. For this, Peter first needs to understand the pattern of input
values associated with low risk of fatigue life values. In the workflow, the final value

2https://www.grid5000.fr

96



of fatigue life is calculated in the data transformation DT6, but input values are
obtained as the output of the data transformation DT1, gathered from raw input
files. Keeping provenance is essential to associate data from DT1 with data from
DT6.

To understand which input values are leading to high fatigue life values, Peter
monitors the generated data online. For simplicity, we consider wind speed, which
is only one out of the many environmental condition parameter values captured in
DT1 to serve as input for the data transformation DT2. Peter knows that wind
speed has a strong correlation with fatigue life in risers. He expects that with low
speed winds, there is a lower risk of an accident.

When the workflow execution starts, the Monitor Manager service is initialized.
Then, Peter adds two monitoring queries: q1 shows the average of the 10 greatest
values of fatigue life calculated in the last 30 s of workflow execution, setting ∆t1 =

30 s; and q2 shows the average wind speed associated with the 10 greatest values of
fatigue life calculated in the last 30 s, also setting the query interval ∆t2 = 30 s. We
recall from Table 2.1 that q1 is similar to Q1, but only considering data processed
in the last 30 seconds. q1 and q2 queries are added to the Monitoring_Query table
in the database.

Peter monitors the results using the Monitoring_Query table. These results can
be a data source for a monitoring tool that plots dashboards dynamically, refreshed
according to the query intervals. After gaining insights from the results and under-
standing patterns, he can start cutting the undesired values for wind speed. The
monitoring query results qr1t and qr2t for the queries q1 and q2, as well as when
the user reduced the data, are plotted along the workflow elapsed time, as shown
in Figure 7.8. It shows qr1t (Fatigue life) in gray line with square markers and qr2t
(Wind speed) in black line with triangle markers. These markers determine when
the monitoring query occurred.

SA1 SA2 SA3 SA4 SA5

60.0

62.0

64.0

66.0

68.0

70.0

72.0

74.0

76.0

78.0

13.0
15.0
17.0
19.0
21.0
23.0
25.0
27.0
29.0
31.0
33.0
35.0
37.0

150 180 210 230 250 270 300 330 360 390 420 450 480 510 540 570 600

Fa
tig

ue
 Li

fe
 (y

ea
rs

)

W
in

d 
sp

ee
d 

 (k
m

/h
)

Elapsed time (seconds)

Wind speed Fatigue life User-steered Data Reduction

Figure 7.8: Analyzing the impact of user-steered data reduction comparing Wind
Speed (input) with Fatigue life.

The workflow execution starts at t = 0 s, but only after approximately 150 s,

97



the first output results from DT6 start to be generated. From the first results, at
t = 150 s and t = 180 s, Peter checks that when wind speed is less than 16 km/h
(see horizontal dashed line in wind speed = 16 in Figure 7.8), the results lead to the
largest fatigue life values. Since risers with large fatigue life values are not interesting
in this analysis, he decides, at t = 190 s, to remove all input data elements that
contain wind speed less than 16 km/h. For this, the first user steering action SA1 is
issued with a command line to the WfSteerCtl program. User steering actions are
represented with gray circles in the horizontal axis (Elapsed time). The time a user
issued an interactive query is stored in User_Query table.

The next marker after SA1 happens at t = 210 s. Comparing with the previous
monitoring mark, at t = 180 s, we can observe that this Peter’s action SA1 increases
the minimum wind speed values to be considered from 14.2 km/h to 24.1 km/h. Also,
we observe a significant decrease in the slope of the largest values for fatigue life
(10.6% lower). This means that the removal of these input data containing wind
speed less than 16 km/h made the WMS not process data containing low wind speed
values, which would lead to larger fatigue life results.

Then, monitoring continues, but that slope decrease in the fatigue life after
t = 180 calls Peter’s attention. To obtain a finer detail of what is happening, he
decides to adjust monitoring settings, the monitoring interval times ∆t1 and ∆t2

in this case, at runtime. He reduces them to 10 s to get monitoring feedback more
frequently. We can observe that for both lines qr1t and qr2t, the markers become
more frequent during t = [220, 270] s. This is because monitoring is registered at
every 10 s. Although we show monitoring correlations between wind speed and
fatigue life, other monitoring correlations could also be analyzed and users can add,
remove or adjust monitoring queries at any time during execution. After verifying
that the results are reasonable, he decides to adjust the monitoring setting to increase
back the monitoring query intervals for both queries to 30 s after t = 270 s. Then he
observes that since SA1, wind speed less than 25 km/h are leading to large fatigue
life values. Then, at t = 310 s, he calls Steer again to issue SA2 hat removes input
data for wind speed < 25 km/h. The next markers after SA2 shows that this steering
made the wind speed value associated with large fatigue life be at least 30.5 km/h
and a decrease of 6.5% in large fatigue life values between t = 300 s and t = 330 s.

Similarly, Peter continues to monitor and steer the execution. He issues SA3 at
t = 370 s to remove input data with wind speed < 30.5 km/h, making a decrease of
4.9% in large fatigue life (comparing fatigue life in t = 360 s and t = 390 s. Then,
he issues SA4 at t = 430 s to remove input data with wind speed < 34.5, attaining a
decrease of 1.7% in large fatigue life (comparing fatigue life in t = 420 s and t = 450

s. Despite this small decrease, he decides at t = 520 to further remove data, but
with wind speed < 35.5 km/h. However, no decrease greater than 1% in the large

98



fatigue life values were registered after this last Peter’s steering. Thus, he keeps
analyzing the monitoring results, but does not remove input data anymore until the
end of execution.

We store each interaction query, issued by the user, in the User_Query table and
map (in table Modified_Elements) its rows with rows in Dataset and Task tables,
to consistently manage the steering action data of which data elements were modified
(in this case, removed) by each specific user steering action. Thus, managing steering
action data helps to analyze how specific action impacted the results. Figure 7.8
shows that some specific action imply significant changes in lines’ slopes (key output
values for the user).

User-steered Data Reduction Analysis

Now we analyze how those previous steering actions impact the number of resources
saved during the workflow execution. More specifically, we analyze three aspects: (i)
the number of data elements reduced, (ii) the time that was saved due to the input
data not processed, and (iii) the number of bytes of the raw data files that were not
processed. For validation purposes, we count the resources saved as consequences of
a data reduction. For this, we compare the executions with and without user steer-
ing. We run the same workflow and input datasets for both scenarios. The workflow
execution with no steering processes all input data, including those containing wind
speed values that lead to risers with low risk of fatigue, which are not valuable for
Peter’s analyses.

In Figure 7.9, we depict the three analyzed aspects per data transformation in
the workflow. In other words, we count the total input data elements each data
transformation consumes; the total number of gigabytes of data files processed in
each data transformation; and the total time each data transformation took to com-
plete. In total, considering all data transformations, the workflow with no steering
processed 60,939 input data elements in parallel, 356 GB of domain data files and
the overall execution time was 16.3 min running on the 936-cores cluster.

99



DT1 DT2 DT3 DT4 DT5 DT6 DT7 Total
Total  #Data Elements 100 12134 12134 12134 10245 7096 7096 60939
Total  Gbytes Processed 42.30 51.10 72.30 45.78 51.42 38.50 54.70 356.1
Total  Elapsed Time (s) 34.78 156.18 221.12 159.84 173.23 141.55 91.84 978.54

0.00

50.00

100.00

150.00

200.00

250.00

0

2000

4000

6000

8000

10000

12000

To
ta

l E
lp

as
ed

 T
im

e 
(s

)

To
ta

l G
by

te
s 

Pr
oc

es
se

d

To
ta

l N
um

be
r 

of
 D

at
a 

El
em

en
ts

DT1 DT2 DT3 DT4 DT5 DT6 DT7

Figure 7.9: Total data elements, gigabytes, and time consumed by data
transformation with no user steering.

Then, we can compare these numbers with analogous numbers in the scenario
with user-steered data reductions. Table 7.3 summarizes the user steering actions
(i.e., user-steered reductions) performed.

Table 7.3: Summary of the user-steered reductions (SA1 – SA5) with their
user-defined slice criteria (wind speed is in km/h).

Steering Action Issued time (s) Slice criteria

SA1 190 wind speed < 16

SA2 310 wind speed < 25

SA3 370 wind speed < 30

SA4 430 wind speed < 34.5

SA5 520 wind speed < 35.5

Figure 7.10 illustrates how each steering action SAi affected the three analyzed
aspects in each workflow data transformation: Figure 7.10 (A) shows the number
of input data elements reduced, Figure 7.10 (B) shows the time saved, and Figure
Figure 7.10 (C) shows the amount of gigabytes not processed due to data reduction.
In the three charts, although the reductions happen in the dataset I_Preprocessing
consumed by DT2, we can see that they impact all subsequent data transformations
(DT1, which is a preceding data transformation, is not affected by the reductions).
In particular, we can see that the first steering action, SA1, alone causes a time
reduction of 15%, i.e., SA1 makes the data transformation DT3 complete 33 s faster,
whereas without reductions DT3 would take 221 s.

Figure 7.11 shows the summary of the impacts in the entire workflow by each

100



0
5

10
15
20

25
30
35

Act1 Act2 Act3 Act4 Act5 Act6 Act7

Ti
m

e 
sa

ve
d 

(s
)

q1

q2

q3

q4

q5

0

1

2

3

4

5

Act1 Act2 Act3 Act4 Act5 Act6 Act7

Gi
ga

by
te

s n
ot

 p
ro

ce
ss

ed q1

q2

q3

q4

q5

(a) (b)

(c)

0
100
200
300
400
500
600
700

Act1 Act2 Act3 Act4 Act5 Act6 Act7

Nu
m

be
r o

f d
at

a 
el

em
en

ts
 

re
du

ce
d

q1

q2

q3

q4

q5

0

100

200

300

400

500

600

700

Act1 Act2 Act3 Act4 Act5 Act6 Act7

To
ta

l #
Da

ta
 E

le
m

en
ts

 R
ed

uc
ed

q1

q2

q3

q4

q5

0

5

10

15

20

25

30

35

Act1 Act2 Act3 Act4 Act5 Act6 Act7

To
ta

l T
im

e 
Sa

ve
d 

(s
)

q1

q2

q3

q4

q5

0

1

2

3

4

5

Act1 Act2 Act3 Act4 Act5 Act6 Act7

Gi
ga

by
te

s S
av

ed q1

q2

q3

q4

q5

DT2 DT3 DT4 DT5 DT6 DT7

(C)

(A) (B)

SA1

SA2

SA3

SA4

SA5

DT1 DT2 DT3 DT4 DT5 DT6 DT7DT1

DT2 DT3 DT4 DT5 DT6 DT7DT1

SA1

SA2

SA3

SA4

SA5

SA1

SA2

SA3

SA4

SA5

Figure 7.10: Reduced resources by data transformation caused by each
user-steered reduction SAi.

action (SAi). Overall, the user-steered reductions in this experimental validation
yield a reduction of 7,854 out of 60,939 data elements (12.89%), including elements
in I_Preprocessing and elements in subsequent datasets as consequences of the
reduction in I_Preprocessing. Also, the steering actions make the WMS not pro-
cess about 51 GB out of 356 GB (14.9% of data files processing reduction) and the
data transformations run faster, reducing in total 5.3 min out of 16.3 min (32.4% of
total workflow execution time reduction) in the 936-cores cluster. In particular, we
see that the first user-steered reduction, SA1, represents 45% of the total amount of
time saved, meaning that at the beginning, the user can identify a large slice of the
input data that would not lead to interesting results, and we see that the last action
SA5 did not considerably affect execution. These results were obtained by querying
the workflow database at the end of execution. By monitoring and interactively
analyzing the workflow database online, users can have a better understanding of
how their steering actions influenced the results of their computational experiments,
especially they can explicitly inspect how their interactions reduced the used com-
putational resources, thus contributing to validate that WfSteer allows for tracking
steering actions in a WMS.

101



SA1 SA2 SA3 SA4 SA5
Total

Amount
Reduced

% Reduced

Total #Data Elements Reduced 3572 1889 1797 583 13 7854 12.89%
Total Gbytes Saved 24.11 12.75 12.13 3.94 0.09 53.02 14.89%
Total Time Saved (s) 144.18 76.24 72.53 23.53 0.52 317.00 32.40%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

0

500

1000

1500

2000

2500

3000

3500

4000

To
ta

l E
lp

as
ed

 T
im

e 
(s

)

To
ta

l G
by

te
s 

re
du

ce
d

To
ta

l N
um

be
r 

of
 D

at
a 

El
em

en
ts

 R
ed

uc
ed

SA1SA1 SA3SA2 SA4 SA5

Figure 7.11: Summary of the user-steered reductions (SA1 – SA5) in the workflow.

7.2.3 Overhead Evaluation

Now we evaluate the overhead added to execute the experiment conducted using
the Risers Fatigue Analysis workflow running on d-Chiron. d-Chiron implements
the dataflow-oriented approach and manages domain, provenance, and execution
data at runtime, enabling users to steer the workflow, but introduces overhead.
Measuring the overhead caused by execution control management has been presented
in past works [44, 50, 100]. Here, we discuss the overhead caused by user-steered
data reduction and adaptive monitoring. First, when a data reduction happens,
there are data movements in the workflow database, i.e., some tasks and input data
elements are updated or transferred from a table to another (Sec. 6.2.2). Time spent
doing these updates in the database is significantly lower than the overall workflow
execution time. Each steering action SAi (Table 7.3) takes less than 1 second to
finish, whereas the overall execution time of the workflow, after the reductions, is
661 seconds. Thus, those data movements’ overhead are negligible. Second, our
adaptive monitoring approach adds overhead and needs to be measured. Recall
that every monitoring query qi ∈ QS is run by a thread at each ∆ti seconds (Sec.
6.2.2). Depending on the number |QS| of threads and on the interval ∆ti there may
be too many concurrent accesses to the workflow database, which may add overhead.

To measure this, we set up the WfSteerCtl in d-Chiron to run monitoring queries.
The queries are variations of the queries Q1–Q7 (Tables 2.1 and 2.1). For example,
in query Q2, we vary the curvature value. We also modify them to calculate only the
results over the last ∆t seconds, at each ∆t seconds. To evaluate the overhead, we
measure execution time without monitoring and then with monitoring, but varying
the number |QS| of queries and the interval ∆t, which is considered the same for all
queries in QS in this experiment. The experiments were repeated until the standard
deviation of workflow elapsed times were less than 1%. The results are the median

102



of these times within the 1% margin. Figure 7.12 shows the results, where the gray
portion represents the workflow execution time when no monitoring is used and the
black portion represents the difference between the workflow execution time with
and without monitoring (i.e., the monitoring overhead).

14

14.5

15

15.5

16

16.5

17

Saving in
DB

Saving in
file

Saving in
DB

Saving in
file

Saving in
DB

Saving in
file

Saving in
DB

Saving in
file

Δt=1, |{QS}|=3 Δt=1, |{QS}|=30 Δt=30, |{QS}|=3 Δt=30, |{QS}|=30

Ex
ec

ut
io

n 
tim

e 
(m

in
)

Overhead

No monitor

Figure 7.12: Results of adaptive monitoring overhead.

From these results, we observe that when the interval ∆t is equal to 30 s, the
overhead is negligible. For 1 s interval, the overhead is higher when the number of
monitoring threads is also higher. This happens because three queries are executed
in each time interval (see Listing 6.1), for each thread. In the scenarios with 30
threads, there are 120 queries in a single time interval ∆t. In that case, if ∆t is small,
e.g., ∆t = 1, there are 120 queries being executed per second, just for the monitoring.
In d-Chiron, the database that is queried by the monitors is also concurrently queried
by the WMS engine, thus adding higher overhead. However, even in this specific
scenario that shows higher overhead |QS| = 30 and ∆t = 1, it is only 33 s or 3.19%
higher than when no monitoring is used. Most of the real monitoring cases do not
need such frequent (every second) updates. If 30 s is frequent enough for the user,
the overhead is negligible, like in this test case. We also evaluated the same scenarios
without storing monitoring results in the workflow database, but rather appending
in CSV files, which is simpler. As Figure 7.12 shows, the results are nearly the
same as in associated withase (saving in the workflow database or saving in CSV
files). This suggests storing all monitoring results in the database at runtime, which
enables users to submit powerful queries as the monitoring results are generated,
with the workflow data in the database. This would not be possible with a solution
that appends data to CSV files. Therefore, these findings contribute to validate
that WfSteer allows for managing steering action with low execution overhead in a
WMS.

103



Chapter 8

Conclusions

In this thesis, we aimed at supporting the workflow steering lifecycle to enable com-
putational scientists and engineers (users) to understand their experiments when
they are steering (monitoring, analyzing, adapting) large-scale workflows. To ad-
dress the problem of managing steering action data in large-scale workflows, we
proposed WfSteer, an approach that combines new provenance data management
concepts, methods, and techniques that allow for tracking steering actions, which is
critical to support the workflow steering lifecycle while adding negligible overhead.
We designed and built two isntantiations for WfSteer, i.e., DfAdapter, for work-
flow scripts, and another in d-Chiron, for applications that can benefit from WMSs,
which are the two typical ways users conduct their experiments. In this chapter, we
share the lessons we learned (Sec. 8.1) and future work (Sec. 8.2).

8.1 Lessons Learned

To validate the proposed approach and this thesis’s hypothesis itself, we split the
hypothesis into two main aspects: one is to allow for tracking steering actions by
means of managing steering action data in large-scale workflows and the other is
to do this incurring negligible execution overhead. In this validation process, we
learned several lessons that we share in this section.

For the first aspect, we began with a thorough analysis of the state-of-the-art on
user steering in general, extending with an in-depth search in the literature that are
not traditionally found in the literature in the context of WMSs, such as MATTOSO
et al. [23]’ survey. We concluded that the literature lacks techniques and methods
to support the management of steering action data, either for WMSs or for parallel
computational simulations written as scripts. Second, after analyzing how users
interact with their CSE experiments, we learned the data that characterizes the user
steering action data, and how these data are generated when users perform steering
actions, which are the two core concepts behind WfSteer. Finally, we proposed

104



the notion of provenance of steering actions and a provenance data diagram, called
PROV-DfA, an extension of the W3C PROV standard, to model provenance of
steering action data. We observed that the adherence to PROV and its dataflow
extensions, namely PROV-Df, facilitated the modeling of important data that need
to be related to the steering actions. Modeling data elements reduced in a Cut action
and relating the iterations with parameters tuned in a Tune action in an iterative
simulation were challenging modeling tasks. The formal characterization of user
steering action in general and its specializations (Cut and Tune) contributed to the
modeling. These findings are applicable either for workflow scripts and for WMSs.
However, during our investigations, we found specific issues for the management of
steering actions for each case that are worth mentioning separately.

For workflow scripts, we can include that by implementing DfAdapter, we faced
system engineering difficulties that were addressed with the general conceptual ar-
chitecture of DfAdapter. For instance, exposing the data the user wants to steer,
so our data capture system can capture when the data change in case of an adap-
tation was solved by specifying how users can wrap adapters of their workflow so
that the adapter is called, steering action data are captured, related, and stored.
In the experiments carried out on Lobo Carneiro (up to 6,048 CPU cores) running
a real case in Computational Fluid Dynamics in Geoscience for the O&G industry,
we observed that the ability our approach gives to the users for them to have a de-
tailed understanding of their steering actions and the consequences of their actions
improves the users’ awareness, putting them in the loop of their simulations. For
example, the user can explicitly identify that specific fine-tunings he made in the
simulation solver made the workflow successfully finish without crash and with an
approximate reduction of 37% (10 days) of the total time.

For the instance of WfSteer in a WMS, we observed that a data-centric WMS,
like d-Chiron, enables dynamic adaptations of the data at runtime, but addressing
consistency issues when users are adapting is a significant part of the implementation
efforts when allowing for tracking steering action data in a WMS. We learned that
our design principles that exploit a highly efficient distributed in-memory relational
DBMS that allows for ACID, strong-consistent parallel transactions facilitated the
implementation of the generic method we proposed for addressing consistency issues.
Then, the implementation of WfSteer techniques in d-Chiron, such as the capture
and relationships of steering action data using PROV-DfA concepts, enabled users
to analyze the consequences of their actions at runtime. In the experiments carried
out on a Grid5000 HPC machine with 936 CPU cores running a real use case, ultra-
deepwaters’ risers fatigue analysis workflow in the O&G industry, we observed that
by monitoring and interactively analyzing the workflow database online, users could
evaluate that because of their specific interactions they managed to save 14.9% of

105



physical disk space and 32.4% of total workflow execution time, hence significantly
saving computing resources.

Now, for the second aspect of the hypothesis, that is, to keep the execution
overhead low, we also separate by workflow scripts and WMS.

For workflow scripts, we learned that avoiding conflicts with the users’ workflows
is not trivial. To address this, we proposed system design principles, such as asyn-
chronous API calls and leave heavy operations for provenance data management,
such as the creation of provenance data relationships, to the Data Manager services,
which are deployed on a separate computing node, hence avoiding competition with
the user application. Additionally, allowing users to specify what should be moni-
tored or adapted is far from trivial and to address this we proposed a methodology
of use. The methodology foments the participation of the user in the specification
of what should be captured for steering. We learned that this not only helps the
data analysis, as the user knows what are being managed for steering and hence
specifies only the relevant data, but it also reduces overhead because only the in-
teresting data for steering are captured. In the experiments with DfAdapter, we
observed that the added execution overhead caused by steering action data capture
and adaptation is less than 1%, whereas the overhead for workflow data capture and
raw data extraction sum about 1.5%, which is also negligible.

For the WMS instance, we learned that the exploitation of a highly efficient
in-memory distributed DBMS both as the main source of analysis (managing the
workflow database) and as the main data structure for parallel task scheduling im-
proves the overall performance of the workflow execution. This includes the adaptive
monitoring approach, which added less than 1% of overhead when the monitoring
query intervals were 30 seconds and about 3% when it was 1 second, as shown in
the experiments with d-Chiron.

Therefore, we conclude with these findings that the user steering action data
management concepts and techniques introduced with WfSteer allowed users to
track their actions online, enabling them to understand how their steering actions
were influencing a running workflow.

8.2 Future Work

There are still several other open challenges to support the workflow steering life-
cycle that could be addressed as future work. This thesis is mainly focused on data
management aspects to support online data analysis. However, since the context
involves a human in the loop, aspects traditionally studied by the Human-Computer
Interaction scientific community could be addressed to enhance the steering support.
For example, to interact with our implemented system, users need to run command

106



lines to call the adapter or run SQL queries to analyze the workflow data. Usable in-
terfaces could potentially improve the users’ engagement with their own experiment
data. Similarly, in-situ data visualization techniques [64] could be proposed and ex-
tended, which would highly benefit the users in understanding their workflow data,
combined with the steering action data managed by our solution. In addition, our
techniques and methods are heavily dependent on the users’ knowledge to identify
correlations between input and output data to determine which data are relevant
and which subsets of input datasets are interesting or not. Furthermore, enriching
the workflow database steering action data, jointly with provenance, execution, and
domain data, enables future interaction analysis. In addition to reliability and re-
producibility, having such data enables users to learn from their own adaptations:
they may find that when they tune certain parameters to a given range of values,
the convergence of the solver improves by a certain amount. Moreover, we believe
that managing steering action data jointly with multiworkflow data [39] can highly
enhance the analytical capabilities in even more complex settings that require sev-
eral, distributed, heterogeneous workflow executions in CSE. Finally, these steering
action data allow for building AI-based systems that help users while they are steer-
ing simulations [123], as they can extend their training database with provenance of
adaptations.

107



Bibliography

[1] VERITAS, D. N. “Recommended practice: riser fatigue”, DNV-RP-F204, 2010.

[2] GROTH, P., MOREAU, L. “W3C PROV - An Overview of the PROV Fam-
ily of Documents”. 2013. Available at: <https://www.w3.org/TR/
prov-overview/>.

[3] MEIGNAN, D., KNUST, S., FRAYRET, J.-M., PESANT, G., GAUD, N. “A
Review and Taxonomy of Interactive Optimization Methods in Operations
Research”, ACM Trans. Interact. Intell. Syst., v. 5, n. 3, pp. 17:1–17:43,
9 2015. ISSN: 2160-6455. doi: 10.1145/2808234.

[4] PICKLES, S. M., HAINES, R., PINNING, R. L., PORTER, A. R. “A practi-
cal toolkit for computational steering”, Philosophical Transactions. Series
A, Mathematical, Physical, and Engineering Sciences, v. 363, n. 1833,
pp. 1843–1853, 8 2005. ISSN: 1364-503X. doi: 10.1098/rsta.2005.1611.
PMID: 16099752.

[5] MULDER, J. D., VANWIJK, J. J., VAN LIERE, R. “A Survey of Computational
Steering Environments”, Future Generation Computer Systems, v. 15,
n. 1, pp. 119–129, 1999. ISSN: 0167-739X. doi: 10.1016/S0167-739X(98)
00047-8.

[6] DANANI, B. K., D’AMORA, B. D. “Computational Steering for High Per-
formance Computing: Applications on Blue Gene/Q System”. In: Pro-
ceedings of the Symposium on High Performance Computing, HPC ’15,
pp. 202–209, San Diego, CA, USA, 2015. Society for Computer Simu-
lation International. ISBN: 978-1-5108-0101-1. Available at: <http:
//dl.acm.org/citation.cfm?id=2872599.2872624>.

[7] HAN, J., BROOKE, J. “Hybrid Computational Steering for Dynamic Data-
driven Application Systems”, Procedia Computer Science, v. 80, pp. 407–
417, 1 2016. ISSN: 1877-0509. doi: 10.1016/j.procs.2016.05.341.

[8] LIERE, V. R., MULDER, J. D., WIJK, V. J. J. “Computational steer-
ing”. In: High-Performance Computing and Networking, Lecture Notes

108

https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/prov-overview/
http://dl.acm.org/citation.cfm?id=2872599.2872624
http://dl.acm.org/citation.cfm?id=2872599.2872624


in Computer Science, pp. 696–702. International Conference on High-
Performance Computing and Networking, Springer, Berlin, Heidel-
berg, 4 1996. ISBN: 978-3-540-61142-4. doi: 10.1007/3-540-61142-8\
_616. Available at: <https://link.springer.com/chapter/10.1007/
3-540-61142-8_616>.

[9] VAN LIERE, R., D. MULDER, J., VAN WIJK, J. J. “Computational steering”,
Future Generation Computer Systems, v. 12, n. 5, pp. 441–450, 1997.
ISSN: 0167-739X. doi: 10.1016/S0167-739X(96)00029-5.

[10] WIJK, J. J., LIERE, R. An Environment for Computational Steering. Technical
report, CWI (Centre for Mathematics and Computer Science), Amster-
dam, The Netherlands, The Netherlands, 1994.

[11] GU, W., EISENHAUER, G., KRAEMER, E., SCHWAN, K., STASKO, J.,
VETTER, J., MALLAVARUPU, N. “Falcon: on-line monitoring and
steering of large-scale parallel programs”. In: Fifth Symposium on the
Frontiers of Massively Parallel Computation, 1995. Proceedings. Frontiers
’95, pp. 422–429, 1995. doi: 10.1109/FMPC.1995.380483.

[12] GOEL, A., PHANOURIOU, C., KAMKE, F. A., RIBBENS, C. J., SHAF-
FER, C. A., WATSON, L. T. “WBCSim: A Prototype Problem Solving
Environment for Wood-Based Composites Simulations”, Engineering with
Computers, v. 15, n. 2, pp. 198–210, 4 1999. ISSN: 0177-0667, 1435-5663.
doi: 10.1007/s003660050014.

[13] SHU, J., WATSON, L. T., RAMAKRISHNAN, N., KAMKE, F. A., DESH-
PANDE, S. “Computational steering in the problem solving environment
WBCSim”, Engineering Computations, v. 28, n. 7, pp. 888–911, 10 2011.
ISSN: 0264-4401. doi: 10.1108/02644401111165121.

[14] SHU, J., WATSON, L. T., ZOMBORI, B. G., KAMKE, F. A. “WBCSim: An
Environment for Modeling Wood-based Composites Manufacture”, Eng.
with Comput., v. 21, n. 4, pp. 259–271, 6 2006. ISSN: 0177-0667. doi:
10.1007/s00366-006-0010-5.

[15] GITHUB. “PROV-DfA GitHub Repository”. 2019. Available at: <https:
//github.com/hpcdb/PROV-DfA>.

[16] RÜDE, U., WILLCOX, K., MCINNES, L. C., STERCK, H. D. “Research
and Education in Computational Science and Engineering”, SIAM Review,
v. 60, n. 3, pp. 707–754, 2018. ISSN: 0036-1445. doi: 10.1137/16M1096840.
Available at: <https://epubs.siam.org/doi/10.1137/16M1096840>.

109

https://link.springer.com/chapter/10.1007/3-540-61142-8_616
https://link.springer.com/chapter/10.1007/3-540-61142-8_616
https://github.com/hpcdb/PROV-DfA
https://github.com/hpcdb/PROV-DfA
https://epubs.siam.org/doi/10.1137/16M1096840


[17] F. DA SILVA, R. “Pegasus and LIGO”. In: Pegasus Blog Post, 2016. Available
at: <https://pegasus.isi.edu/2016/02/23/pegasus-and-ligo/>.

[18] IBM RESEARCH. “AI and the Future of Oil: An AI Tool to Advise Geo-
scientists”. In: IBM Research Blog Post, 2018. Available at: <https:
//www.ibm.com/blogs/research/2018/07/ai-future-oil/>.

[19] F. DA SILVA, R., FILGUEIRA, R., PIETRI, I., JIANG, M., SAKELLAR-
IOU, R., DEELMAN, E. “A characterization of workflow management
systems for extreme-scale applications”, Future Generation Computer Sys-
tems, v. 75, pp. 228–238, 2017. ISSN: 0167739X. doi: 10.1016/j.future.
2017.02.026.

[20] OGASAWARA, E., DIAS, J., OLIVEIRA, D., PORTO, F., VALDURIEZ, P.,
MATTOSO, M. “An algebraic approach for data-centric scientific work-
flows”, PVLDB, v. 4, n. 12, pp. 1328–1339, 2011. ISSN: 2150-8097.

[21] DEELMAN, E., VAHI, K., JUVE, G., RYNGE, M., CALLAGHAN, S.,
MAECHLING, P. J., MAYANI, R., CHEN, W., FERREIRA DA SILVA,
R., LIVNY, M., WENGER, K. “Pegasus, a workflow management system
for science automation”, Future Generation Computer Systems, v. 46,
pp. 17–35, 5 2015. ISSN: 0167739X. doi: 10.1016/j.future.2014.10.008.

[22] MATTOSO, M., OCAÑA, K., HORTA, F., DIAS, J., OGASAWARA, E.,
SILVA, V., DE OLIVEIRA, D., COSTA, F., ARAÚJO, I. “User-steering
of HPC workflows: state-of-the-art and future directions”. In: Proceed-
ings of the 2nd ACM SIGMOD Workshop on Scalable Workflow Execu-
tion Engines and Technologies (SWEET), pp. 1–6. ACM Press, 2013.
ISBN: 978-1-4503-2349-9. doi: 10.1145/2499896.2499900. Available at:
<http://dl.acm.org/citation.cfm?doid=2499896.2499900>.

[23] MATTOSO, M., DIAS, J., OCAÑA, K. A., OGASAWARA, E., COSTA, F.,
HORTA, F., SILVA, V., DE OLIVEIRA, D. “Dynamic steering of HPC sci-
entific workflows: a survey”, Future Generation Computer Systems, v. 46,
pp. 100–113, 2015. ISSN: 0167-739X. doi: 10.1016/j.future.2014.11.017.
Available at: <http://dx.doi.org/10.1016/j.future.2014.11.017>.

[24] SILVA, V., NEVES, L., SOUZA, R., COUTINHO, A. L. G. A., DE OLIVEIRA,
D., MATTOSO, M. “Adding domain data to code profiling tools to de-
bug workflow parallel execution”, Future Generation Computer Systems,
pp. 624–643, 2018. ISSN: 0167-739X. doi: 10.1016/j.future.2018.05.078.
Available at: <https://doi.org/10.1016/j.future.2018.05.078>.

110

https://pegasus.isi.edu/2016/02/23/pegasus-and-ligo/
https://www.ibm.com/blogs/research/2018/07/ai-future-oil/
https://www.ibm.com/blogs/research/2018/07/ai-future-oil/
http://dl.acm.org/citation.cfm?doid=2499896.2499900
http://dx.doi.org/10.1016/j.future.2014.11.017
https://doi.org/10.1016/j.future.2018.05.078


[25] SOUZA, R., SILVA, V., COUTINHO, A. L. G. A., VALDURIEZ, P., MAT-
TOSO, M. “Data reduction in scientific workflows using provenance mon-
itoring and user steering”, Future Generation Computer Systems, v. on-
line, pp. 1–34, 2017. ISSN: 0167-739X. doi: 10.1016/j.future.2017.11.028.
Available at: <https://doi.org/10.1016/j.future.2017.11.028>.

[26] DIAS, J., GUERRA, G., ROCHINHA, F., COUTINHO, A. L. G. A., VAL-
DURIEZ, P., MATTOSO, M. “Data-centric iteration in dynamic work-
flows”, Future Generation Computer Systems, v. 46, n. C, pp. 114–126, 5
2015. ISSN: 0167-739X. doi: 10.1016/j.future.2014.10.021.

[27] CAMATA, J. J., SILVA, V., VALDURIEZ, P., MATTOSO, M., COUTINHO,
A. L. G. A. “In situ visualization and data analysis for turbidity currents
simulation”, Computers & Geosciences, v. 110, pp. 23–31, 1 2018. ISSN:
0098-3004. doi: 10.1016/j.cageo.2017.09.013.

[28] HERSCHEL, M., DIESTELKÄMPER, R., BEN LAHMAR, H. “A survey on
provenance: What for? What form? What from?” The VLDB Journal –
The International Journal on Very Large Databases, v. 26, n. 6, pp. 881–
906, 2017. ISSN: 1066-8888. doi: 10.1007/s00778-017-0486-1. Available
at: <https://doi.org/10.1007/s00778-017-0486-1>.

[29] COSTA, F., SILVA, V., DE OLIVEIRA, D., OCAÑA, K., OGASAWARA, E.,
DIAS, J., MATTOSO, M. “Capturing and querying workflow runtime
provenance with PROV: a practical approach”. In: Joint EDBT/ICDT
2013 Workshops, EDBT ’13, pp. 282–289. ACM, 2013. ISBN: 978-1-4503-
1599-9. doi: 10.1145/2457317.2457365. Available at: <http://doi.acm.
org/10.1145/2457317.2457365>.

[30] JAGADISH, H. V., GEHRKE, J., LABRINIDIS, A., PAPAKONSTANTINOU,
Y., PATEL, J. M., RAMAKRISHNAN, R., SHAHABI, C. “Big data
and its technical challenges”, Communications of the ACM, v. 57, n. 7,
pp. 86–94, 2014. ISSN: 00010782. doi: 10.1145/2611567. Available at:
<http://dl.acm.org/citation.cfm?doid=2622628.2611567>.

[31] RUSSELL, S. J., NORVIG, P. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited„ 2016.

[32] DEELMAN, E., PETERKA, T., ALTINTAS, I., CAROTHERS, C. D.,
KLEESE VAN DAM, K., MORELAND, K., PARASHAR, M., RA-
MAKRISHNAN, L., TAUFER, M., VETTER, J. “The future of sci-
entific workflows”, International Journal of HPC Applications, v. 32,

111

https://doi.org/10.1016/j.future.2017.11.028
https://doi.org/10.1007/s00778-017-0486-1
http://doi.acm.org/10.1145/2457317.2457365
http://doi.acm.org/10.1145/2457317.2457365
http://dl.acm.org/citation.cfm?doid=2622628.2611567


n. 1, pp. 159–175, 2017. ISSN: 1094-3420, 1741-2846. doi: 10.1177/
1094342017704893. Available at: <http://journals.sagepub.com/doi/
10.1177/1094342017704893>.

[33] ATKINSON, M., GESING, S., MONTAGNAT, J., TAYLOR, I. “Scien-
tific workflows: Past, present and future”, Future Generation Com-
puter Systems, v. 75, pp. 216–227, 10 2017. ISSN: 0167-739X. doi:
10.1016/j.future.2017.05.041.

[34] NETTO, M. A. S., CALHEIROS, R. N., RODRIGUES, E. R., CUNHA, R.
L. F., BUYYA, R. “HPC Cloud for Scientific and Business Applications:
Taxonomy, Vision, and Research Challenges”, ACM Computing Surveys
(CSUR), v. 51, n. 1, pp. 8:1–8:29, 1 2018. ISSN: 0360-0300. doi: 10.1145/
3150224.

[35] SILVA, V., LEITE, J., CAMATA, J. J., DE OLIVEIRA, D., COUTINHO,
A. L., VALDURIEZ, P., MATTOSO, M. “Raw data queries dur-
ing data-intensive parallel workflow execution”, Future Generation Com-
puter Systems, v. 75, pp. 402–422, 10 2017. ISSN: 0167739X. doi:
10.1016/j.future.2017.01.016.

[36] SILVA, V., SOUZA, R., CAMATA, J., DE OLIVEIRA, D., VALDURIEZ, P.,
COUTINHO, A. L. G. A., MATTOSO, M. “Capturing Provenance for
Runtime Data Analysis in Computational Science and Engineering Ap-
plications”. In: Provenance and Annotation of Data and Processes, Lec-
ture Notes in Computer Science (LNCS), pp. 183–187. Springer Interna-
tional Publishing, 2018. ISBN: 978-3-319-98379-0. Available at: <https:
//link.springer.com/chapter/10.1007/978-3-319-98379-0_15>.

[37] SOUZA, R., SILVA, V., CAMATA, J. J., COUTINHO, A. L. G. A., VAL-
DURIEZ, P., MATTOSO, M. “Keeping track of user steering actions
in dynamic workflows”, Future Generation Computer Systems, v. 99,
pp. 624–643, 2019. ISSN: 0167-739X. doi: 10.1016/j.future.2019.05.011.
Available at: <https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127456>.

[38] SOUZA, R., MATTOSO, M. “Provenance of Dynamic Adaptations in
User-Steered Dataflows”. In: Provenance and Annotation of Data
and Processes, Lecture Notes in Computer Science (LNCS), pp. 16–
29. Springer International Publishing, 2018. ISBN: 978-3-319-98379-
0. Available at: <https://link.springer.com/chapter/10.1007/
978-3-319-98379-0_2>.

112

http://journals.sagepub.com/doi/10.1177/1094342017704893
http://journals.sagepub.com/doi/10.1177/1094342017704893
https://link.springer.com/chapter/10.1007/978-3-319-98379-0_15
https://link.springer.com/chapter/10.1007/978-3-319-98379-0_15
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127456
https://link.springer.com/chapter/10.1007/978-3-319-98379-0_2
https://link.springer.com/chapter/10.1007/978-3-319-98379-0_2


[39] SOUZA, R., AZEVEDO, L., THIAGO, R., SOARES, E., NERY, M., NETTO,
M., BRAZIL, E. V., CERQUEIRA, R., VALDURIEZ, P., MATTOSO, M.
“Efficient Runtime Capture of Multiworkflow Data Using Provenance”. In:
IEEE International Conference on e-Science (eScience), pp. 1–10, 2019.
Available at: <https://hal-lirmm.ccsd.cnrs.fr/lirmm-02265932>.

[40] SOUZA, R., SILVA, V., COUTINHO, A., VALDURIEZ, P., MATTOSO, M.
“Online Input Data Reduction in Scientific Workflows”. In: Workflows in
Support of Large-Scale Science (WORKS) workshop co-located with the
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC), pp. 1–10, 2016. Available at:
<https://hal.archives-ouvertes.fr/lirmm-01400538>.

[41] SOUZA, R., SILVA, V., CAMATA, J., COUTINHO, A., VALDURIEZ,
P., MATTOSO, M. “Tracking of online parameter fine-tuning in sci-
entific workflows”. In: Workflows in Support of Large-Scale Science
(WORKS) workshop co-located with the ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage, and Anal-
ysis (SC), 2017. Available at: <https://hal-lirmm.ccsd.cnrs.fr/
lirmm-01620974>.

[42] SOUZA, R., NEVES, L., AZEREDO, L., LUIZ, R., TADY, E., CAVALIN,
P., MATTOSO, M. “Towards a human-in-the-loop library for tracking
hyperparameter tuning in deep learning development”. In: Latin American
Data Science (LaDaS) workshop co-located with the Very Large Database
(VLDB) conference, pp. 84–87, 2018. Available at: <http://ceur-ws.
org/Vol-2170/paper12.pdf>.

[43] SOUZA, R., SILVA, V., MIRANDA, P., LIMA, A. A. B., VALDURIEZ, P.,
MATTOSO, M. “Spark Scalability Analysis in a Scientific Workflow”. In:
Simpósio Brasileiro de Banco de Dados (SBBD), pp. 288–293, 2017. Avail-
able at: <http://sbbd.org.br/2017/wp-content/uploads/sites/3/
2018/02/p288-293.pdf>.

[44] SOUZA, R., SILVA, V., OLIVEIRA, D., VALDURIEZ, P., LIMA, A.
A. B., MATTOSO, M. “Parallel Execution of Workflows Driven
by a Distributed Database Management System”. In: ACM/IEEE
International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC), pp. 1–3, 2015. Avail-
able at: <http://sc15.supercomputing.org/sites/all/themes/
SC15images/tech_poster/tech_poster_pages/post284.html>.

113

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02265932
https://hal.archives-ouvertes.fr/lirmm-01400538
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620974
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620974
http://ceur-ws.org/Vol-2170/paper12.pdf
http://ceur-ws.org/Vol-2170/paper12.pdf
http://sbbd.org.br/2017/wp-content/uploads/sites/3/2018/02/p288-293.pdf
http://sbbd.org.br/2017/wp-content/uploads/sites/3/2018/02/p288-293.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post284.html
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post284.html


[45] SILVA, V., NEVES, L., SOUZA, R., COUTINHO, A., OLIVEIRA, D. D.,
MATTOSO, M. “Integrating Domain-data Steering with Code-profiling
Tools to Debug Data-intensive Workflows”. In: Workflows in Support of
Large-Scale Science (WORKS) workshop co-located with the ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC), 2016.

[46] NGUYEN, H. A., ABRAMSON, D., KIPOUROS, T., JANKE, A., GAL-
LOWAY, G. “WorkWays: interacting with scientific workflows”, CCPE,
v. 27, n. 16, pp. 4377–4397, 11 2015. ISSN: 15320626. doi: 10.1002/cpe.
3525.

[47] FREIRE, J., KOOP, D., SANTOS, E., SILVA, C. T. “Provenance for Compu-
tational Tasks: A Survey”, Computing in Science and Engineering, v. 10,
n. 3, pp. 11–21, 2008. ISSN: 1521-9615. doi: 10.1109/MCSE.2008.79.

[48] DAVIDSON, S. B., FREIRE, J. “Provenance and Scientific Workflows:
Challenges and Opportunities”. In: SIGMOD, SIGMOD ’08, pp. 1345–
1350, New York, NY, USA, 2008. ISBN: 978-1-60558-102-6. doi: 10.
1145/1376616.1376772. Available at: <http://doi.acm.org/10.1145/
1376616.1376772>.

[49] DE OLIVEIRA, D., SILVA, V., MATTOSO, M. “How much domain data should
be in provenance databases?” In: Workshop on Theory and Practice of
Provenance (TaPP), Edinburgh, Scotland, 2015. USENIX Association.

[50] SOUZA, R., SILVA, V., NEVES, L., DE OLIVEIRA, D., MATTOSO, M. “Mon-
itoramento de Desempenho usando Dados de Proveniência e de Domínio
durante a Execução de Aplicações Científicas”. In: Anais do XIV Work-
shop em Desempenho de Sistemas Computacionais e de Comunicação
(WPerformance). Sociedade Brasileira de Computação, 2015.

[51] BARBOSA, T., SOUZA, R., CRUZ, S., CAMPOS, M., COTTRELL, L. Apply-
ing data warehousing and big data techniques to analyze internet perfor-
mance. Technical report, SLAC National Accelerator Lab., Menlo Park,
CA (United States), 2016.

[52] IKEDA, R., DAS SARMA, A., WIDOM, J. “Logical provenance in
data-oriented workflows”. In: ICDE, pp. 877–888, Finland, 2013.
ISBN: 978-1-4673-4910-9. doi: 10.1109/ICDE.2013.6544882. Avail-
able at: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6544882>.

114

http://doi.acm.org/10.1145/1376616.1376772
http://doi.acm.org/10.1145/1376616.1376772
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6544882
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6544882


[53] STAMATOGIANNAKIS, M., KAZMI, H., SHARIF, H., VERMEULEN, R.,
GEHANI, A., BOS, H., GROTH, P. “Trade-Offs in Automatic Provenance
Capture”. In: Proceedings of the 6th International Provenance and Anno-
tation Workshop on Provenance and Annotation of Data and Processes -
Volume 9672, IPAW 2016, pp. 29–41, Berlin, Heidelberg, 2016. Springer-
Verlag. ISBN: 978-3-319-40592-6. doi: 10.1007/978-3-319-40593-3\_3.
Available at: <https://doi.org/10.1007/978-3-319-40593-3_3>.

[54] MOREAU, L., BATLAJERY, B. V., HUYNH, T. D., MICHAELIDES, D.,
PACKER, H. “A Templating System to Generate Provenance”, IEEE
Transactions on Software Engineering, v. 44, n. 2, pp. 103–121, 2 2018.
ISSN: 0098-5589, 1939-3520. doi: 10.1109/TSE.2017.2659745.

[55] PIMENTEL, J. F., MURTA, L., BRAGANHOLO, V., FREIRE, J. “noWork-
flow: a tool for collecting, analyzing, and managing provenance from
python scripts”, Proceedings of the VLDB Endowment, v. 10, n. 12,
pp. 1841–1844, 8 2017. ISSN: 21508097. doi: 10.14778/3137765.3137789.

[56] KIRK, B. S., PETERSON, J. W., STOGNER, R. H., CAREY, G. F. “libMesh
: a C++ library for parallel adaptive mesh refinement/coarsening simu-
lations”, Engineering with Computers, v. 22, n. 3-4, pp. 237–254, 12 2006.
ISSN: 0177-0667, 1435-5663. doi: 10.1007/s00366-006-0049-3.

[57] AYACHIT, U., BAUER, A., GEVECI, B., O’LEARY, P., MORELAND, K.,
FABIAN, N., MAULDIN, J. “ParaView Catalyst: enabling in situ
data analysis and visualization”. In: In Situ Infrastructures for Enabling
Extreme-scale Analysis and Visualization in Supercomputing workshops,
pp. 25–29. ACM Press, 2015. ISBN: 978-1-4503-4003-8. doi: 10.1145/
2828612.2828624. Available at: <http://dl.acm.org/citation.cfm?
doid=2828612.2828624>.

[58] OLIVEIRA, D., OGASAWARA, E., BAIAO, F., MATTOSO, M. “SciCumu-
lus: A Lightweight Cloud Middleware to Explore Many Task Computing
Paradigm in Scientific Workflows”. In: International Conference on Cloud
Computing, CLOUD ’10, pp. 378–385, Washington, DC, USA, 2010. In-
ternational Conference on Cloud Computing. ISBN: 978-0-7695-4130-3.
doi: 10.1109/CLOUD.2010.64. Available at: <http://dx.doi.org/10.
1109/CLOUD.2010.64>.

[59] “The ProvONE data model for scientific workflow provenance”. 2019. Available
at: <http://vcvcomputing.com/provone/provone.html>.

115

https://doi.org/10.1007/978-3-319-40593-3_3
http://dl.acm.org/citation.cfm?doid=2828612.2828624
http://dl.acm.org/citation.cfm?doid=2828612.2828624
http://dx.doi.org/10.1109/CLOUD.2010.64
http://dx.doi.org/10.1109/CLOUD.2010.64
http://vcvcomputing.com/provone/provone.html


[60] CASTRO, R., SOUZA, R., SILVA, V., OCAÑA, K., OLIVEIRA, D., MAT-
TOSO, M. “Uma Abordagem para Publicação de Dados de Proveniência
de Workflows Científicos na Web Semântica”. In: Simpósio Brasileiro de
Banco de Dados, 2015.

[61] GITHUB. “d-Chiron GitHub Repository”. 2019. Available at: <http://
github.com/hpcdb/d-Chiron>.

[62] XIAN, F. Computational Steering Systems in Grid Computing Environments.
Technical report, University of Nebraska Lincoln, 2008. Available at:
<http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=
D76C4340E38BA71A314970699B115114?doi=10.1.1.104.4599>.

[63] AYACHIT, U., BAUER, A., DUQUE, E. P. N., et al. “Performance Analysis,
Design Considerations, and Applications of Extreme-scale in Situ Infras-
tructures”. In: Supercomputing conference, SC ’16, pp. 79:1–79:12, Piscat-
away, NJ, USA, 2016. IEEE Press. ISBN: 978-1-4673-8815-3. Available
at: <http://dl.acm.org/citation.cfm?id=3014904.3015010>.

[64] BAUER, A. C., H., A., J., A., H., C., B., G., S., K., K., M., P., O., V., V.,
B., W., W., B. E. “In situ methods, infrastructures, and applications on
high performance computing platforms”, Comp. G. Forum, v. 35, n. 3,
pp. 577–597, 7 2016. ISSN: 0167-7055. doi: 10.1111/cgf.12930.

[65] BOURHIS, P., DEUTCH, D., MOSKOVITCH, Y. “Analyzing data-centric
applications: Why, what-if, and how-to”. In: International Conference on
Data Engineering, pp. 779–790, 2016. doi: 10.1109/ICDE.2016.7498289.

[66] SILVA, V., DE OLIVEIRA, D., VALDURIEZ, P., MATTOSO, M. “DfAn-
alyzer: runtime dataflow analysis of scientific applications using prove-
nance”, PVLDB, v. 11, n. 12, pp. 2082–2085, 2018. ISSN: 2150-8097. doi:
10.14778/3229863.3236265. Available at: <https://doi.org/10.14778/
3229863.3236265>.

[67] JABLONOWSKI, D. J., BRUNER, J. D., BLISS, B., HABER, R. B. “VASE:
The visualization and application steering environment”. In: Supercom-
puting ’93. Proceedings, pp. 560–569. Supercomputing ’93. Proceedings,
11 1993. doi: 10.1109/SUPERC.1993.1263505.

[68] PARKER, S. G., JOHNSON, C. R. “SCIRun: a scientific programming envi-
ronment for computational steering”. In: ACM/IEEE conference on Su-
percomputing (CDROM), pp. 52–71, San Diego, California, United States,

116

http://github.com/hpcdb/d-Chiron
http://github.com/hpcdb/d-Chiron
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=D76C4340E38BA71A314970699B115114?doi=10.1.1.104.4599
http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=D76C4340E38BA71A314970699B115114?doi=10.1.1.104.4599
http://dl.acm.org/citation.cfm?id=3014904.3015010
https://doi.org/10.14778/3229863.3236265
https://doi.org/10.14778/3229863.3236265


1995. ACM. ISBN: 0-89791-816-9. doi: 10.1145/224170.224354. Available
at: <http://portal.acm.org/citation.cfm?id=224170.224354>.

[69] VAN LIERE, R., D. MULDER, J., VAN WIJK, J. J. “Computational steering”,
Future Generation Computer Systems, v. 12, n. 5, pp. 441–450, 1997.
ISSN: 0167-739X. doi: 10.1016/S0167-739X(96)00029-5.

[70] VETTER, J., SCHWAN, K. “Techniques for high-performance computational
steering”, IEEE Concurrency, v. 7, n. 4, pp. 63–74, 10 1999. ISSN: 1092-
3063. doi: 10.1109/4434.806980.

[71] KOHL, J. A., WILDE, T., BERNHOLDT, D. E. “Cumulvs: Interacting with
High-Performance Scientific Simulations, for Visualization, Steering and
Fault Tolerance”, The International Journal of High Performance Com-
puting Applications, v. 20, n. 2, pp. 255–285, 5 2006. ISSN: 1094-3420.
doi: 10.1177/1094342006064502.

[72] RATHMAYER, S., LENKE, M. “A tool for on-line visualization and interactive
steering of parallel HPC applications”. In: Proceedings 11th International
Parallel Processing Symposium, pp. 181–186. Proceedings 11th Interna-
tional Parallel Processing Symposium, 4 1997. doi: 10.1109/IPPS.1997.
580882.

[73] EISENHAUER, G., SCHWAN, K. “An Object-based Infrastructure for Pro-
gram Monitoring and Steering”. In: Proceedings of the SIGMETRICS
Symposium on Parallel and Distributed Tools, SPDT ’98, pp. 10–20,
New York, NY, USA, 1998. ACM. ISBN: 978-1-58113-001-0. doi:
10.1145/281035.281037. Available at: <http://doi.acm.org/10.1145/
281035.281037>.

[74] WOOD, J., BRODLIE, K., WALTON, J. “gViz-Visualization and Steering for
the Grid”. In: Proc. e-Science All Hands Meeting. Citeseer, 2003.

[75] MANN, V., MATOSSIAN, V., MURALIDHAR, R., PARASHAR, M. “DIS-
COVER: An environment for Web-based interaction and steering of
high-performance scientific applications”, Concurrency and Computation:
Practice and Experience, v. 13, n. 8-9, pp. 737–754, 2001.

[76] GLASNER, C., HUGL, R., REITINGER, B., KRANZLMULLER, D., VOLK-
ERT, J. “The Monitoring and Steering Environment”. In: Computational
Science - ICCS 2001, Lecture Notes in Computer Science, pp. 781–790.
International Conference on Computational Science, Springer, Berlin, Hei-
delberg, 5 2001. ISBN: 978-3-540-42233-4. doi: 10.1007/3-540-45718-6\

117

http://portal.acm.org/citation.cfm?id=224170.224354
http://doi.acm.org/10.1145/281035.281037
http://doi.acm.org/10.1145/281035.281037


_83. Available at: <https://link.springer.com/chapter/10.1007/
3-540-45718-6_83>.

[77] BRODLIE, K., POON, A., WRIGHT, H., BRANKIN, L., BANECKI, G.,
GAY, A. “GRASPARC: A Problem Solving Environment Integrating
Computation and Visualization”. In: Proceedings of the 4th Conference
on Visualization ’93, VIS ’93, pp. 102–109, Washington, DC, USA,
1993. IEEE Computer Society. ISBN: 978-0-8186-3940-1. Available at:
<http://dl.acm.org/citation.cfm?id=949845.949868>.

[78] REED, D. A., ELFORD, C. L., MADHYASTHA, T. M., SMIRNI, E., LAMM,
S. E. “The Next Frontier: Interactive and Closed Loop Performance Steer-
ing.” In: ICPP Workshop, pp. 20–31, 1996.

[79] SWIFT, B., SORENSEN, A., GARDNER, H., DAVIS, P., DECYK, V. “Live
Programming in scientific simulation”, Supercomputing Frontiers and In-
novations: an International Journal, v. 2, n. 4, pp. 4–15, 3 2015. ISSN:
2409-6008. doi: 10.14529/jsfi150401.

[80] GOODALE, T., ALLEN, G., LANFERMANN, G., MASSO, J., RADKE, T.,
SEIDEL, E., SHALF, J. “The Cactus Framework and Toolkit: De-
sign and Applications”. In: Proceedings of the 5th International Confer-
ence on High Performance Computing for Computational Science, VEC-
PAR’02, pp. 197–227, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN:
978-3-540-00852-1. Available at: <http://dl.acm.org/citation.cfm?
id=1766851.1766868>.

[81] ESNARD, A., RICHART, N., COULAUD, O. “A Steering Environment for
Online Parallel Visualization of Legacy Parallel Simulations”. In: 2006
Tenth IEEE International Symposium on Distributed Simulation and
Real-Time Applications, pp. 7–14. 2006 Tenth IEEE International Sym-
posium on Distributed Simulation and Real-Time Applications, 10 2006.
doi: 10.1109/DS-RT.2006.7.

[82] HAIMES, R. “Concurrent distributed visualization and solution steer-
ing”. In: Ecer, A., Periaux, J., Satdfuka, N., Taylor, S. (Eds.),
Parallel Computational Fluid Dynamics 1995, North-Holland, pp.
41–50, Amsterdam, 1996. ISBN: 978-0-444-82322-9. Avail-
able at: <https://www.sciencedirect.com/science/article/pii/
B9780444823229500591>. DOI: 10.1016/B978-044482322-9/50059-1.

[83] KRESS, J., PUGMIRE, D., KLASKY, S., CHILDS, H. “Visualization and
Analysis Requirements for in Situ Processing for a Large-scale Fusion

118

https://link.springer.com/chapter/10.1007/3-540-45718-6_83
https://link.springer.com/chapter/10.1007/3-540-45718-6_83
http://dl.acm.org/citation.cfm?id=949845.949868
http://dl.acm.org/citation.cfm?id=1766851.1766868
http://dl.acm.org/citation.cfm?id=1766851.1766868
https://www.sciencedirect.com/science/article/pii/B9780444823229500591
https://www.sciencedirect.com/science/article/pii/B9780444823229500591


Simulation Code”. In: Proceedings of the 2Nd Workshop on In Situ
Infrastructures for Enabling Extreme-scale Analysis and Visualization,
ISAV ’16, pp. 45–50, Piscataway, NJ, USA, 2016. IEEE Press. ISBN:
978-1-5090-3872-5. doi: 10.1109/ISAV.2016.14. Available at: <https:
//doi.org/10.1109/ISAV.2016.14>.

[84] FIGUEIRA, S., BUI, S. “CS_LITE: A lightweight computational steering sys-
tem.” In: Proceedings of the IASTED International Conference on Par-
allel and Distributed Computing and Networks, pp. 1–6, 2004. Avail-
able at: <https://www.researchgate.net/publication/221352388_
CS_LITE_A_lightweight_computational_steering_system>.

[85] PARASHAR, M., LEE, C. A. “Grid computing: introduction and overview”,
Proceedings of the IEEE, special issue on grid computing, v. 93, n. 3,
pp. 479–484, 2005.

[86] RIBLER, R. L., VETTER, J. S., SIMITCI, H., REED, D. A. “Autopilot: Adap-
tive control of distributed applications”. In: High Performance Distributed
Computing, 1998. Proceedings. The Seventh International Symposium on,
pp. 172–179. IEEE, 1998.

[87] YI, H., RASQUIN, M., FANG, J., BOLOTNOV, I. A. “In-situ visualization
and computational steering for large-scale simulation of turbulent flows
in complex geometries”. In: 2014 IEEE International Conference on Big
Data (Big Data), pp. 567–572. 2014 IEEE International Conference on
Big Data (Big Data), 10 2014. doi: 10.1109/BigData.2014.7004275.

[88] MA, K.-L., WANG, C., YU, H., TIKHONOVA, A. “In-situ processing and
visualization for ultrascale simulations”, Journal of Physics: Conference
Series, v. 78, n. 1, pp. 012043, 2007. ISSN: 1742-6596. doi: 10.1088/
1742-6596/78/1/012043.

[89] MATKOVIC, K., GRACANIN, D., JELOVIC, M., CAO, Y. Adap-
tive Interactive Multi-Resolution Computational Steering for Com-
plex Engineering Systems. The Eurographics Association, 2011.
ISBN: 978-3-905673-82-1. Available at: <https://diglib.eg.
org:443/handle/10.2312/PE.EuroVAST.EuroVA11.045-048>. DOI:
http://dx.doi.org/10.2312/PE/EuroVAST/EuroVA11/045-048.

[90] BUTNARU, D. Computational steering with reduced complexity. Ph.D. Thesis,
Technische Universitat Munchen, 2013.

119

https://doi.org/10.1109/ISAV.2016.14
https://doi.org/10.1109/ISAV.2016.14
https://www.researchgate.net/publication/221352388_CS_LITE_A_lightweight_computational_steering_system
https://www.researchgate.net/publication/221352388_CS_LITE_A_lightweight_computational_steering_system
https://diglib.eg.org:443/handle/10.2312/PE.EuroVAST.EuroVA11.045-048
https://diglib.eg.org:443/handle/10.2312/PE.EuroVAST.EuroVA11.045-048


[91] KNEZEVIC, J., FRISCH, J., MUNDANI, R.-P., RANK, E. “Interactive com-
puting framework for engineering applications”, Journal of Computer Sci-
ence, v. 7, n. 5, pp. 591, 2011.

[92] GONCALVES, J., OLIVEIRA, D. D., OCANA, K., OGASAWARA, E., DIAS,
J., MATTOSO, M. “Performance Analysis of Data Filtering in Scientific
Workflows”, Journal of Information and Data Management, v. 4, n. 1,
pp. 17–26, 2013.

[93] SANTOS, I., DIAS, J., OLIVEIRA, D., OGASAWARA, E., OCANA, K., MAT-
TOSO, M. “Runtime Dynamic Structural Changes of Scientific Workflows
in Clouds”. In: Proceedings of the IEEE/ACM 6th International Workshop
on Clouds and (eScience) Applications Management - CloudAM, pp. 417–
422, Dresden, Germany, 2013.

[94] WANG, I., TAYLOR, I., GOODALE, T., HARRISON, A., SHIELDS, M.
“gridMonSteer: Generic Architecture for Monitoring and Steering Legacy
Applications in Grid Environments”. In: roceedings of the UK e-Science
All Hands Meeting. roceedings of the UK e-Science All Hands Meeting,
2006. Available at: <https://www.researchgate.net/publication/
237325712_gridMonSteer_Generic_Architecture_for_Monitoring_

and_Steering_Legacy_Applications_in_Grid_Environments>.

[95] WOZNIAK, J. M., ARMSTRONG, T. G., WILDE, M., KATZ, D. S., LUSK,
E., FOSTER, I. T. “Swift/T: Large-Scale Application Composition via
Distributed-Memory Dataflow Processing”. In: IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 95–
102. IEEE, 2013. ISBN: 978-0-7695-4996-5. doi: 10.1109/CCGrid.
2013.99. Available at: <http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6546066>. 00008.

[96] DURO, F. R., BLAS, J. G., ISAILA, F., WOZNIAK, J. M., CARRETERO,
J., ROSS, R. “Flexible Data-Aware Scheduling for Workflows over an
In-memory Object Store”. In: 2016 16th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), pp. 321–324.
2016 16th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 5 2016. doi: 10.1109/CCGrid.2016.40.

[97] ABBOTT, B. P., ABBOTT, R., ABBOTT, T. D., et al. “GW170104: Ob-
servation of a 50-Solar-Mass Binary Black Hole Coalescence at Red-
shift 0.2”, Physical Review Letters, v. 118, pp. 221101, 2017. doi:

120

https://www.researchgate.net/publication/237325712_gridMonSteer_Generic_Architecture_for_Monitoring_and_Steering_Legacy_Applications_in_Grid_Environments
https://www.researchgate.net/publication/237325712_gridMonSteer_Generic_Architecture_for_Monitoring_and_Steering_Legacy_Applications_in_Grid_Environments
https://www.researchgate.net/publication/237325712_gridMonSteer_Generic_Architecture_for_Monitoring_and_Steering_Legacy_Applications_in_Grid_Environments
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6546066
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6546066


10.1103/PhysRevLett.118.221101. Available at: <https://link.aps.
org/doi/10.1103/PhysRevLett.118.221101>.

[98] GUNTER, D., DEELMAN, E., SAMAK, T., BROOKS, C., GOODE, M.,
JUVE, G., MEHTA, G., MORAES, P., SILVA, F., SWANY, M., VAHI,
K. “Online workflow management and performance analysis with Stam-
pede”. In: Proceedings of the 7th International Conference on Network
and Service Management (CNSM), pp. 1–10, 10 2011.

[99] JAIN, A., ONG, S. P., CHEN, W., MEDASANI, B., QU, X., KOCHER, M.,
BRAFMAN, M., PETRETTO, G., RIGNANESE, G.-M., HAUTIER, G.,
GUNTER, D., PERSSON, K. A. “FireWorks: a dynamic workflow system
designed for high-throughput applications”, Concurrency and Computa-
tion: Practice & Experience, v. 27, n. 17, pp. 5037–5059, 2015. ISSN:
1532-0634. doi: 10.1002/cpe.3505.

[100] SOUZA, R. Controlling the Parallel Execution of Workflows Relying on a
Distributed Database. MSc. Thesis, COPPE/Federal University of Rio de
Janeiro, 2015.

[101] REYES, S., MUNOZ-CARO, C., NINO, A., SIRVENT, R., BADIA, R. M.
“Monitoring and Steering Grid Applications with GRID Superscalar”, Fu-
ture Gener. Comput. Syst., v. 26, n. 4, pp. 645–653, 4 2010. ISSN: 0167-
739X. doi: 10.1016/j.future.2009.12.002.

[102] MATKOVIC, K., GRACANIN, D., SPLECHTNA, R., JELOVIC, M.,
STEHNO, B., HAUSER, H., PURGATHOFER, W. “Visual analytics for
complex engineering systems: Hybrid visual steering of simulation ensem-
bles”, IEEE transactions on visualization and computer graphics, v. 20,
n. 12, pp. 1803–1812, 2014.

[103] CORDASCO, G., DE CHIARA, R., RAIA, F., SCARANO, V., SPAGN-
UOLO, C., VICIDOMINI, L. “Designing Computational Steering Fa-
cilities for Distributed Agent Based Simulations”. In: Proceedings of the
1st ACM SIGSIM Conference on Principles of Advanced Discrete Simula-
tion, SIGSIM PADS ’13, pp. 385–390, New York, NY, USA, 2013. ACM.
ISBN: 978-1-4503-1920-1. doi: 10.1145/2486092.2486147. Available at:
<http://doi.acm.org/10.1145/2486092.2486147>.

[104] FOSTER, I., AINSWORTH, M., ALLEN, B., et al. “Computing just what you
need: online data analysis and reduction at extreme scales”. In: Euro-Par,
Lecture Notes in Computer Science, pp. 3–19. Euro-Par, Springer, Cham,

121

https://link.aps.org/doi/10.1103/PhysRevLett.118.221101
https://link.aps.org/doi/10.1103/PhysRevLett.118.221101
http://doi.acm.org/10.1145/2486092.2486147


8 2017. ISBN: 978-3-319-64202-4. doi: 10.1007/978-3-319-64203-1\
_1. Available at: <https://link.springer.com/chapter/10.1007/
978-3-319-64203-1_1>.

[105] TERRAZ, T., RIBES, A., FOURNIER, Y., IOOSS, B., RAFFIN, B. “Melissa:
large scale in transit sensitivity analysis avoiding intermediate files”. In:
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, p. 61. ACM, 2017.

[106] INGRAM, S., MUNZNER, T., IRVINE, V., TORY, M., BERGNER, S.,
MOLLER, T. “Dimstiller: Workflows for dimensional analysis and reduc-
tion”. In: Visual Analytics Science and Technology (VAST), 2010 IEEE
Symposium on, pp. 3–10. IEEE, 2010.

[107] JIN, T., ZHANG, F., SUN, Q., BUI, H., PARASHAR, M., YU, H., KLASKY,
S., PODHORSZKI, N., ABBASI, H. “Using cross-layer adaptations for
dynamic data management in large scale coupled scientific workflows”. In:
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–12. ACM, 2013.

[108] GARCIA, M., DUQUE, J., BOULANGER, P., FIGUEROA, P. “Compu-
tational steering of CFD simulations using a grid computing environ-
ment”, International Journal on Interactive Design and Manufacturing
(IJIDeM), v. 9, n. 3, pp. 235–245, 8 2015. ISSN: 1955-2513, 1955-2505.
doi: 10.1007/s12008-014-0236-1.

[109] SPINUSO, A. Active provenance for data intensive research. Ph.D. Thesis,
University of Edinburgh, 2018.

[110] ZHANG, Z., SPARKS, E. R., FRANKLIN, M. J. “Diagnosing Machine Learn-
ing Pipelines with Fine-grained Lineage”. In: Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’17, pp. 143–153, New York, NY, USA, 2017. ACM.
ISBN: 978-1-4503-4699-3. doi: 10.1145/3078597.3078603. Available at:
<http://doi.acm.org/10.1145/3078597.3078603>.

[111] RE, C., AGRAWAL, D., BALAZINSKA, M., CAFARELLA, M., JORDAN,
M., KRASKA, T., RAMAKRISHNAN, R. “Machine Learning and
Databases: The Sound of Things to Come or a Cacophony of Hype?”
In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pp. 283–284, New York, NY, USA,
2015. ACM. ISBN: 978-1-4503-2758-9. doi: 10.1145/2723372.2742911.
Available at: <http://doi.acm.org/10.1145/2723372.2742911>.

122

https://link.springer.com/chapter/10.1007/978-3-319-64203-1_1
https://link.springer.com/chapter/10.1007/978-3-319-64203-1_1
http://doi.acm.org/10.1145/3078597.3078603
http://doi.acm.org/10.1145/2723372.2742911


[112] XIN, D., MA, L., LIU, J., MACKE, S., SONG, S., PARAMESWARAN,
A. “Accelerating Human-in-the-loop Machine Learning: Challenges and
Opportunities”, Data Management for End-to-end Machine Learning
(DEEM) Workshop co-located with the ACM Special Interest Group on
Management of Data (SIGMOD), 2018. Available at: <http://arxiv.
org/abs/1804.05892>.

[113] SOUZA, R., AZEVEDO, L., LOURENÇO, V., et al. “Provenance Data in
the Machine Learning Lifecycle in Computational Science and Engineer-
ing”. In: Workflows in Support of Large-Scale Science (WORKS) work-
shop co-located with the ACM/IEEE International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC), 2019.
Available at: <https://arxiv.org/abs/1910.04223>.

[114] LOFSTEAD, J. F., KLASKY, S., SCHWAN, K., PODHORSZKI, N., JIN, C.
“Flexible IO and integration for scientific codes through the adaptable IO
system (ADIOS)”. In: Proceedings of the 6th International Workshop on
Challenges of Large Applications in Distributed Environments (CLADE
’08), pp. 15–24, New York, NY, USA, 2008. ACM Press. ISBN: 978-
1-60558-156-9. doi: 10.1145/1383529.1383533. Available at: <http://
portal.acm.org/citation.cfm?doid=1383529.1383533>.

[115] DREHER, M., PETERKA, T. Decaf: Decoupled dataflows for in situ high-
performance workflows. Technical report, Argonne National Lab.(ANL),
Argonne, IL (United States), 2017.

[116] ABRAMSON, D., ENTICOTT, C., ALTINAS, I. “Nimrod/K: towards mas-
sively parallel dynamic grid workflows”. In: Proc. of International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
pp. 1–11, Austin, Texas, USA, 2008. ISBN: 978-1-4244-2835-9. Available
at: <http://portal.acm.org/citation.cfm?id=1413370.1413395>.

[117] VISTRAILS. “VisTrails”. 2014. Available at: <http://www.vistrails.
org/>.

[118] NGUYEN, H. A., ABRAMSON, D., KIPOROUS, T., JANKE, A., GAL-
LOWAY, G. “WorkWays: interacting with scientific workflows”. In: Gate-
way Computing Environments Workshop, GCE ’14, pp. 21–24, Piscataway,
NJ, USA, 2014. IEEE Press. ISBN: 978-1-4799-7030-8. doi: 10.1109/GCE.
2014.6. Available at: <http://dx.doi.org/10.1109/GCE.2014.6>.

123

http://arxiv.org/abs/1804.05892
http://arxiv.org/abs/1804.05892
https://arxiv.org/abs/1910.04223
http://portal.acm.org/citation.cfm?doid=1383529.1383533
http://portal.acm.org/citation.cfm?doid=1383529.1383533
http://portal.acm.org/citation.cfm?id=1413370.1413395
http://www.vistrails.org/
http://www.vistrails.org/
http://dx.doi.org/10.1109/GCE.2014.6


[119] HART, D., KRAEMER, E. “Consistency Considerations in the Interactive
Steering of Computations”, International Journal of Parallel and Dis-
tributed Systems and Networks, v. 2, pp. 171–179, 1999.

[120] “GitHub epository for RealityGrid Computational Steering Tools”. 2019. Avail-
able at: <https://github.com/RealityGrid>.

[121] HAN, J., HAINES, R., SALHLI, A., BROOKE, J. M., D’AMORA, B.,
DANANI, B. “Virtual science on the move: Interactive access to simula-
tions on supercomputers”. In: 2014 IEEE 25th International Conference
on Application-Specific Systems, Architectures and Processors, pp. 178–
179. 2014 IEEE 25th International Conference on Application-Specific
Systems, Architectures and Processors, 6 2014. doi: 10.1109/ASAP.2014.
6868654.

[122] DIAS, J., OGASAWARA, E., DE OLIVEIRA, D., PORTO, F., COUTINHO,
A. L., MATTOSO, M. “Supporting Dynamic Parameter Sweep in
Adaptive and User-steered Workflow”. In: Proceedings of the 6th Work-
shop on Workflows in Support of Large-scale Science, WORKS ’11, pp.
31–36, New York, NY, USA, 2011. ACM. ISBN: 978-1-4503-1100-7.
doi: 10.1145/2110497.2110502. Available at: <http://doi.acm.org/10.
1145/2110497.2110502>.

[123] SILVA, B., NETTO, M. A. S., CUNHA, R. L. F. “JobPruner: A machine
learning assistant for exploring parameter spaces in HPC applications”,
Future Generation Computer Systems, v. 83, pp. 144–157, 6 2018. ISSN:
0167-739X. doi: 10.1016/j.future.2018.02.002.

[124] OCANA, K. A. C. S., OLIVEIRA, D. D., OGASAWARA, E., DAVILA, A.
M. R., LIMA, A. A. B., MATTOSO, M. “SciPhy: A Cloud-Based Work-
flow for Phylogenetic Analysis of Drug Targets in Protozoan Genomes”.
In: Brazilian Symposium on Bioinformatics, Lecture Notes in Computer
Science, pp. 66–70. Springer, 2011. ISBN: 978-3-642-22824-7. Available
at: <https://doi.org/10.1007/978-3-642-22825-4_9>.

[125] GITHUB. “DfAdapter GitHub Repository”. 2019. Available at: <https:
//github.com/hpcdb/DfAdapter>.

[126] RAICU, I., FOSTER, I. T., ZHAO, Y. “Many-task computing for grids and
supercomputers”. In: Workshop on Many-task Computing on Grids and
Supercomputers (MTAGS), pp. 1–11. IEEE, 2008.

124

https://github.com/RealityGrid
http://doi.acm.org/10.1145/2110497.2110502
http://doi.acm.org/10.1145/2110497.2110502
https://doi.org/10.1007/978-3-642-22825-4_9
https://github.com/hpcdb/DfAdapter
https://github.com/hpcdb/DfAdapter


[127] OZSU, M. T., VALDURIEZ, P. Principles of Distributed Database Systems.
3 ed. New York, Springer, 2011.

[128] GITHUB. “libMesh-sedimentation Workflow GitHub Repository”. 2019. Avail-
able at: <https://github.com/hpcdb/workflow-sedimentation>.

[129] DE ROOIJ, F., DALZIEL, S. B. “Time- and space-resolved measurements
of deposition under turbidity currents”. In: McCaffrey, W., Kneller,
B., Peakall, J. (Eds.), Particulate Gravity Currents, Blackwell Publish-
ing Ltd., pp. 207–215, Oxford, UK, 4 2001. ISBN: 978-1-4443-0427-
5. Available at: <http://doi.wiley.com/10.1002/9781444304275.
ch15>. DOI: 10.1002/9781444304275.ch15.

125

https://github.com/hpcdb/workflow-sedimentation
http://doi.wiley.com/10.1002/9781444304275.ch15
http://doi.wiley.com/10.1002/9781444304275.ch15

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background: User Steering in Large-scale Workflows in CSE
	Basic Concepts and Terminology
	A Dataflow-oriented Approach for Workflows
	CSE Applications
	CSE Applications in Workflow Scripts
	CSE Applications in Workflow Management Systems (WMSs)
	Computational Scientists and Engineers

	Supporting Workflow Steering in CSE with Data Management Techniques
	W3C PROV and its Extensions

	The State-of-the-Art in User Steering Action Data Analysis
	Approaches for Online Analysis, Adaptation, and User Steering Action Data Management
	Making a CSE Application Steerable
	System Design of an Approach that Supports User Steering
	Further Discussion on the Analyzed Approaches

	WfSteer: An Approach for Managing User Steering Action Data
	User Steering Action Data: a new type of data that needs to be managed
	User Steering Action and Data Definitions
	Definitions for Online Data Adaptations
	Modeling Steering Action Data using W3C PROV Concepts
	Adaptive Monitoring Concepts

	Managing User Steering Action Data in Workflow Scripts
	Methodology and General Architecture
	Design Principles
	Implementation Details
	Utilization
	Methodology to Analyze the Overhead

	Managing User Steering Action Data in a WMS
	Design Principles
	Implementation Details
	Addressing Steering Action Data Consistency Issues
	Further Details

	Utilization

	Experimental Evaluation
	Managing Steering Action Data in Workflow Scripts
	Use case: Computational Fluid Dynamics in Geoscience with libMesh-sedimentation
	User Steering Action Data Analysis
	Overhead Evaluation

	Managing Steering Action Data in a WMS
	Use case: Ultra-deepwaters' Risers Fatigue Analysis
	User Steering Action Data Analysis
	Overhead Evaluation


	Conclusions
	Lessons Learned
	Future Work

	Bibliography

