
HAL Id: tel-03514093
https://hal-lirmm.ccsd.cnrs.fr/tel-03514093

Submitted on 7 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rule-based Languages for Reasoning on Data : Analysis,
Design and Applications

Federico Ulliana

To cite this version:
Federico Ulliana. Rule-based Languages for Reasoning on Data : Analysis, Design and Applications.
Computer Science [cs]. Montpellier University, 2021. �tel-03514093�

https://hal-lirmm.ccsd.cnrs.fr/tel-03514093
https://hal.archives-ouvertes.fr

Habilitation à Diriger des Recherches

Rule-Based Languages for Reasoning on Data:

Analysis, Design, and Applications

Federico Ulliana

LIRMM, Inria, Univ. Montpellier, CNRS

1

CONTENTS

1 Research Activity 3
1.1 Overview . 3

1.2 The Existential Rule Framework . 5

1.3 Existential Rules Boundedness . 16

1.4 Reasoning on NoSQL Databases . 30

1.5 Applications of Ontologies and Rules . 42

2 Research project 48

Je déclare avoir respecté, dans la conception et la rédaction de ce mémoire d’HDR, les valeurs et

principes d’intégrité scientifique destinés à garantir le caractère honnête et scientifiquement rigoureux

de tout travail de recherche, visés à l’article L.211-2 du Code de la recherche et énoncés par la Charte

nationale de déontologie des métiers de la recherche et la Charte d’intégrité scientifique de l’Université

de Montpellier. Je m’engage à les promouvoir dans le cadre de mes activités futures d’encadrement de

recherche.

2

1 RESEARCH ACTIVITY

1.1 OVERVIEW

The intelligent exploitation of data poses the significant challenge of devising automated reasoning

techniques able to improve access to information. Today, with data produced at high rates and in a

large number of forms, exploiting available information becomes increasingly difficult. Nevertheless,

in this dynamic and complex situation, there is a point of convergence: domain-specific knowledge.

Data is generated by software applications, which are always proper to a specific context and domain.

Hence, regardless of the many disparities, a common ground for the data produced in an application

domain always exists. Formalized domain-specific knowledge gives a conceptual point of view of the

domain of data, by defining the types of the objects involved, as well as the relations among them.

This provides a lens through which diverse data can be looked at. It allows one to equalize databases

presenting structural differences as well as to push further their value in terms of informative content.

Importantly, formal knowledge can be taken into account automatically by leveraging on reasoning,

in a way which is transparent for users.

Modeling and leveraging knowledge through formal languages is at the essence of the Knowledge

Representation and Reasoning (KR&R) field of Artificial Intelligence. However, this also concerns

the fields of Databases and the Semantic Web. In the last decade, these three domains have been

actively interacting on the different facets and issues related to the intelligent exploitation of data.

The questions range from the foundations of reasoning, to performance issues, to the development

and deployment of Web standards and solutions. Domain-specific knowledge is typically expressed

by ontologies or, more generally, by rule-based languages with a logical semantics. The purpose of

rules is perhaps described at best by Gottlob: “rules encapsulate transferable knowledge, arising from

human experience, common sense, definitions, norms, laws, and regulations" but this also includes

“knowledge that can be learned by machines” [68]. Rules make one able to deal with intensionality

and incompleteness in the data. This is what makes them able to enrich databases with novel and

pertinent information thereby increasing their informative content and exploitability.

The research activity presented here revolves around rule-based languages for reasoning on data,

with a particular emphasis on existential rules. This is an expressive formalism that encompasses well

known formalisms like Datalog and Horn Description Logics. The main problem we are concerned

with is that of answering queries under sets of existential rules. This is commonly referred as ontology

mediated query answering (or theory-mediated query answering, if we see rules as logical theories).

The three main topics that will be covered are the analysis, design, and applications of rules languages

for reasoning on data. Our attention has been on understanding the power of logical reasoning, in

particular in the light of reusing existing database technology such as NoSQL systems.

The static analysis of rule based languages serves at deriving properties that can reveal to be key

for choosing the right reasoning strategy, as well as for a better reuse of rules in a collaborative setting

like that of Web ontologies. The issue we have investigated is boundedness. This property concerns

the recursivity of rules, and asks whether the depth of reasoning is independent on the input data.

3

This has several important implications on reasoning and enables many optimizations and modular-

izations of rules. Novel decidable cases and insights of the nature of the property have been derived.

The design of a rule language is fundamental to make sure that reasoning is doable provided the

applicative constraints one is subject to. We have been pursuing the goal of designing families of rule

languages for reasoning on top of NoSQL databases, like document oriented key-value stores which

are praised for their performances. The challenge here is to comply with the constraint of the API of

the underlying systems and to devise virtualization approaches based on query rewriting.

Finally, applications are very important to transfer results as well as motivating new theoretical

questions. Two projects will be presented, both characterized by the goal of exploiting ontologies and

rules to allow for a better exploitation of 3D models. From one side, the My Corporis Fabrica project

aimed at defining an ontology for navigating through 3D models of human anatomy. From the other

side, the 3D Assembly Analysis project aimed at combining a geometric analysis with reasoning for

a better exploitation of CAD models. These projects show how the use of ontologies can improve

the exploitation of 3D models, and at the same times outlines many reasoning features required by

applicative environments.

Each topic will be developed in a dedicated section of the manuscript. Every section will aim at

providing a coherent and uniform presentation of the contributions that have been accumulated

through multiple investigations. To make the document more self contained, formal definitions will

be given. We will occasionally take the freedom of renaming certain notions introduced in authored

papers towards the goal of making things clearer. Our aim is to distill and present the keystones of

the main contributions; the eager reader will be nevertheless referenced to the proper source to delve

more into the technical development.

Always for concision, this document will focus primarily on the issues related to reasoning on

data. So, one part of the researches carried will not be covered. This concerns the work done on

the modularization of deductive triplestores, on semi-structured databases and XML, as well as a

multi-disciplinary collaboration with the Center for Structural Biochemistry in Montpellier on the

design of biological devices.

The manuscript is organized as follows. Section 1.2 introduces the setting of existential rules, which

is the common ground for all presented contributions. Section 1.3 presents the results on static anal-

ysis and boundedness while Section 1.4 is dedicated to the design of rule base languages. Section

1.5 presents the applications of rules for reasoning of data. Finally, Section 2 presents the research

project stemming by all of the research activities willing at pushing further the use of rules for ex-

ploiting data in heterogeneous and federated data-integration settings. Citations to authored work

will be highlighted to ease the reading.

4

1.2 THE EXISTENTIAL RULE FRAMEWORK

ORIGINS AND RELEVANCE

Existential rules are positive first order logic formulas of the form ∀X
[
Body(X ,Y) →∃Z Head(X , Z)

]
where Body and Head are conjunctions of atoms and Head can have existentially quantified variables.

These formulas are ubiquitous in many contexts, as they allow one to model many tasks related to

data and knowledge. These rules have long been studied in the 80’s in database theory as very gen-

eral database constraints called Tuple Generating Dependencies (or TGDs) [24]. They also emerged

as the natural logical translation of rules in Conceptual Graphs, that have been studied since the 90’s

[49]. In the mid 2000, they became the foundations for relational schema mappings in data exchange

and integration [59]. Around 2009, with the gain of importance of ontologies, Description Logics, and

Semantic Web languages, the formalism has been brought to light again by two parallel initiatives.

From one side, the Datalog± family of rule languages [36]. The “+” symbolizes the extension of Data-

log rules with value invention, that is, the ability to deduce the existence of unknown data values via

existentially quantified variables. The “-” represents the restriction of the (very expressive) resulting

language to well-behaving fragments. From the other side, existential rules have been proposed as

an ontological language for KR&R [15]. Existentially quantified variables are considered a key feature

in to reason in open domains, where not all individuals are supposed to be known in advance (as

opposed to closed domains typically considered in databases). In both cases, one of the motivation

was to have a language which can be a valid complement to Description Logics (DLs). And indeed,

from the perspective of the design of a KR language, existential rules have an orthogonal approach

with respect to DLs. They allow for predicates of any arity (whereas DLs employ binary relations) and

complex structures (whereas DLs essentially describe treelike structures).1 More precisely, existen-

tial rules generalize the family of Horn Description Logics and by this they also generalize Semantic

Web languages and standards of the OWL family. Finally, from a purely logical perspective, sets of

existential rules can be seen as Horn first-order logic theories. Their study is thus the continuation

of the research for decidable fragments of first-order logic. Decidability here is intended with respect

to problems like logical entailment, which is embodied in conjunctive query answering, and that

can also be seen as a special case of theorem proving. In conclusion, existential rules are an impor-

tant formalism for modeling and studying tasks related with data and knowledge, that furthermore

touches at different domains like knowledge representation and reasoning, databases, the Semantic

Web, and logics.

The remainder of this section will be dedicated to presenting the basic definitions of the existential

rule framework, as well as the main approaches for reasoning with these rules: the chase and query

rewriting. This will set the ground for a presentation of our research outcomes which will follow in

the next sections.

1We refer to [97] for a recent side-by-side comparison of the two formalisms.

5

PRELIMINARIES

We mainly follow the formalization of [56] and [89] to which we shall refer to for details and exam-

ples. We place ourselves in a First-Order Logic (FO) setting, without functional symbols and equality.

A relational vocabulary (Pred,Cnst) is made of a finite set of predicates Pred and a finite set of con-

stants Cnst. We also assume a countably infinite set of variables Vars used in formulas. Hereafter, we

always assume a fixed vocabulary when defining objects. A Knowledge Base (KB) is a logical theory

made by a factbase (holding factual knowledge on the domain of interest) and a rulebase (holding

general knowledge on the domain of interest). A factbase, denoted by F , is an existentially quantified

conjunction of atoms which is closed, i.e., every variable is existentially quantified.

In the formal development, it will be convenient to see a factbase as the set of atoms if contains.

This defines a relational structure that can also be seen as a hypergraph. The set {p(x, y),q(y, z)} for

instance will represent the formula ∃x, y, z. p(x, y)∧q(y, z). Then, a substitution is a mapping from

a set of variables to a set of terms. A homomorphism h from a set of atoms A to a set of atoms B ,

denoted by h : A → B , is a substitution of vars(A) with terms(B) such that h(A) ⊆ B . In this case we

also say that A is more general than B , denoted by A ≥ B . It is known that a factbase F logically entails

a factbase G , denoted by F |=G , if and only if there exists a homomorphism from G to F seen as sets

of atoms (structures) [48]. An isomorphism is a bijective homomorphism. A subset F ⊆G is a retract

of G if there exists a substitution σ that is the identity on the terms of F such that σ(G) = F . In this

case, σ is also called a retraction from G to F . A factbase F is a core if none of its strict subsets is a

retract.

A rulebase is a set of existential rules, denoted by R, that are FO formulas of the form

∀X
[
Body(X ,Y) →∃Z Head(X , Z)

]
where X ,Y , Z are sets of variables and Body and Head conjunctions of atoms. We denote a rule by r .

We call Z the set of existentially quantified variables of the rule. If Z = ; the rule is called datalog.

We call X the set of frontier variables of r , also denoted by fr(r), these are the variables that belong to

both the body and the head. W.l.o.g., we assume the frontier of a rule to contain at least one variable.

Universal quantification will be omitted next. Also, it will be sometimes convenient to consider a rule

simply as a pair of sets of atoms (B,H). Finally, we use body(r) to denote B and head(r) to denote H .

An FO-query q(x1, ..., xn) is a FO formula whose free variables (called answer variables) are exactly

{x1, ..., xn}. A query which does not have any free variable is called Boolean. A conjunctive query (CQ)

is an FO-query made by an existentially quantified conjunction of atoms. A union of conjunctive

queries (UCQ) Q is a set of CQs all sharing the same free variables.

An answer to a FO-query q(x1, ..., xn) on a knowledge base (F,R) is a substitution a : {x1, ..., xn} →
Cnst such that R ∪ F |= q(a), where |= denotes the classical logical consequence and q(a) is the

Boolean query obtained from q substituting each xi with a(xi).

6

REASONING WITH EXISTENTIAL RULES

Among the many reasoning tasks associated with a knowledge base we focus our attention on the

conjunctive query answering decision problem (QA hereafter), that given in input an existential rules

knowledge base (F,R), a conjunctive query q , and a substitution a, asks to decide if a is an answer

for q on (F,R). How to devise query answering algorithms that reflect the model-theoretic relations

we presented? The two grand families of algorithms developed for QA can be classified as forward-

chaining and backward chaining techniques. A common point to both is that they aim at reducing

the QA problem to a classical database query answering (i.e., QA with an empty set of rules) by em-

bedding the rules either into the facts or into the query.

Forward chaining is decomposed into a materialization (or saturation) step, which extends the in-

put factbase with the inferences enabled by rules, followed by the evaluation of the query against the

extended factbase. Backward chaining is decomposed into a query rewriting step, which computes

a set of rewritings for the input query, followed by the evaluation of the rewritten query against the

factbase (thereby leaving the data untouched). These schemes can also be combined, leading to so

called combined approaches, where different portions of rules are treated with different techniques

[93, 15].

Both the forward and the backward chaining approaches rely on a fixpoint operator to cope with

rule semantics. Indeed, materialization should continue until the point where only redundant facts

are added to the dataset, while rewriting should continue until the point where only redundant

queries are added to the rewriting set. It is understood that both processes may not terminate and

that entailment with existential rules is undecidable [47]. Deciding halting of the forward and back-

ward chaining processes is undecidable as well (see e.g., [57, 15, 70, 65, 23]), and a number of suffi-

cient syntactic conditions for termination have been proposed in the literature [101, 71, 108, 44].

To better understand the expressivity of the different existential rules fragments, these can be clas-

sified with respect to the termination of forward chaining and the backward chaining. The goal of

the next section will be exactly that of presenting these strategies and defining these classes of rules.

It is important to mention that [15] defines a third property ensuring decidability of OMQA, namely

bounded-treewidth rulesets, which contains the Description Logic EL [93] and the family of guarded

rules [35, 16]. This class will not be covered here, and we refer to [97] for a recent paper presenting it.

THE CHASE

We start by presenting a family of forward-chaining algorithms collectively called the chase. The

chase is reasoning approach that sees rules as constraints that the factbase should be compliant

with. In the case where a constraint is not satisfied, the factbase is extended with new atoms satis-

fying it, until fixpoint. The interest of this procedure is that, when the chase terminates, it outputs a

(finite) model of the knowledge base, which moreover is universal [57]. Universal means that it can

be mapped by homomorphism to any other model of the KB. This is very important, as it suffices to

answer any CQ entailed by the KB, as an answer on the universal model is an answer in every model.

7

The main goal of this section is to present several chase variant that will be subject of our study.

These are the oblivious chase [35], the semi-oblivious chase [96], the restricted or standard chase [60],

and the equivalent chase [108]. For concision, we skip the presentation of the Skolem [96] and the

core chase [57]. The Skolem chase coincides with the semi-oblivious chase [96] and the equivalent

chase coincides with the core chase [108]. To be more precise, by “coincide” here we regard the

termination of the chase, and mean that the class of rulesets terminating wrt the two chase variants

are the same. For a more comprehensive survey, we refer the interested reader to [70] or [54].

All chase variants compute logically equivalent results. Nevertheless, they differ on their ability to

detect logical redundancies possibly caused by the presence of fresh existentially quantified variables

(we may also call labelled nulls, or simply nulls, using a database-oriented terminology) that are in-

troduced by the procedure. Indeed, a factbase that contains nulls may be logically equivalent to one

of its strict subsets, in which case we call it redundant. As deciding whether a factbase is redundant

is computationally difficult (in fact, NP-complete [48]), a given chase variant may choose to detect

only specific cases of redundancy. What is important is that the ability to detect redundancies has a

direct impact on the termination of the chase, and only variants like the core chase or the equivalent

chase terminate if and only if the knowledge base has a finite universal model.

APPLYING RULES To formally introduce the chase variants, we start from the application of rules. Let

F be a factbase and r = (B,H) a rule. We say that r is applicable on F if there is a homomorphism h

from B to F . Then, the pair t= (r,h) is called a trigger for F and r . We denote by hsafe the extension of

h which maps all existential variables in H to fresh variables indexed by the trigger t. More precisely,

for each existential variable z in H , we define hsafe(z) = zt. In this case, we call the factbase F∪hsafe(H)

the effective application of t on F . Given a trigger (r,h) we denote by h|fr(r) the restriction of h to the

frontier variables of r .

Clearly, two equal triggers produce equal results, and thus the repetitive application of the same

trigger will not be considered by the basic chase variants, the oblivious chase. Also, triggers for the

same rule t1 = (r,h1) and t2 = (r,h2) produce isomorphic results if they agree on the image of the

frontier variables, that is, h1|fr(r) = h2|fr(r). In this case we denote it by t1 ∼ t2; we will employ this

notation later when presenting the semi-oblivious chase. We are now ready to give a basic notion of

sequential derivation.

Definition 1. A derivation D from F and R is a (possibly infinite) sequence of triggers t1,t2, . . . produc-

ing a sequence of factabases (F =)F0,F1 . . . where every Fi>0 is the effective application of ti on Fi−1.

We denote by F 〈D〉 the factbase resulting from chasing F with D, which is defined as F 〈D〉 =⋃
i≥0 Fi .

This definition sets the backbone of any sequential derivation by just ensuring that the sequence of

triggers is cohesive. This means that triggers can indeed be applied starting from the initial factbase

one after the other. As a complement of notation, we denote by Di the prefix t1, . . . ,ti of D.

From our perspective, we see a chase variant simply by the set of derivations it enables. These are

defined by basically playing on the basis of three dimensions.

8

◦ The first one is what we call here the compliance condition (also called applicability condition)

which given a trigger which is applicable at a certain point of the derivation, it either promotes

the trigger among the applied ones or discards it as deemed redundant. This defines most of

the capacity of the chase at terminating by avoiding redundancies, but it is not the only one.

◦ The second one is the prioritization on triggers. Arbitrary derivations like those just defined

impose no priority on triggers. However, prioritizations schemes implementing breadth-first

strategies [56], or applying datalog rules first [87] can have an impact on termination for chase

variants using the compliance condition of the restricted chase [54].

◦ The third one is the scope of the verification of the compliance condition. In sequential deriva-

tions, the compliance condition is be verified with respect to all previously applied triggers.

In other strategies like the parallel [57] or the 1-parallel [64, 25] just a subset of the triggers is

considered. This again can have an impact on termination [54].

These aspects may interact in some non-obvious way, and give raise to a family of chase procedures

where every variant halts differently.

COMPLIANCE As already said, the compliance condition is what makes that a trigger (that could be

applied) is actually applied at a certain point of the derivation. It is interesting to remark the nature

of the compliance condition. For some chases, this may be defined depending on the “syntactical”

components of the triggers that have been formerly applied. This is the case for example of the obliv-

ious and the semi-oblivious chase. For other chases like the restricted and the equivalent chase, this

condition rather depend on the inferences that have been previously made, that is, what the triggers

produced rather than how the triggers looked like before being applied. It should not be surprising

then that these chases will be better at detecting redundancies. Let us define the compliance condi-

tion for our chase variants. We refer to Example 7 of [56] for an illustration of these conditions.

Definition 2. Let D be a finite derivation, from F and R, and t a trigger which is applicable on F 〈D〉.
Then, with respect to D, the trigger t is said:

◦ obl-compliant if t does not belong to D

◦ sob-compliant if there is no t′ ∈D such that t∼ t′

Further, let F ′ be the effective application of t on F 〈D〉. Then, with respect to D, the trigger t is said:

◦ res-compliant if there is no retraction from F ′ to F 〈D〉
◦ eqv-compliant if there is no homomorphism from F ′ to F 〈D〉

An X -derivation is a derivation where every trigger ti+1 is X -compliant wrt the prefix Di .

The class of all the X -derivations is the X -chase.

Note that obl-compliancy (for the oblivious chase) simply excludes the multiple applications of

the same trigger. Then, sob-compliancy (for the semi-oblivious chase) will avoid the application of

two triggers producing isomorphic results. The res-compliancy (for the restricted chase) checks if

the atoms produced by a trigger can be folded back by retraction. This means that the test is local

9

with respect to where the rule has been applied, as the image of frontier variables cannot change by

retraction. Finally the eqv-compliancy (for the equivalent chase) checks if the atoms produced by a

trigger can be folded back, this time globally, with respect to the whole factbase. This last one is the

most expressive condition one can have, and it is the only one able to ensure that the chase outputs

a finite universal model of the knowledge base if and only if this one exists.

As already said, the different compliance condition for triggers set the main capacity of a chase

variant at handling redundancies, and the less redundancy a chase produces, the more it terminates.

The last bit we need to precisely define the notion of terminating derivation is fairness. Simply put,

fairness ensures that no relevant trigger has been forgotten. Without fairness, it would be possible to

halt a derivation by skipping some constraints. However, this would not guarantee a universal model

of the knowledge base. Note that fair derivations may be infinite. However, finite fair derivations

produce (finite) universal models of the knowledge base.

Definition 3. An X -derivation D is fair if for every trigger t which is X -compliant with the prefix Di

there is a k > i such that one of the following holds.

◦ tk = t

◦ t is not X -compliant with the prefix Dk

An X-derivation is terminating if it is both fair and finite.

In words, a derivation is fair if, for every trigger applicable on one of its prefixes, either the trigger

has been applied or it became redundant later.

PRIORITIZATION The second important dimension in a derivation is the order in which rules are

applied. This aspect is often blurred by the formal study but it emerges immediately when effectively

implementing the procedure. The first prioritization we can think of is the breadth-first one, where

rules are applied rank by rank. This is intuitive, all applicable rules are applied on the initial factbase

(at rank 0) thereby yielding a new factbase (at rank 1) where the process repeats until fixpoint. But are

breadth-first derivations always the optimal choice for achieving termination? This depends on the

chase. The answer is positive for variants like the oblivious, semi-oblivious chase, and the equivalent.

The answer is negative for the restricted chase.

Another prioritization that has been proposed more recently is datalog-first [87]. In this scheme,

the idea is to produce the most possible knowledge concerning only the terms of the current factbase

through datalog rules, before introducing new (possibly redundant) nulls. Again, for the restricted

chase, this can have an impact on termination.

Among all prioritization strategies, we focus our attention on sequential breadth-first derivations.

The reason is twofold. First, they will be subject of study in the section on boundedness. Second,

we also want to clarify this notion and stress the differences with parallel breadth-first derivations.

Towards this aim, we need first to define the notion of rank of an atom (or a trigger).

10

Definition 4. Let D be a derivation from F and R. The rank of an atom α belonging to F 〈D〉 is defined

as

rank(α) =
{

0 if α ∈ F

1+max{ rank(β) | β ∈ h(B) } otherwise

assuming that t= (
(B,H),h

)
is the first trigger of D producing α.

This notion is naturally extended to triggers rank(t) = 1+max{ rank(β) |β ∈ h(B) }.

Finally, the depth of a derivation D is the maximum rank of its atom, if it is finite, and else infinite.

Informally speaking, the atom rank does not indicate the number of triggers fired before producing

it but rather the number of breadth-first steps that are needed to produce it. The notion of rank

stems from breadth-first derivations but applies to any derivation. It should not be surprising that

two derivations may produce the same atom at different ranks if they choose different prioritizations

for their triggers, and this already occurs for datalog rules (see Example 6 of [56]). We are now ready

to define breadth-first derivations.

Definition 5. An X -derivation D is breadth-first if for all two consecutive triggers (ti ,ti+1) holds that:

◦ rank(ti) ≤ rank(ti+1) (rank-compatibility)

◦ rank(ti) < rank(ti+1) implies there is no trigger t that is X -compliant withDi s.t. rank(t)=rank(ti)

(rank-exhaustiveness)

The class of all the breadth-first X -derivations is the bf-X -chase.

As expected, a breadth-first sequential derivation applies all triggers of a rank before moving to the

next rank. It is well known that the oblivious and semi-oblivious chase variants are order-insensitive

with respect to the application of the triggers [70]. Hence choosing a particular order in the deriva-

tions does not have an impact termination, although the ranks of atoms may fluctuate [56]. The

equivalent chase is also insensitive to termination because it is able to verify logical equivalence [56].

The case of the restricted chase is different, and there are several scenarios. It may be that none of

the breadth-first derivations are terminating, but a terminating derivation exists. It may also happen

that some breadth-first derivations terminate while others dont. It may also happen that all breadth-

first derivations terminate but there is a fair non-breadth-first derivation that does not terminate.

The following example, which reprises Example 20 of [56], illustrates the three situations.

Example 6. Consider the rules

rp nextp : p(x, y) →∃z. p(y, z) rp loop-secondp
: p(x, y) → p(y, y)

rp nextq : p(x, y) →∃z. q(y, z) rq loop-firstp
: q(x, y) → p(x, x)

rq sidep : q(x, y) →∃z. p(x, z)

and the rulesets

R1 : {rp nextp ,rp nextq ,rq loop-firstp
} R2 : {rp nextp ,rp loop-secondp

} R3 : {rp nextq ,rq sidep ,rp loop-secondp
}

11

Fixed the factbase F = {p(a,b)}, there is a terminating restricted chase for each rulebase Ri . However:

◦ For the KB (F,R1) no breadth-first derivation is terminating. Forcing the application of rp nextp

at each rank creates an infinite path. However, a terminating derivation can be achieved simply

applying rp nextq followed by rq loop-firstp
. This however does not satisfy exhaustiveness at rank 1.

◦ For the KB (F,R2) not all breadth-first derivations are terminating. This depends on the order

within a single rank. A fair but infinite restricted derivation can be built by prioritizing rp nextp

over rp loop-secondp
. However, if the opposite is done, the derivation terminates. 2

◦ For the KB (F,R3), all breadth-first derivations are terminating. The application of rp loop-secondp

deactivates all triggers for rq sidep at the next rank. However, a fair but infinite restricted deriva-

tion can be build by repeatedly applying rp nextq and rq sidep before rp loop-secondp
of previous ranks.

Hence, in the case of the restricted chase, breadth-first derivations are not necessarily derivations

that terminate more often. As a complement of information, we mention that it can actually be

shown that rank-compatible restricted chase derivations (which do not require rank exhaustiveness)

are the ones who terminate sooner [56]. Finally, let us point out a property of breadth-first derivations

on which build the results on the study of boundedness for breadth-first chase variants presented

next; this concerns the minimality of ranks.

Proposition 7 ([56]). For a fixed knowledge base, every breadth-first derivation for the oblivious, semi-

oblivious and restricted chase, produce atoms at their minimal rank.

Since nulls are indexed by triggers (recall the definition of rule application), terms and atoms are

uniquely defined among the class of derivations for a fixed knowledge base. This also implies that the

breadth-first oblivious, semi-oblivious and restricted chase agree on the rank of atoms they produce.

SCOPE The third dimension for a chase is the scope of the verification of the compliance condition.

As stated by Definition 2, sequential derivations verify the compliance condition with respect to all

the applied triggers. In contrast, so called parallel strategies verify the compliance condition with

respect to a subset of the applied triggers. The parallel-breadth-first strategy proposed the parallel

chase [57] (and of course for Datalog [10]) is perhaps the most intuitive one. The idea is that, at each

rank, all possible rule applications are triggered in parallel. Therefore, at each step, the compliance

condition is verified only upon the factbase obtained at the previous breadth-first step. The result of

all compliant triggers is then added to the current factbase. Note also that the parallel derivation is

unique, as every derivation step contains a maximal set of triggers.

The 1-rule-parallel strategy regroups all triggers of the same rank and the same rule. Although this

could seem somewhat involved, it is the most natural approach for chase implementations that runs

on top of a data management system. The rule body becomes a query for the underlying database,

and from its result stem a set of triggers that can be applied in parallel [64].

2Note that r
p loop-secondp

is a datalog rule. So, this example also illustrates a case where the datalog-first strategy is more

efficient than arbitrary or breadth-first derivations, as it ensures termination is all cases.

12

The parallel-breadth-first strategy is the way in which the saturation of Datalog programs is de-

fined, and this is perfectly fine because there are no existential variables in datalog rules. This way of

seeing the oblivious and semi-oblivious chase is also fine as these chases are order independent. For

the first, we just have to avoid to apply a trigger twice (and parallel derivations ensure that). For the

second, a parallel derivation may only produce several isomorphic copies of the same facts, which

differ only for the trigger indexing the nulls. In reason of this both chases can be defined and studied

with breadth-first-parallel derivations [28]. Combined with Proposition 7, we also have that these

derivations lead to termination sooner, that is, every derivation with a minimal rank is a breadth-first

one. Again, the equivalent chase is also insensitive to parallel applications, and the core chase is ac-

tually defined by first running a parallel-breadth-first restricted chase and then computing a core of

the resulting factbase [57].

For the restricted chase things are again different. The reason is that in a sequential breadth-first

derivation there may be some trigger deactivating other triggers of the same rank. By restricting the

scope of the compliance condition, this deactivation may not be possible anymore. To illustrate,

let us consider again Example 6. While there is a restricted breadth-first terminating sequence for

(F,R2), the parallel-breadth-first derivation here is infinite. It can also be shown that whenever the

parallel-breadth-first restricted chase terminates the sequential-breadth-first chase does [54].

At this point, the difference between a sequential breadth-first and a parallel breadth-first should

be more clear at this point. For concision, we will not try to formalize parallel derivations here, and

rather refer to [54] for an attempt of formalizing a number of chase variants including the parallel

ones.

CHASE TERMINATION CLASSES To conclude this section we recall the definition of some important

classes of rules for which the chase terminates. We focus mostly on compliance and prioritization.

We always consider the all instance termination problem for a chase, that is, whether a given chase

variant terminates on all input instances [70].

Definition 8. A ruleset R belongs to the class

◦ CTX
∀ if for all factbase F every fair X -derivation with the rules of R is finite

◦ CTX
∃ if for all factbase F there is a terminating X -derivation with the rules of R

Let us recall some known results. Holds CTX
∀ = CTX

∃ for X ∈ {obl,sob,eqv}, but CTres
∀ ⊂ CTres

∃ [70].

From the compliance conditions it also follows that CTobl
∀ ⊂ CTsob

∀ ⊂ CTres
∀ ⊂ CTres

∃ ⊂ CTeqv
∀ [70].

We have just recalled that the situation is similar for breadth-first derivation and hence we have

CTX
∀ = CTXbf

∀ = CTXbf

∃ = CTX
∃ for X ∈ {obl,sob,eqv}. However, CTres

∀ ⊂ CTresbf
∀ ⊂ CTresbf

∃ ⊂ CTres
∃ . The

rulesets enjoying parallel breadth-first restricted termination are strictly between CTres
∀ and CTresbf

∀
[54]. Rulesets that terminate with the datalog-first strategy applied to the restricted chase are strictly

between CTres
∀ and CTeqv

∀ [87].

Later when talking about boundedness, we will see that these relationships are interestingly differ-

ent. In particular, going breadth-first plays an role in achieving bounded termination. Finally, it is

13

worth mentioning that the class CTeqv
∃ is equivalent to the Finite Expansion Set (FES) class of exis-

tential rules [15]. This is the largest class of rulesets where the chase terminates, we denote by CT,

and coincide with the rulesets always leading to a finite universal model of the knowledge base.

QUERY REWRITING

Query rewriting is a backward chaining method for answering queries, which involves rewriting the

input query using the rules. The goal of this section is to present the notion of query rewriting as well

as defining the class of rulesets that admit a rewriting into a FO-query.

The key operation in query rewriting is the unification of (subsets of) the query with (subsets of)

the rule head, which requires particular care due to the presence of existential variables in the rules.

The notion of piece-unifier has been introduced for this purpose [15]. To present piece-unifiers, we

need to pose first the notion of separating variables of a query subset. Given a subquery q ′ ⊆ q , we

call separating the variables of q ′ that occur in both q ′ and (q \ q ′). The definition of piece-unifier

ensures in particular that, being q ′ the subquery of q unified with the head of a rule, only variables

from q ′ which are not separating can be unified with existential variables. Let q be a query and

r = (B,H) a rule. A piece-unifier of q with r is a triple µ = (q ′,H ′,u) where q ′ 6= ;, q ′ ⊆ q , H ′ ⊆ H ,

and u is a substitution of T = terms(q ′)∪ terms(H ′) by T such that (i) u(q ′) = u(H ′) and (i i) for all

existential variable x ∈ vars(H ′) and t ∈ T , with t 6= x, if u(x) = u(t), then t is neither a separating

variable nor an answer variable of q ′.

Definition 9. Given a query q, a rule r = (B,H) and a piece-unifier µ= (q ′,H ′,u) the direct rewriting

of q with (r ,µ) is
(
usafe(B)∪u(q \ q ′)

)
, where usafe is an extension of u substituting each non-frontier

variables of B with fresh variables.

A rewriting sequence is a sequence of queries q0, . . . , qk such that qi>0 is a direct-rewriting of qi−1.

We say that q ′ is a rewriting of q if there is a rewriting sequence from q to q ′.

The soundness and completeness of query rewriting has been shown in [15, 84]. Fixed a ruleset R,

a set of rewritings Q of q is said to be sound and complete if, for any factbase F , it holds that F R |= q

if and only if there is q ′ ∈ Q such that F |= q ′. A ruleset R is said to be First-Order Rewritable if it

admits a finite sound and complete set of rewritings [40]. In this case, the set Q be seen as a UCQ, so

the previous condition becomes F,R |= q if and only if F |= Q. It has been observed already in [113]

that FO-rewritability is equivalent with the independently proposed notions of Finite Unification Set

[15] and Bounded-depth Derivation Property (BDDP) [36]. In the following sections we will use the

notation FO-RC to denote the rulesets that are FO-rewritable with respect to a class of conjunctive

queries C , and simply FO-R when the ruleset is rewritable with respect to all conjunctive queries.

A POWERFUL NOTION To compute an FO-rewriting of a query, a (parallel) breadth-first query rewrit-

ing operator is has been given in [15]. The FUS class is precisely defined as the rulesets on which this

operator terminates on all input queries. Starting from a given query q , all possible direct rewritings

14

are computed in parallel, level by level, until fixpoint. The rewritings produced up to level i are de-

noted by Q i , and of course Q0 = {q}. The process ends if and only if the input query is FO-rewritable.

At each rewriting level, it is checked whether the obtained rewritings logically entail the already com-

puted ones. This holds if and only if Q i+1 |= Q i .3 In this case, the process terminates as no useful

rewriting is produced at step i .

Visually, the rewriting process produces a tree where i) the root is the initial query and ii) the chil-

dren of every node are its direct rewritings. During this process, every rewriting is compared with all

other rewritings so as to identify and keep only the most general ones. We therefore look for homo-

morphisms across the different paths of the rewriting tree.

By stretching a bit the concept, we could make an analogy with the parallel breadth-first equiva-

lent chase where at each rank k the logical equivalence of the factbase obtained at rank k+1 with the

factbase obtained at rank k is verified. However, while weaker forms of redundancy have been de-

fined for the chase, by introducing different compliance conditions, and many syntactic restrictions

leading to FO-rewritability exists, there is no stronger notion than FO-rewritability based on query

rewriting that we are aware of. As also remarked in [102], this suggests that the classes of rulesets

enjoying FO-rewritability may not have been fully explored, despite this notion being present in a

bulk part of the literature on the subject. Are the two main classes of FO-rewritable existential rules,

namely linear and sticky, perhaps enjoying a stronger notion of rewritability ? Let us introduce a

novel class of rules that we shall use later to formulate some conjecture for future work.

Definition 10. A ruleset R belongs to the rewriting sequence termination classRT if for every rewriting

sequence q0, q1, . . . producing a set of queries Q = {q0, q1, . . . } there is a finite subset Q ′ ⊆Q s.t. Q |=Q ′.

Going back to the tree representation of the rewriting set of query, computing the set of reformu-

lations of a query for a ruleset in RT boils down to verify logical entailment of direct rewritings along

a path of the tree, rather than the whole tree. This means that every rewriting sequence naturally

terminates because it is not able to produce any more general query. We will illustrate in a moment

(Example 11) a ruleset which belongs to FO-R but does not belong to RT. This is a stronger property

than FO-rewritability, and we claim that it is enjoyed for instance by backward-shy rules [118], which

include notable sets of rules like linear [36] and sticky sets [38]. Indeed, as outlined by [118] (Property

4), backward shy rules make that every query q has a finite number of rewritings (depending on q

and R) which are not equivalent up to isomorphism. Thus, every infinite rewriting sequence with

backward-shy rules must be equivalent to one of its subsets.

We will not dig further in the details of query rewriting and refer to [15] for a presentation of the

notion (actually in the light of FUS sets of rules). Overall, this introductory section provided us the

basic definitions existential rules, chase termination and FO-rewritability. We can now pass to the

static analysis and design of rule languages issues, which will build on the notions just defined.

3Note that since Qi ⊆Qi+1 follows Qi |=Qi+1 and hence the rewriting stops whenever Qi ≡Qi+1

15

1.3 EXISTENTIAL RULES BOUNDEDNESS

WHAT IS BOUNDEDNESS ? Boundedness emerged during the early study of deductive databases

[94, 114, 78, 53, 99] motivated by the issue of characterizing Datalog programs for which the depth4

of a derivation was independent from the input data.5 As we shall discuss later, this opens the oppor-

tunity for optimizations and more generally for a better reuse of rulebases holding ontologies. Non-

recursive rulesets are clearly bounded. However, there are also recursive programs whose depth of

recursion does not depend on the input data. To illustrate, consider the canonical example from [99].

r1 : trendy(x) ∧ buys(z, y) → buys(x, y)

r2 : likes(x, y) → buys(x, y)

The ruleset R = {r1,r2} is recursive, because r1 is (it has the same predicate in the body and the head).

Yet, for every input factbase F , 2 parallel breadth-first rule applications always suffice to saturate F .

By looking closer at r1, we can see that its body atoms are disconnected, and this rule is filling the

buys relation with a cartesian product between all matches of variables x (trendy) and y (items). This

can be computed in a single breadth-first step by r1 and, clearly, it does not create any new item “to

buy”. So to reach a fixpoint, it suffices that all items will be present in buys atom. For this, we just

need that r2 is executed. Therefore, independently from the input database, the relation buys can be

computed in 2 parallel breadth-first steps and even 1 breadth-first sequential step if we start from r2.

In this case, we say that R is bounded, with bound 2.

FROM DATALOG TO EXISTENTIAL RULES A study of boundedness for existential rules needs however

a slightly refined notion than that typically used for Datalog. This should take into consideration the

chase variant which is considered, for two reasons. First, as for the chase termination problem, every

chase have different terminating conditions depending on its ability at filtering redundancies. Sec-

ond, a chase may not impose a prioritization strategy for derivations. From this stems the need to

consider whether one is interested on boundedness for all or some derivations. The following exam-

ple, illustrates a bounded set of Datalog rules, for which however not all derivations are of bounded

depth.

Example 11 ([28]). Consider the set R = {r1,r2} made by the following rules

r1 : p(x, y) ∧ p(y, z) → p(x, z) r2 : p(x, y) ∧ p(u, z) → p(x, z)

This ruleset is recursive, because both r1 and r2 are. However, r2 (whose body atoms are disconnected)

4in the precise sense of Definition 4
5The fact that Datalog is a query language with extensional database predicates (EDB), intensional database predicated

(IDB), and a special IDB predicate, we call goal, designated to hold the query answers, led to three flavours of the prop-
erty. Predicate boundedness considers the fact that EDBs are the input and the predicate goal is the output. Program
boundedness considers the fact that EDBs are the input and all IDBs are the output. Uniform (or strong) boundedness
considers the all EDBs and IDBs predicates are both input and output. Uniform boundedness is the property we con-
sider and refer as boundedness. Indeed, the other notions are less adapted to our study of existential rules, which do
not have by default the EDB/IDB distinction nor a goal predicate.

16

computes in a single step a superset of what is computed by the transitivity rule r1 in many steps. So,

for every factbase F , a single breadth-first application of rules will allow to reach a fixpoint. However,

if another strategy is preferred, things can be different. Consider a depth-first derivations where r1 is

applied before applying r2. In this case, for every k ≥ 0 one can find a factbase F (actually a path on p

of length 2k) and a depth-first derivation of depth k.

We are now ready to define boundedness for the different chase variants.

Definition 12. Let X be a chase variant and k ≥ 0 an integer. Then, we say that a ruleset R belongs to

◦ BN[k]X
∃ if, for all factbase F , there exists a fair X-derivation from F and R of depth bounded by k

(exists boundedness)

◦ BN[k]X
∀ if, for all factbase F , all fair X-derivations from F and R are of depth bounded by k

(forall boundedness)

The class of bounded rulesets for a chase variant X is defined as BNX
? =⋃

k≥0BN[k]X
? with ? ∈ {∃,∀}.

Finally, we denote by BN the class of rulesets that belong to some BNX
? .

To illustrate the definition, consider again Example 11. We have that R ∈ BN and more precisely

R ∈ BN[2]X
∃ . This holds for every chase variant X because no existential variable is present in R.

Nevertheless, for all chase variant X that does not impose a breadth-first strategy, R ∉ BNX
∀ holds

because R ∉BN[k]X
∀ for all k ≥ 0.

We just defined boundedness in terms of terminating (i.e., fair and finite) derivations. It goes with-

out saying that bounded rulesets are also terminating, i.e., BN ⊂CT, and more precisely, BNX
? ⊂CTX

?

for X ∈ {obl,sob,res,eqv}. It is also not difficult to see that BNX
? ⊂BNY

? when CTX
? ⊂CTY

? . For general

existential rules, we have that BN ⊂ FO-R, as the property also induces an uniform bound on the

number of parallel breadth-first rewriting steps needed to reformulate any query [89]. Very interest-

ingly, for datalog rules, we have that BN =FO-R [12].

Example 11 only uses datalog rules and so also shows that BNX
∀ ⊂BNX

∃ for every chase variant X . A

closer inspection reveals that the picture is rather BNX
∀ ⊂BNXbf

∀ ⊆BNXbf

∃ ⊆BNX
∃ . What boundedness

is pointing us here is a more fine grained inspection on reasoning which seeks at minimizing the

number of rule applications to compute universal models. The property suggests that the use of

breadth-first strategies could be important for termination for some chase variants. As outlined by

Proposition 7, for the oblivious, semi-oblivious and restricted chase, breadth-first derivation produce

atoms at their minimal rank [56] and for the two former variants this lead to termination sooner.

Although the same property does not hold for the equivalent chase (see Example 18 of [56]), for this

variant again breadth-first derivations form a valid strategy. Overall, this translates to the fact that for

some variants studying breadth-first derivations coincides with studying existential boundedness.

Proposition 13 ([56]). BNXbf

∀ =BNXbf

∃ =BNX
∃ for X ∈ {obl,sob,eqv} while BNresbf

∀ ⊂BNresbf
∃ ⊂BNres

∃

Finally, note that BN =BNeqv
∃ . This can be seen as the largest class of bounded rulesets for which

a (finite) universal model of the knowledge base can always be computed in a predefined number of

steps, independently from the input factbase.

17

OPEN QUESTIONS Deciding if an arbitrary set of existential rules belongs to any BNX
? is an undecid-

able problem. This immediately follows from the undecidability of Datalog (uniform) boundedness

[76, 95]. Nevertheless, this negative result does not tell us much about the decidability of the prob-

lem for other fragments of existential rules (that do not include datalog rules). The same holds for the

problem of deciding whether a ruleset belongs to BN[k]X
? , also called k-boundedness (note here the

bound k is part of the question). Finally, it is interesting to dig more on the property, and understand

its relations with other known properties such as chase termination and FO-rewritability. All of these

questions have been the subject of our study, which will be presented in the following sections.

WHY IS BOUNDEDNESS IMPORTANT ? As already outlined, the property implies that the ruleset be-

haves in a non-recursive way, although syntactic conditions may fail to capture this. Being able to

recognize boundedness is important in three main areas, namely the optimization of reasoning tasks

and the static analysis and reusability of the rulebase.

Boundedness impacts the termination of many algorithms used for conjunctive query answering.

At a very high level, the idea is that if a ruleset is bounded by k then forward chaining procedure can

halt after k parallel breadth-first steps thereby avoiding the verification of any terminating condition.

Boundedness has been recently identified as a key properties for computing trigger graphs that are

data structures guiding and optimizing the forward chaining reasoning process [120]. It has been

shown in particular that a rulebase admits a trigger graph if and only if it belongs to BN.

Boundedness ensures first order rewritability. Also, a proper conjunctive query rewriting operator

can be designed in a such a way that it terminates within k breadth-first steps, with k the bound for

the forward chaining [89]. In turn, this gives the decidability of conjunctive query containment under

existential rules, which, given two conjunctive queries, asks if the set of answers to the first query is

included in the set of answers to the second query, for any factbase.

Finally, recognizing boundedness is important for the reusability of rulebases set via techniques

like forgetting [124]. And indeed, one of the main motivations for the study realized on this problem

comes from a related problem raised in [112].

THE JOURNEY I first got interested by boundedness during my postdoctoral studies when looking at

the problem of modularization for RDF Triplestores [112]. After joining GraphIK, I then start working

on the subject for existential rules with Michel Leclère and Marie-Laure Mugnier team since 2015. All

the presented contributions are co-authored with them. After some preliminary work on the topic

[89] our research project on boundedness ramified in three paths. In the context of the thesis of

Stathis Delivorais that we co-supervised we focused on the study of the k boundedness property

covering a very large spectrum of chase variants [55, 56] that Stathis even further extended in his

thesis [54]. In the context of a collaboration with Michaël Thomazo we then focused on the case of

linear rules (for which chase termination and boundedness coincide) [88]. Finally, in a collaboration

with Pierre Bourhis and Sophie Tison, we worked on the characterization of boundedness in terms

of known properties of rulesets[28]. Beside technical contributions, this line of research opened the

18

investigations for boundedness in existential rules. The topic is gaining momentum [124, 120, 102]

and, as we shall discuss, several interesting questions remain to be answered ranging from the char-

acterization and decidability of boundedness to a deeper understanding of first-order rewritability

[102].

DECIDABILITY OF k-BOUNDEDNESS

In the PhD Thesis of Stathis Delivorias we focussed our attention on the ∀-k-boundedness problem,

that is, the problem of recognizing if a set of rules belongs to BN[k]X
∀ [56, 55]. This issue has also

been touched in [28]. The interest of the problem comes from the fact that, being boundedness gen-

erally undecidable for existential rules, the ∀-k-boundedness property can reveal to be a practically

useful approximation, that allows one to guess and verify a (typically small) bound for a set of rules.

The problem has been studied for the chase variants presented in Section 1.2, as well as for their

breadth-first version. To the best of our knowledge, this has been the first study on k-boundedness.

Independently, the problem has also been considered in [63].

CONTRIBUTION At a very high level, the main contribution of this work can be resumed by the fol-

lowing theorem.

Theorem 14 ([56]). Membership to BN[k]X
∀ is always decidable for the oblivious, semi-oblivious, and

restricted chase, as well as their breadth-first variants.

It is worth noting that a general approach to derive decidability results for generally undecidable

static analysis problems like boundedness is to restrict the rule language. Here, by focusing on the ∀-

k-boundedness problem we are able instead to obtain results for the whole existential rule language.

More on detail, the results we just presented are derived building on the following schema.

1. exhibit a property that a chase variant may enjoy, namely Rank Preservation by Prime Ancestors,

and show that this implies the decidability of ∀-k-boundedness

2. show that the oblivious, semi-oblivious and restricted chases, as well as all their breadth-first

versions, satisfy this property.

It is important to notice that proving point 1 gives us an even stronger result, that goes beyond The-

orem 14. And indeed, this property has been used in [54] to prove that the problem is decidable also

for other chases, including the parallel breadth-first restricted chase, the frugal chase [85] and one of

its variants, called the vacuum-chase, proposed in [54].

The complexity of membership to BN[k]X
∀ has been regarded in both [56] and [28]. Upper-bounds

range from 2EXPTIME for X ∈ {oblbf ,sobbf } to 3EXPTIME for X ∈ {obl,sob,res,resbf }. Membership is

CO-NEXPTIME-complete for Datalog∩BN[k]X
∀ .

APPROACH On the technical side, the approach to prove the decidability of boundedness followed

here can be called a critical instance approach. This is a useful scheme to decide properties related

19

obl oblbf sob sobbf res resbf eqv eqvbf

Compliance Heredity
by Factbase Restr.

X X X 7 X 7 7 7

Rank Preservation by
Prime Ancestors

X X X X X X 7 7

Table 1.2: Chase variants with respect to properties

with the execution of the chase on all possible instances, and in particular its termination [96, 34, 88].

This approach will be recurrent also in the next sections, and in particular when studying linear rules.

We allow ourselves to slightly generalize the prose of [34, 66] which we believe resumes the purpose

of critical instances at best.

“To decide a property P on a rulebase it would be extremely useful to have a special factbase F∗ in

place, let us call it critical, of a very simple form, that ensures the following: given a set of rules R, if

there is a factbase that breaks the property P, then already F∗ does. With such a critical factbase in

place, one can focus on the complement of our problem, and check if P breaks on F∗”.

In [34, 66], where chase termination is studied, the property P is the existence of an infinite (fair)

derivation (i.e., a witness of non all-instance termination). Here, since we study ∀-k-boundedness,

we will be looking for a k +1-deep derivation (i.e., a witness of non ∀-k-boundedness).

We now present a sufficient condition for a chase variant to enable a critical instance approach

for deciding ∀-k-boundedness. As we look for derivations of a certain depth, this property must

somehow concern the rank of atoms. As we look for a finite critical instance to run the chase, this

property must somehow concern also the atoms of the input factbase.

Definition 15 (Rank Preservation by Prime Ancestors). The X-chase preserves rank by prime ances-

tors if, for every X-derivation D from (F,R) producing an atom α of prime ancestors Aα ⊆ F , there is

also an X-derivation D′ from (Aα,R) producing α, and moreover rankD(α) = rankD′(α).

The notion of ancestors of an atom in a derivation is quite standard. This follows like Definition 4.

Let D be a derivation from F and R and t = (
(B,H),h

)
the first trigger of D producing the atom α.

Then the atoms in h(B) are the direct ancestors of α. Consider the transitive closure of this relation.

Then, the ancestors of α that belongs to F are called the prime ancestors of α, and denoted by Aα.

Importantly, this set is finite and its size depends on the rank of the atom α itself, as well as on the

maximum size (i.e., the number of atoms) of the body of a rule in R, we write b, hence |Aα| ≤ brank(α).

Proposition 16. If the X -chase preserves rank by prime ancestors, there is a critical instance cr(R,k)

such that the following are equivalent.

20

◦ R ∉BN[k]X
∀

◦ There exists an X-derivation from cr(R,k) of rank at least k +1

In conclusion, if X is a chase variant that preserves rank by prime ancestors, then R belongs to

BN[k]X
∀ if and only if for every factbase F of size at most bk+1, every X-derivation from (F,R) is of

depth at most k. There is a finite number of non-isomorphic factbases of fixed size. Here, the critical

instance (although arguably quite large) ranges over all such F . If the ruleset is not k +1 bounded on

all instances then this holds already for one of these.

A second sufficient condition leading to the decidability of ∀-k-boundedness has also been pre-

sented. This is a stronger property, that actually implies rank preservation by prime ancestors.

Definition 17 (Compliance Heredity by Factbase Restriction). The X-chase is compliance hereditary

by factbase restriction if, for any X-derivation D from (F,R) and subset A ⊆ F , the restriction of D

obtained by retaining only the triggers that are applicable from the atoms in A is also an X-derivation.

More from the technical side, let us mention that the need for the two properties we just presented

is justified by the fact that when restricting a derivation to the triggers that are applicable on a subset

of its initial atoms two phenomenons can occur [56]. The first is that the rank of atoms may increase

(hindering the test of a particular bound k). The second is that the compliance condition may be

broken (hindering the test of a particular variant). Table 1.2 resumes the results obtained concerning

the two presented properties. Note that the breadth-first versions of the semi-oblivious and restricted

chase do not enjoy compliance heredity. Indeed, by restricting a Xbf-derivation we may not have a

Xbf-derivation anymore, as there may be triggers that were not applicable that become applicable by

starting from the prime ancestors of an atom. This is illustrated by Example 26 and 27 of [56].

Finally, Example 18 of [56] shows that the (breadth-first) equivalent-chase does not enjoy any of

the above mentioned property. The decidability of the membership to BN[k]eqv∀ is still open. For

the case of the equivalent chase, it remains to be shown whether a critical instance exists to apply

again the resolution scheme we developed. The decidability of the existential variant of the problem

∃-k-boundedness is also open for many cases. Nevertheless, the results on ∀-k-boundedness also

imply the decidability of the existential version of the problem for some chase variant. Membership

to BN[k]X
∃ is decidable when X ∈ {obl,oblbf ,sob,sobbf }. It follows from Proposition 19 of [56] that

BN[k]X
∃ =BN[k]Xbf

∃ =BN[k]Xbf

∀ when X ∈ {obl,sob}.

THE CASE OF LINEAR RULES

We now turn our attention to the boundedness property (where the bound k is not part of the input)

and focus on an important fragment of existential rules called linear. It is worth mentioning that the

investigations carried for linear rules concerned the problem of chase termination, and the results

will be presented under this prism. Nevertheless, chase termination matters a lot for boundedness

because the two notions actually coincide for linear existential rules. A rule is called linear if its body

21

is reduced to a single atom. These rules form a simple yet important subclass of rules which gener-

alizes inclusion dependencies [58] and positive inclusions in DL-LiteR (the formal basis of the web

ontological language OWL 2 QL) [40]. Linear rules are known to be FO-rewritable [36], therefore, an-

swers to queries can always be computed by query rewriting when reasoning within this fragment of

existential rules. Nevertheless, it is still interesting to study the chase for linear rules because in many

cases the worst-case-exponential size and the unusual form of the rewritten query may rise practi-

cal efficiency issues. Hence, the materialization inferences in the data is often a good alternative to

query rewriting, provided that some chase algorithm terminates.

CONTRIBUTION At a glance, the contribution of our work is twofold. From the decidability point

of view, (1) it provides alternative proofs and novel positive results for chase termination (equiva-

lently boundedness) on single-head linear rules (that is, linear rules where the head is reduced to a

single atom). From the algorithmic point of view, (2) it presents a unified approach to decide termi-

nation exploiting a simple data-structure called derivation trees [17, 118] which gives a constructive

approach which is more likely to lead to an effective implementation.

Before detailing our results, let us contextualize it with respect to related work. Some positive re-

sults had already been obtained for linear rules, and actually for a superset of them, namely guarded

rules.6 Decidability has been shown for the oblivious and semi-oblivious chase [33] as well as for the

core chase termination on a fixed instance [74]. In passing, let us also mention that, independently

from our work, the decidability for the all-instance termination for the restricted chase on single-

head guarded rules has been shown in a recent paper [66] reducing the problem to satisfiability of

monadic second order logic.

Our approach sharply distinguishes by being constructive: we provide an algorithm that decides

termination and, given a fixed instance, can actually even compute the result of the chase. In case of

non-termination our algorithm precisely pinpoints a forbidden pattern leading to non-termination.

Summing up, our results are the following.

◦ a new proof of the decidability of semi-oblivious chase termination, using different objects

than [33]; our algorithm has the same complexity upper-bound;

◦ the decidability of the restricted chase termination, for both versions of the problem, i.e., ter-

mination of all (fair) chase sequences and termination of some (fair) chase sequence;

◦ a new proof of the decidability of the core chase termination, with different objects than previ-

ous work on the core chase termination reported in [74].

APPROACH Our resolution scheme relies again on critical instances for deciding chase termination.

Critical instances for deciding the termination of linear rules (even multi-head ones) can be made

out of atomic instances, i.e., factbases containing a single atom [36, 33, 88]. For linear rules, the

oblivious, semi-oblivious, restricted, and equivalent chase terminates on all instances if and only if

it terminates on all atomic instances. This allows us also to see that chase termination and bounded-

6guarded rules are rules where the body has an atom containing all body variables, and linear rules are trivially guarded.

22

ness coincide for linear rules. Indeed, if the X -chase terminates on an atomic instanceα then it does

so with a derivation of a certain depth kα. As there are a finite number of (isomorphic) atomic in-

stances it is possible to identify an (uniform) upper bound which is the maximum of the depths of all

possible derivations from atomic instances. Hence, chase termination and boundedness coincide.

This has been also shown in [54] and [28].

Proposition 18 ([88]). For a set R of single-head linear rules and a chase variant X ∈ {obl,sob,res,eqv}

there is a critical instance cr(R) such that the following are equivalent.

◦ R ∉CTX
∀

◦ There exists an infinite X-derivation from cr(R)

Note that this statement does not talk about fairness, which greatly simplifies the problem study.

Fairness can be neglected here because of a very important property stating that the existence of

an infinite fair derivation implies the existence of an infinite derivation (and, to stress that again,

possibly not fair) [33, 88]. When moving to multi-head linear rules, things are different. While the

property still holds for the oblivious and semi-oblivious chase, this is not the case for the restricted

and core chase. That is, there may be infinite restricted chase derivations, none of which is fair, and

this holds even for arity 2 predicates [88]. So, both in [88] and [66] the restriction on single-head rules

is really key for deciding chase termination. The case of multi-head rules is a more elusive problem

than it could seem at a first glance. For concision, in Proposition 18 we focussed on the ∀ version of

chase termination. We already recalled that CTX
∀ =CTX

∃ when X ∈ {obl,sob,eqv}. This does not hold

for the restricted chase, but the approach extends to decide membership for CTX
∃ [88].

With this characterization in hand, the next step is to search for infinite derivations. Towards this

goal, we exploit in a novel way a tree structure, called derivation tree, which was originally intro-

duced in [17, 118] to answer queries over greedy-bounded treewidth sets of existential rules. In the

remainder of the section we focus on presenting the use of derivation trees to show the decidabil-

ity of the all sequence termination problem for the semi-oblivious and restricted chase variant. We

will then conclude by discussing the extension of the approach to the other variants of the problem.

Roughly speaking our approach is to build derivation trees from critical instances and then check

for the presence of forbidden patterns within them, called unboundedness witness which can lead to

infinite derivations. Let us start by defining derivation trees.

Definition 19 ([17, 118]). Let D = (r1,h1), (r2,h2), . . . be a derivation from F and R producing a se-

quence of atoms α0,α1, . . . such that F = {α0} and αi = hsafe
i (head(ri)) for all i > 0.

The derivation tree assigned to D is a tree defined as follows.

◦ the root of the tree is α0

◦ the atom α j is the child of αi , with i < j the smallest integer such that h j (fr(r j)) ⊆ terms(αi)

The crux of the definition is that an atom which is generated by a trigger (r j ,h j) is attached to the

highest atom in the tree containing h j (fr(r j)), that is, the image of the rule frontier. Accordingly, the

terms in h j (fr(r j)) are also called the shared terms of α j . Indeed, these are the terms that an atom α j

23

q(a)

p(a, y0, z0, t0)

p(a, z0, t0, y0)

p(a, t0, y0, z0)

α0

α1

α2

α3

Chase Graph for (α0,R1)

q(a)

p(a, y0, z0, t0)

p(a, z0, t0, y0) p(a, t0, y0, z0)

α0

α1

α2 α3

Derivation Tree for (α0,R1)

q(a)

s(a, z0)

t (z0, a)

s(z0, z1)

α0

α1

α2

α3

Derivation Tree for (α0,R2)

Figure 1.1: Chase Graph and Derivation Trees of Examples 20 and 22

is sharing with its parent αi . Note that α0 has no shared terms. Finally, the positions associated with

the shared terms of an atom are called shared positions.

To illustrate derivation trees and their interest, we put is side by side with a more common struc-

ture, which is the chase graph associated to a derivation. This is build similarly as a derivation tree.

The root of the chase graph is an atomα0. But, the atomα j is the child ofαi if h j (body(r j)) =αi , that

is if αi is the atom where the rule r j generating α j has been applied. Note also that for linear rules,

the chase graph trivially reduces to a tree.

Example 20. Consider the rules r = q(x) → ∃y∃z∃t p(x, y, z, t) and rperm = p(x, y, z, t) → p(x, z, t , y)

and the knowledge base ({α0},R1) where R1 = {r,rperm}. Let D be the derivation where rules r and rperm

are applied generating the atomsα1 = p(a, y0, z0, t0),α2 = p(a, z0, t0, y0),α3 = p(a, t0, y0, x0). The chase

graph and derivation tree for the derivation are pictured in Figure 1.1.

In a nutshell, compared with the chase graph, the derivation tree makes more explicit the rela-

tionships between two inferred atoms in terms of the freshly introduced existential variables. For

example, atoms α2 and α3 in the derivation tree have the same parent α1, which is the node closest

to the root containing all of their shared terms. The idea we will exploit is that if there is a “similar”

atom that can be inferred twice along a path of the derivation tree then this will go on forever in an

infinite derivation. To detect this kind of pattern however, a basic chase graph will not suffice. As il-

lustrated in Figure 1.1,α1,α2,α3 are “similar”, but this derivation is finite. It is perhaps time to precise

the notion of “similar” atoms. This is done by the following definition of unboundedness witness.

Definition 21 ([88]). An unboundedness witness (UW) in a derivation tree is a pair of distinct nodes

(α,α′) such that:

◦ α is an ancestor of α′

◦ α and α′ have the same type

◦ α and α′ have the same shared positions

The notion of type of an atomα is standard. This is a pair (p,P) where p is the predicate of the atom

and P is a partitioning of it positions such that two positions sharing the same terms are in the same

24

partition.7 Going back to Figure 1.1, note that α1 and α3 have the same type but different shared

positions in the derivation. Hence, this couple does not form an UW. Also, as already said, note that

α2 andα3 in the chase graph do form an UW (provided that the notion of shared positions is extended

to the chase graph) but, the derivation is not infinite and this well illustrates that the structure not

adequate to decide chase termination because it does not capture well the relationships between

freshly generated nulls. Let us conclude with an example of UW in a derivation tree capturing the

existence of an infinite derivation.

Example 22. Consider the the knowledge base (α0,R2) where the ruleset R2 contains the following rules

rq nexts = q(x) → ∃z s(x, z), r s inverset = s(x, y) → t (y, x), and r t nexts = t (x, y) → ∃z s(x, z). Consider the

derivation built from the application of the rules in the given order. The derivation tree is pictured in

Figure 22. In this case, the atoms α1 and α3 form an UW. And indeed, the derivation can be extended

to an infinite (fair) derivation.

Proposition 23 ([88]). For X ∈ {sob,res}, there exists an infinite derivation from α and R if and only if

there exists an X -derivation tree associated with α and R that contains an unboundedness witness.

This gives us a constructive algorithm for verifying chase termination. Starting from every criti-

cal instance, we compute all possible derivation trees. Since there are a finite number of types and

shared positions this halts either naturally or a the first encountered unboundedness witness.

The approach can be extended to decide membership to CTres
∃ , which is equivalent to having a

finite derivation from all critical instances. Hence, for any canonical instance, we build all restricted

derivations until either (i) there is an unboundedness witness in their associated derivation tree or

(ii) there is no active trigger anymore. The chase terminates if and only if for all instances, there is a

least one restricted derivation that halts because of the second condition [88].

For the core chase termination, the notion of derivation tree is extended to that of entailment tree.

The main difference with a derivation tree is that it employs a more general parent-child relationship,

that relies on entailment rather than on rule application, hence the name entailment tree. We refer to

[88] for a detailed presentation. A rough analysis of our approach also gives us some upper-bounds

on the complexity of checking boundedness.

Proposition 24 ([88]). For single-head linear rules, membership is decidable for CTX
? , with ? ∈ {∀,∃}

and X ∈ {sob,res,eqv}. It is in PSPACE for CTsob
∀ , in CO-N2EXPTIME for CTres

∀ , in N2EXPTIME for

CTres
∃ , and in 2EXPTIME for CTeqv

∀ .

Future work here concerns the study of the precise complexity of the termination problems, except

for the case of the semi-oblivious chase for which our algorithm can be make run in polynomial space

(which is optimal [33]). For the other cases, we believe that a finer analysis can provide much tighter

bounds. We already mentioned the difficulties raised by complex-head rules and fairness. It is an

open question whether our approach can be extended to more complex classes of existential rules

from the guarded family, for which derivation trees have been introduced.

7For example, the type of p(a, x, y, x) is (p, [{1}, {2,4}, {3}])

25

CHARACTERIZING BOUNDEDNESS

We now turn to the third question that has been investigated: a characterization of boundedness in

terms of known properties of rulesets. Actually, this was even one of the first issues that had been

regarded [89] when first approaching the study of boundedness. What are the precise relationships

between boundedness, chase termination and FO-rewritability? We already mentioned that bound-

edness entails chase termination and FO-rewritability. Seen this, an intriguing question is whether

boundedness is exactly the intersection of chase termination and FO-rewritability. Why should this

be the case? The basic intuition is the following. On one side, chase termination ensures that the

knowledge base has a finite universal model. Hence, the chase does not need to generate an infinite

number of fresh existential variables to compute its output. On the other side, FO-rewritability makes

that query rewriting process will not need to generate an infinite set of rewritings. By the equivalence

of the forward and backward chaining [15], this is a sign of the fact that the existence of an atom in

the chase cannot depend (in a certain sense) on an arbitrary number of other atoms. Also suggesting

this is that BN =FO-R for datalog rules [12]. But is this the correct vision of the situation?

Seen the number of boundedness classes we defined, we need first to precise the questions that

we are aim at. At first, Example 11 warns us that we have to be careful when ∀ boundedness is con-

sidered. Indeed, the example shows a ruleset which is both in CTX
∀ and FO-R but does not belong to

BNX
∀ . We will come back to this later. So, our interest here is on characterizing the existential classes

bounded rules, for which we pose the following conjecture.

Conjecture 25. BNX
∃ =CTX

∃ ∩FO-R

CONTRIBUTION Briefly, our main result shows that the conjecture holds for the oblivious and the

semi-oblivious chase.

Proposition 26 ([28]). It holds that

◦ BNobl
∃ =CTobl

∃ ∩FO-RAF

◦ BNsob
∃ =CTsob

∃ ∩FO-R

It is important to recall that almost all known sufficient conditions for chase termination fall within

these chase variants, rich-acyclicity [75], weak-acyclicity [60] and acyclic-GRD [15], MFA [71], at the

exception of [44] which applies to the restricted chase variant. Hence, these could be exploited to-

gether with FO-rewritability to concretely verify membership to BNobl
∃ and BNsob

∃ .

These results reveal several nuances between the oblivious and the semi-oblivious case. Before

presenting them, we need to introduce two notions. The first is the subclass of conjunctive queries

called, full atomic queries, noted as AF. These are queries with a single atom and only answer vari-

ables. The second is that of forced existential rule: these are rules where all head atoms are forced

to have at least one existential variable.8 Note that every ruleset can be decomposed in a set made

8these are called fully-existential rules in [28], but they should not be confused with that of full-TGDs, that are range
restricted (or datalog) existential rules

26

only of datalog and forced existential rules and this preserves the oblivious and semi-oblivious chase

termination [28].

The case of the oblivious chase is quite peculiar, due to its weaknesses at detecting redundancies.

Let us focus on the particular case of forced existential rules. We have that chase termination even

implies boundedness, and so CTobl
∃ =BNobl

∃ . This gives a somewhat twisted result that CTobl
∃ ⊂FO-R,

that is, chase termination even leads to FO-rewritability. This does not hold for the semi-oblivious

chase, where forced existential rules do not behave differently from general existential rules.

A more significative difference is that, assuming R ∈CTobl
∃ , we have FO-R=FO-RAF, that is the no-

tion of FO-Rewritability collapses to a much stronger notion of rewritability FO-RAF ⊂ FO-R, which

asks that only full atomic queries are FO-rewritable. This again is intimately related with the vision

of a ruleset given by the datalog/forced-existential decomposition and by the way in which the obliv-

ious chase generates fresh terms. Again, none of this hold for the semi-oblivious chase.

APPROACH Again for the sake of presentation, to illustrate our approach we will focus on a single

chase variant: the semi-oblivious chase. We refer to [28] for details on the oblivious chase. To com-

pute a bound on the rank of atoms produced by the chase we build on a notion of existential distance9

for the fresh nulls inferred by the chase. Intuitively, this should account for the strata of existential

variables that have to be generated to produce a certain term.10 This notion is similar yet different

from that of rank (Definition 4) which accounts for the strata of rule applications, some of which

may generate a new atom but no new terms. As a last point of detail, we stress again that this notion

of existential distance is different for the oblivious and semi-oblivious chase. The notion of frontier

existential distance we give below is suitable to study all chases that are at least as expressive as the

semi-oblivious chase.

Definition 27. The frontier existential distance of a term t in a derivation D from F and R is

distancefr∃ (t) =
{

0 if t ∈ terms(F)

1+max{ distancefr∃ (v) } otherwise

assuming that
(
r,h

)
is the first trigger of D producing t and v is any term in h(fr(r)).

The frontier existential distance of a derivation is the maximum frontier existential distance of its

terms if the derivation is finite, and infinite otherwise.

We then build again on critical instances. It is known that both the oblivious and the semi-oblivious

chase terminate if and only if they terminate on the critical instance. It can be shown that the exis-

tential distance of a derivation from the critical instance upper bounds that of any derivation. Then,

FO-rewritability ensures that once a set of terms appear in the chase at rank, there will be a bound

for the rank at which all atoms using those terms as frontier variables appear.

9this is called existential depth in [28]. Here we rename it so as to not confuse it with the depth of derivations
10this can be assimilated with the number of levels in a derivation tree, although this notion only applies to greedy bounded

treewidth sets of rules [118]

27

Proposition 28 ([28]). When R ∈ CTsob
∃ there exists a constant k such that for all sob-derivation D

using the rules of R it holds distancefr∃ (D) ≤ k.

When R ∈ ∩FO-R, there exists a constant k such that for all sob-derivation D using the rules of R it

holds rank(D) ≤ distancefr∃ (D)×k.

Overall the characterization of boundedness in terms of chase termination and FO-rewritability

allows us to better understand the property, and delve on the interaction between chase termination

and FO-rewritability. Concerning decidability and complexity, we already mentioned that member-

ship BNX
∀ , CTX

∀ and FO-R is undecidable for general existential rules. Importantly, new decidability

and complexity results about boundedness for specific existential rules studied in the literature can

be obtained as direct corollaries of our results. This is in particular the case for classes known to be

FO-rewritable.

Corollary 29. ([28]) For any class of existential rules C ∈FO-R and chase variant X ∈ {obl,sob} it holds

that C ∈BNX
∃ iff C ∈CTX

∃ .

This implies that membership to BNobl
∃ and BNsob

∃ is PSPACE-complete for the two main classes

of FO-rewritable existential rules, namely linear and sticky. This matches also the results of [88].

Indeed, deciding CTobl
∃ and CTsob

∃ is PSPACE-complete for both [33, 88, 34]. We also get an upper

bound on the complexity of membership to BNobl
∃ and BNsob

∃ for a major class of existential rules,

namely guarded. This class is neither CTsob
∃ nor FO-R. However, membership to CTobl

∃ and CTsob
∃

for guarded rules is decidable in 2EXPTIME [33]. Then, a careful reduction from [18] allows us to set

the result. The paper shows that checking FO-rewritability for a single query under guarded rules

is in 2EXPTIME. This suffices since to show Proposition 28 one just needs to consider FO-R on a

polynomial number of queries [28].

Our quest for the characterization of boundedness showed that Conjecture 25 holds for the obliv-

ious and semi-oblivious chase. For the core chase, the conjecture BNcore
∃ = CTcore

∃ ∩FO-R or, equiv-

alently, BN =CT∩FO-R has been formulated in [89]. The reported proof is however incorrect. This

conjecture has been successively attacked by a recent work and proved true for a subset of existential

rules that form local-theories [102]. The conjecture for the core chase reveals to be elusive, and is still

open for general existential rules. The problem has not been regarded so far for the restricted chase.

Overall, our results suggest the following vision of the boundedness property. To explain that let

us introduce novel class of rules called “limited (existential) distance” LD inspired by the notion of

frontier existential distance we just defined. Again, below we consider chase variants that are at least

as expressive as the semi-oblivious chase.

Definition 30. R ∈ LDX
∃ if there exists k such that, for every factbase F , there exists a fair X-derivation

with R such that distancefr∃ (D) ≤ k.

What can be directly deduced from Proposition 28 is that BNX
∃ = LDX

∃ ∩FO-R for every chase vari-

ants which is at least as expressive as the semi-oblivious chase. Our work showed that CTsob
∃ = LDsob

∃ .

28

This again is related by the expressivity of the semi-oblivious chase [87]. We believe however that this

relationship is unlikely to hold for the restricted and core chase. For these variants the question is

whether the notions of CTX
∃ and LDX

∃ collapse when FO-R holds, that is CTX
∃ ∩FO-R= LDX

∃ ∩FO-R.

Finally, a characterization of the forall version of boundedness is still open. Example 11 shows

that BNX
∀ 6= CTX

∀ ∩FO-R for all chase variant X . The reason should be found within the notion of

FO-R, which is too powerful. In Definition 10, we introduced a stronger property that we believe is

promising for solving the case. Our conjecture is the following.

Conjecture 31. BNX
∀ =CTX

∀ ∩RT

OUTLINE Overall, the study of boundedness led us to a better understanding of the chase. We have

seen the importance of breadth-first derivations for the oblivious and semi-oblivious chase, to be

bounded uniformly over all instances. We have seen some important connections between chase

termination and FO-rewritability, whose intersection is exactly boundedness in some cases. Finally

boundedness led us to reconsider also our understanding of the first-order rewritabilty, which may

still deserve some investigations, despite the fact that it already concerns a relevant portion of the

literature on ontology-mediated query answering. The open questions we presented will be subject

of our future work.

29

1.4 REASONING ON NOSQL DATABASES

This research track stem from the will of extending the ontology-mediated query answering approach

towards JSON data and document oriented key-value stores. Simply put, seen that inferences permit

to get more out of data by handling incompleteness and intensionality, why should this be limited

only to relational and RDF databases? Two reasons in particular make this question relevant. The first

is the widespread diffusion of the JSON format. In the last years, JSON became one of the principal

standards for exchanging data, surpassing in many contexts XML (although this last one still remains

the reference in many applications and Web standards). Massive collections of JSON datasets are

produced, and this does not concern only the Web, and there is an interest at exploiting them at

best. The second reason is the ascent of a breed of database systems, called NoSQL systems. NoSQL

databases such as document oriented key-value stores are tailored for this JSON data, and recognized

for their performances. Implementations include systems as MongoDB [4] and CouchDB [1]. How-

ever, also well established solutions like PostgreSQL [6], Oracle NoSQL Database [5], IBM Informix [3]

today provide support for JSON data.

So, not only we have massive datasets to exploit, but also efficient systems that can be used as a

foundations to perform reasoning. Indeed, a very important factor for the success of ontology-based

data access has been the possibility of deploying reasoners on top of existing relational and RDF

databases. Disposing of mature database technology allows a reasoner to delegate many intermedi-

ate query evaluation steps. Query evaluation boils down to computing a physical plan for accessing

data, whose finding is a non-trivial task that has been matter of databases research for decades.

However, while the use or relational and RDF databases has been a lot investigated for querying

data with ontologies, the extension of the paradigm to NoSQL databases has been little regarded.

Handling heterogeneous data like JSON has been done typically considering a more data-integration

oriented approach, where data is mapped to an ontological schema through JSON-to-RDF mappings

[27]. The approach that has been pursued in our case was instead to add a set of rules directly on top

of the data, with the aim of better explaining and exploiting the data itself. Therefore, our main goal

here is to design decidable rule languages for reasoning on JSON data stored on NoSQL databases.

The setting we consider asks to cope with certain constraints. The first of course is to deal with

database APIs that accept only tree-like data and queries. The second is to privilege virtualization and

query rewriting based approaches. Indeed, not only the systems we target provide less rich update

facilities, and lower performances with respect to queries, but also the fact that data must have a

tree-like shape may quickly lead to an unpractical data blowup if saturation is preferred. In short, this

means that we are seeking for decidable rule languages that are also rewritable into native queries for

the NoSQL system, and that furthermore admit sound and complete sets of tree-like rewritings.

Let us mention that the framework presented here can be compared to existing languages designed

for reasoning on nested structures. For instance, Frame Logic [82, 81] provides a logical foundation

for frame-based and object-oriented languages for data and knowledge representation. The Elog

rule language [22] underlying the the Lixto system [21] is a fragment of monadic Datalog [69] that

30

{ dept : {

name : “Computer Science”

professor : [

{ name : “Alice” reachable : “yes” boss : “Charles” }

{ name : “Bob” phone : { office : “5-256” } }]

director : null } }

Figure 1.2: Key-value record example

has been specifically designed for extracting tree shaped data from HTML pages. Active XML [9] is

a formalism to model distributed systems represented as trees with function calls for tasks such as

sending, receiving and querying data (like web services). In all of these cases a forward-chaining ap-

proach for reasoning was applied. Our approach is sharply different, in that we seek at i) developing

reformulation based techniques for query answering and ii) reusing NoSQL database technology.

THE JOURNEY I started working on reasoning on JSON data after arriving in Montpellier. The first

investigations have been done with Marie-Christine Rousset and Marie-Laure Mugnier. In this col-

laboration we studied rules and queries based on paths, and focussed in particular on decidable

languages obtaining with atomic rules where either the body or the head of rules is of size one. This

work continued in a collaboration with Pierre Bourhis, Meghyn Bienvenu, Marie-Laure Mugnier and

Sophie Tison. In this context a new language based on contextual suffix rules has been proposed,

and an important connection between query-rewriting (in an OMQA setting) and word-rewriting (as

intended in tree rewriting systems) leading to decidability has been shown. This line of work contin-

ued in the context of the thesis of Olivier Rodriguez that I co-supervise with Marie-Laure Mugnier,

where the target is to reason with more expressive tree-like queries and rules.

QUERYING JSON DATA WITH RULES

To illustrate our approach, consider the JSON record in Figure 1.2 (commas are omitted). It con-

tains several different keys among which four (name, reachable, boss, office) are associated with

constant values. The key professor is associated with a sequence of two records, one for each pro-

fessor, and the key director with an unspecified value null. Key-value stores query language typi-

cally build on a set of low-level operations to query and update keys and values, like get(k), put(k,v),

and clear(k). These systems are designed and optimized for this kind of operations that can be per-

formed in parallel over large collections of records. Since we are interested in querying KV stores

with rules, we will focus on get() queries. An example of query retrieving names of professors is

get(dept.professor.name). This expression returns the values “Alice” and “Bob” once evaluated on

the record of Figure 1.2. Another feature supported by KV stores is the possibility to check structural

properties of a record before selecting some content. Thus, we further look at queries with a check()

construct like check(dept.director). These condition can also be combined to make for instance

that the get part of the query is evaluated at the only condition that the check part returns true. The

31

“yes” “Charles”

“Alice”

“CS”

“Bob”

“5-256”

dept

prof

reachable

bossname

name prof

phonename

office name

assistant

directordirector
contact

Figure 1.3: Tree associated to the record of Figure 1.2 and rule application

check() construct is particularly useful when dealing with incomplete information (values for which

we just know the existence) which is expressed by null values, like for the key director in Figure 1.2.

To illustrate the role of rules, consider the query get(dept.professor.contact.office), searching

through the contacts of all professors. Although in the record of Figure 1.2 there is a phone record

this query yields no result, simply because the key contact is not found. Here is where rules comes

into play. In fact, we could simply introduce some general knowledge and equip the store with a rule

saying that “any value for the key phone is also a value for the key contact”:

σ1 : phone −→ contact

thereby retrieving the value “5-256” associated to the key office in the subrecord. Furthermore,

rules able to assert the existence of a value can be used to reason with incomplete information. For

example, the following rule says that whenever we find a value for the key director in a record, there

exists a value for the key assistant (although this could be unspecified):

σ2 : director −→ ∃assistant

With this knowledge in hand, the evaluation of the query check(dept.assistant) on the record of

Figure 1.2 yields true, although there is no explicit value for the key assistant.

These examples illustrate the general approach we are following and how adding rules can help

exploiting JSON data. Our main question now is to define query and rule language that can be used

to reason on top of JSON data. As we already mentioned, we moreover want languages that allow us

to rewrite queries into the key-value store native query languages.

REASONING FRAMEWORK

We now present our setting for reasoning on key-value stores. A JSON record, or key-value record, is

a finite set of key-value pairs. A value is recursively defined as (i) a constant or a null, (ii) a sequence

of values [e1 . . .en], or (iii) a record of the form {(k1,e1) . . . (kn ,en)} where each ki is a distinct label

32

(among k1, . . . ,kn) called key and each ei is a value. We assume that both sequences and records are

always non-empty. A KV-store is a set of key-value records.

JSON records can be abstracted by unranked, unordered, and rooted, trees where all edges are

labelled by keys, and leaf-nodes are either labelled by constants or unlabelled (if originally a null

value was employed). All non-leaf nodes of the tree are unlabelled. A key-value pair (k,e) where e

is a sequence is represented by several edges labeled by k leading to the nodes that represent the

elements of e.11 From now on, we will simply refer to these objects as trees. We call paths the trees

which form a path. Then, to account for reasoning later, it is helpful to further extend these structures

from trees to directed acyclic graphs (DAGs). Hence, below we will denote by J a DAG. Moreover we

will write root(J) for the root of J and leaves(J) for the set of leaves of J , that is the nodes which have

no children. Figure 1.3 gives the tree representation of the record in Figure 1.2.

The principal query facilities offered by key-value stores concern the evaluation of tree-like queries,

and path queries are the staple of the query language [4, 1]. Hence, path queries and rules will be the

starting point of our study, as these are the simplest type of objects one can conceive on JSON records.

We will see however that, despite the apparent simplicity, they provide a great (and even too large)

expressivity.

In the definitions that will be following, we will recurrently use the notation L to denote a set of

nodes of the query (or the rule) that has to be mapped to some labelled leaves of J . For path queries

L trivializes to either the empty set or the set containing the leaf of P . As we will see, this facility will

become key for designing new rule languages with decidable query answering.

Definition 32. A path query is a pair q = (P,L) where:

◦ P is a path

◦ L ⊆ leaves(P)

A tuple of constants a is an answer to a query q over J if there is a rooted homomorphism h : P → J.

Furthermore, it must be that either L =; and a = () or L = {n}, h(n) is labelled by v, and a = (v).

The set of answers to q on J is denoted by ans(q, J).

It is easy to see that check queries like check(dept.director) can be seen as the queries such that

L = ; and get queries like get(dept.professor.name) are otherwise. Finally, to be compliant with

NoSQL systems, for query answering we consider rooted homomorphisms, that are simply homo-

morphisms mapping root(P) to root(J).

Let us now define path rules. In the examples, we shall use the notation Body→ Head to describe a

rule (or Context:Body→ Head later when adding contexts), but for the sake of formal presentation

we model them as two paths sharing the same root and (possibly) the same leaf.

Definition 33. A path rule is a pair σ= (B,H) where B and H are two paths sharing the same root.

When B and H also share the same leaf node, the rule is called a path inclusion.

When B and H share only the root, the rule is called a mandatory path.

11We do not represent the ordering on the elements of a sequence. Note that a position can always be simulated by a key.

33

Again, no internal node (different from the root or the leaf) can be shared by the paths. We also

consider that B and H contain at least one edge. As usual we will write body(σ) for B and head(σ) for

H . The rule σ1 presented before illustrates a path-inclusion, while the rule σ2 is a mandatory path.

The notion of rule application follows. A rule (B,H) is said to be applicable on J if there is a (not

necessarily rooted) homomorphism h : B → J . The effective application of the rule extends J with a

new path P ′ which is a copy of H specialized as follows. The root of P ′ is h(root(B)). The leaf of P ′

depends on the type of rule. If the rule is a path inclusion then the leaf of P ′ is h(n), provided that

leaves(B) = {n}. If the rule is a mandatory path then the leaf of P ′ is a fresh node. Every internal node

of P ′ is a fresh node that does not belong to J . Figure 1.3 illustrates the application of rules σ1 and

σ2 presented in the previous section, together with the path inclusion σ3 : prof.boss−→ director

stating that the “the boss of a professor is the director of the department”.

We denote by Sat(J ,Σ) the saturation of J with Σ, i.e., the parallel breadth-first application of the

rules of Σ on J [26]. The notion of query answer then follows, a ∈ ans(q, J ,Σ) if a ∈ ans(q,Sat(J ,Σ)). As

for existential rules, the query answering decision problem in this setting asks to determe whether

a ∈ ans(q, J ,Σ).

The framework we presented naturally translates into existential rules. To a tree J we can assign the

existential closure of the formula ΨJ =
(
root(xr)∧Ψedges

J ∧∧
i const(li)

)
where Ψedges

J is an encoding

of the edges of J as binary relations (one predicate is made out of each key of J), xr is the root of J in

Ψ
edges
J and the li are the labelled leaves of J in Ψedges

J . A query (P,L) translates exactly in the same

way, except for the fact that when L 6= ; (that is, we have a get-query) the leaf variable remains free,

as it becomes the answer variable of the query. A rule (B,H) is translated as ∀X
(
ΨB →∃Z .ΨH

)
where

X is the encoding of the nodes of B as variables according to Ψ, and Z is the encoding of the nodes

of H that are not in B according toΨ.

This translation is sound and complete with respect to query answering.

Proposition 34 ([26]). It holds that a ∈ ans(q, J ,Σ) if and only ifΨ(J)∪Ψ(Σ) |=Ψ(q(a)).

In the definition we noted q(a) for the path query q whose leaf value is labelled according to a.

Linking this framework with that of existential rules allows us to import and transfer decidability

results between the two settings, as we will do later.

DECIDABILITY OF QUERY ANSWERING

We start by providing an overview of the main results concerning decidability. As already suggested,

despite their apparent simplicity path rules embody a great expressivity, allowing one to encode

semi-Thue systems [106]. From this we get a first negative result showing that they are a too pow-

erful language for our purposes.

Proposition 35 ([98]). Query answering is undecidable for path rules.

This been observed also in other contexts [11, 31, 14], and it can also be shown that undecidability

already happens with paths of length two [42]. In light of this, we have to restrict the rule language

34

expressivity if we want to design a language with decidable query answering. We therefore turn our

attention to the special case of two rule languages we call atomic constraining the body (body atomic)

or the head (head atomic) to be of length one, that is, a path composed of a single key. A rule which

is both body atomic and head atomic is called a key inclusion.

Proposition 36 ([98]). Query answering is decidable for sets of head (respect., body) atomic path rules.

Query rewriting always terminates with body atomic rules, and a rewriting procedure tailored for

this setting can be easily defined [98]. Alternatively, one can also note that body atomic rules trans-

late to linear rules, for which query rewriting is known to terminate. From this, we also conclude that

query answering for body atomic rules is in AC0 for data-complexity. For head atomic rules rewriting

may not terminate. However, the rewritings produced with these rules will be of non-decreasing size.

Hence, because queries are rooted and the depth of the input record fixed by a constant d , we can

safely neglect all rewritings of size larger than d . Beside, the number of steps needed to produce one

of such reformulations is polynomially bounded. This allows us to conclude that query answering

is in NP for data-complexity. Alternative arguments for decidability can also given by looking at the

shape of these rules once translated into existential rules, and exploiting known properties. Con-

cerning head atomic rules, these generate single-head existential rules over binary predicates. These

rules are either Datalog rules or rules with a single existential variable which always appear in second

position. A specificity of the obtained rules is that they do not allow one to move a fresh null in first

position of any predicate. Hence, the translation can be carefully modified (without impacting query

answering) and existential variables replaced by constants. Following this scheme we can lower the

data-complexity of query answering so as to match that of datalog rules.

CONTEXTUAL AND SUFFIX PATH RULES

The next step has been to see how to go beyond atomic rules [26]. Towards this aim, we first equip our

rules with contexts. Because JSON records are hierarchical tree structures, a given value can assume

a different meaning depending on the context (of the record) where it is employed. From a modeling

perspective, this means that it is interesting to dispose of rules with context that apply selectively on

the record structure.

Definition 37. A contextual path rule is a pair (σ,C) where σ is a path rule and C is a (possibly empty)

context path, whose leaf node coincides with the root of body(σ)

As pointed out by the definition, we allow the context C to be empty, as for the rules presented

before. Moreover, for contextual rules we also allow the body path B of mandatory paths to be empty,

but at the only condition that the context C is not. This is illustrated by rule σ3 of Figure 1.4. This

combination can be used to add “default” mandatory paths to all nodes within a certain context.

The difference with respect to the applicability of a standard rule is that we require the existence of

a homomorphism h : C ∪body(σ) → J that properly maps the joined context and rule body. Adding

35

{ dept : {

name : “CS”

prof : {

name : “Bob”

boss : “Alice”

phone : “5 256” }

} }

“5-256”

“Alice”“Bob”

“CS”

dept

prof

office

bossname

name director

name

phone

faculty

contact

σ1 : dept : prof.boss.$ → director.name.$ σ3 : dept.faculty : ε→∃phone
σ2 : dept : director→ faculty σ4 : phone→ contact

Figure 1.4: Suffix rule application

this type of contexts preserves the decidability of query answering for body (resp. head) atomic rule-

sets. We however want to move from the atomicity condition, and look for rules that allow for paths

of arbitrary length on both sides, but that control recursion differently.

We then introduce constrained rules, which feature the capability of constraining the application

of a rule to the labelled leaves of the database only.

Definition 38. A constrained path rule is a pair (σ,L) whereσ is a path rule and L ⊆ leaves(body(σ)).

We call a path rule such that L = leaves(body(σ)) a suffix path rule.

The difference with respect to the baseline applicability of a rule is that we require the existence of

a homomorphism h : body(σ) → J that moreover maps (again, the node in) L to a labelled leaf of J .

Of course, if the rule is contextual, h must also account for the context as defined before. We stress

again the fact the leaf must be labelled. It turns out that we can combine the following three types of

rules to get a decidable rule language.

Proposition 39. Query answering is decidable for ruleset which are built from any combination of

(A) contextual key-inclusions

(B) contextual frontier suffix path inclusions

(C) contextual mandatory paths

This language is interesting as it offer several possibilities for writing rules. Type (A) rules define

inclusions between keys, hence allowing to organize them hierarchically, and moreover depending

on the context as illustrated by rule σ2 of Figure 1.4. Such rules can apply anywhere in the tree. Type

(B) rules define inclusions between paths ending on a value. They specify multiple ways of accessing

a constant value in the record. An example is rule σ1 of Figure 1.4. Note that the body of suffix path

inclusions use the symbol “$” to denote the application on a constant. Finally, type (C) rules are

mandatory path assertions. These allow one to express that some path exists in the structure, even if

its extremity is unknown. Example 1.4 illustrates the application of suffix rules. In passing, let us also

mention that the first order logic translation naturally extends to the rules we just presented [26].

36

RELATION TO EXISTING ONTOLOGY LANGUAGES By slightly modifying the FO translation of path

inclusion rules (without incidence on query entailment), we see that the rules just presented can

be translated into a fragment of existential rules with decidable query answering, namely frontier-

guarded existential rules 12. To do so, all suffix rules σ are encoded by the rules Ψσ,c1 , . . . ,Ψσ,cn ob-

tained by substituting the variable corresponding to the frontier leaf shared by the body and head

of the rule with each constant ci appearing in the input record J . This allows us to recast query an-

swering as atomic query answering over fixed-arity guarded rules, which provides an upper bound

for combined complexity, namely EXPTIME [37]. However, since the translation to frontier-guarded

rules is not data-independent, this does not yield any useful upper bound for data complexity. Even

though the rules we presented are based on paths, their logical translation does not fit into any

known DL dialect, due to the presence of contextual key inclusions (rules of type A). Were we to

consider only context-free key inclusions, then the preceding translation into frontier-guarded exis-

tential rules would be expressible in the DL ELHIO (where role inclusions capture the key inclusions,

nominals allow us to speak of constants, and inverse roles are used to capture contexts in rules of

type B and C). However, this correspondence does not yield improved complexity results either.

CONNECTION WITH WORD REWRITING SYSTEMS Settled the question of decidability, we are left with

the question of the precise complexity of query answering. Our approach to derive tighter bounds

is to rewrite an input query into a word automaton which represents in a succinct way the (possibly

infinite) set of reformulations of a check or get query. More precisely, we show that the problem of

computing the rewritings of check and get queries can be reduced to that of computing the (regular)

language of ancestors in a an extended word rewriting system [51]. Starting from a set of path rulesΣ,

we therefore define a word rewriting system Ω(Σ) which simulates the forward-chaining application

of the rules in Σ.

Before doing that, let us briefly recall word rewriting systems. A word (or string) rewriting system

Ω over a finite alphabet A consists of a finite set of word rewriting rules of the form (u1,u2) ∈ A∗×A∗.

We say that a word ω rewrites to ω′ following the rule (u1,u2) if ω = ω1 ·u1 ·ω2 and ω′ = ω1 ·u2 ·ω2,

where “·” denotes the word concatenation. We lift this notion to that of extended rewriting systems.

Definition 40 ([26]). An extended suffix rewriting systemΩ over a finite alphabet consists of a finite set

of word rewriting rules of the following form

◦ (C , a,b) where C is a regular language, and a and b two letters.

(contextual relabeling rules)

Their semantics is a follows: ω1 ·a ·ω2 rewrites toω1 ·b ·ω2 by such type of rule ifω1 belongs to C .

◦ (C ,L,R) with C ,L,R regular languages.

(contextual extended suffix rules)

Their semantics is a follows: ω · l rewrites to ω · r by such type of rule if ω belongs to C , l belongs

to L, and r belongs to R.

12these are existential rules in which an atom from the rule body contains all the frontier variables [117]

37

We say that ω rewrites to ω′ if there exists a (possibly empty) sequence of words (ω=)ω1, . . . ,ωn(= ω′)
such that ω j rewrites to ω j+1 by a rule of Ω.

The set of ancestors of a language L by Ω, denoted by AncΩ(L), is the set of words that rewrite to a

word in L.

We need some notation at this point for establishing a connection between query answering and

word rewriting. We denote by Ω(Σ) the ERS associated with a ruleset Σ. We denote by q̂ a proper

encoding of queries into words for Ω(Σ). Finally, we denote by qω the path query built from a word

of the ERS. For more details, we shall refer to Proposition 2 of [28]

Proposition 41 ([26]).
⋃

ω∈AncΩ(Σ)({q̂})
ans(qω, J) = ans(q, J ,Σ)

An important point is that AncΩ(Σ)(q̂) is a regular language. This means that, although the rewriting

set of a query may be infinite, we have a finite representation of the set of rewriting of a query by

means of an automaton. This regularity result is both key to derive the following complexity results

and for the effective implementation of the approach as it opens up for a finite representation of the

(possibly infinite) rewriting set of a query.

Theorem 42 ([26]). QA with key-inclusions, frontier suffix path inclusion, mandatory paths is

◦ in NLSpace for data complexity, with contexts;

◦ PSpace-complete for combined complexity, with contexts ;

◦ NLSpace-complete for combined complexity, without contexts.

Summing up, query answering can be reduced to (1) computing a regular language corresponding

to the ancestors of a word encoding the query in an extended rewriting suffix system associated with

the KV-rules (2) evaluating this expression on the KV-store. Note however that the evaluation of regu-

lar expressions is not directly supported by KV-stores native languages. Nevertheless, as records have

bounded depth d , one can still generate all check/get queries whose length is bounded by d , thereby

making query answering complete. In practice, however, this may be inefficient when the regular

expression contains a Kleene-∗ or large disjunctions, as many queries could be generated. This is a

known issue for semi-structured data-management systems, which is tackled by relying on a concise

structural summary of the tree, such as data-guides [67]. In our case, by relying on a structure that

simply lists all maximal paths in the tree, one can select those belonging to the language of the reg-

ular expression, which suffices to ensure complete query answering. The list of maximal paths in a

record can be computed off-line in a single traversal of the record.

38

TOWARDS TREE QUERIES AND RULES

In the context of the PhD thesis of Olivier Rodriguez, we investigate the extension of the framework

towards more expressive tree queries and rules. These results are still unpublished [110], but we

present them briefly to outline the trajectory taken by our investigations.

Of course, query answering is undecidable for the case of trees, as it subsumes the case of paths.

Nevertheless, the particular question we are interested in is whether an approach based on regular

languages can be followed to handle tree shaped queries and rules. Beside the technical contribution,

this question makes us also understanding more the extent of the connection with tree rewriting

systems, and sharpens the differences which were much less accentuated for the case of paths.

We consider the following notion of query, which generalize that given for paths.

Definition 43. A tree query is a triple q = (T,L ,x) where:

◦ T is a tree

◦ L ⊆ leaves(T)

◦ x is a sequence of answer nodes belonging to L

A tuple of a is an answer to a query q over J, if there is a rooted homomorphism h : T → J such that

◦ h(x[i]) is labelled by a[i]

◦ h(n ∈L) is labelled by a constant

Let us now define tree rules. We focus here on the case without contexts.

Definition 44. A constrained tree rule is a tupleσ= (B,H ,L) where B and H are trees sharing the same

root and a subset of their leaves, and L ⊆ leaves(B) is a set of nodes constraining the applicability of

the rule to valued leaves of the database.

A frontier-suffix rule is such that every leaf node shared by B and H belongs to L .

Extending path rules to tree rules, the notion of rule application naturally follows. This requires

the existence of a tree homomorphism h : B → J that moreover maps every node in L to a labelled

leaf of J . The application of the rule this time extends J with a tree T ′ which is a copy of H . Again, the

root of T ′ is the image h(root(B)). A leaf n of H becomes h(n) if n ∈L and a fresh node otherwise. As

before, all other nodes of T ′ are fresh.

An example of suffix tree rule application is given in Figure 1.5. The rule σ applies on all subtrees

representing a mail contact. We denote by $i the fact that a (distinct) leaf i of the rule-body must be

mapped to a valued leaf in the data ; this value can be copied into a leaf of the tree in rule head.

The first step for accounting for sets of suffix tree rules is to define a sound and complete rewriting

operator. Interestingly, there are queries that admit DAG rewritings hence, strictly speaking, that

are not tree queries. However, it can be shown that the most general rewritings of a query are all

of tree-form and this suffixes to correctly answer queries, as well as for the implementability of the

approach.

39

{ prof : {

name : “Alice”

contact : {

type : “mail’

val : “Alice@uni.ex” }

} }

“Alice@uni.ex”“mail”

“Alice”

prof

contact

valtype

name
mail

σ : contact
(
type.“mail”,val.$1

)→ mail.$1

Figure 1.5: Frontier suffix tree-rule application

Proposition 45 ([110]). For every tree query q and frontier-suffix ruleset Σ there is a sound and com-

plete set of tree-rewritings Q such that, for all tree T , ans(q,T,Σ) =⋃
q ′∈Q ans(q ′,T).

To compute the set of rewritings of a query, we developed a query rewriting operator based on the

notion of twig-unifiers [110]. Because of the correspondence with existential rules, twig-unifiers can

be seen as a special case of piece unifiers [15]. More precisely, twig-unifiers correspond to the piece-

unifiers that give all most general queries, and these are of tree form. As stated below, frontier suffix

tree rules can be considered as a staple to define a rule language for reasoning on trees.

Theorem 46 ([110]). Query answering with tree queries and frontier suffix rules is decidable.

Naturally this result also follows from the fact that frontier suffix tree rules can be translated into

frontier-guarded existential rules. To derive it, we followed however another path. The approach of

[26] has been extended so as to define a suitable notion of tree automaton capturing the most general

set of rewritings of a query [110].

Going through this process the differences between query rewriting and tree rewriting emerged.

Query rewriting works on the basis of unification, homomorphisms and logical equivalence. Tree

rewriting systems work rather with a notion closer to that of isomorphism [51]. Because of this, tree

rewriting systems are not adequate to account for redundancies in the case of trees. Note that for the

case of paths, the notions of homomorphism and isomorphism coincide, and this is the reason why

a clean connection between query rewriting and word rewriting systems can be established [26]. In

spite of this, it still holds that the finite state model of computation of tree automata can be adapted

to represent possibly infinite sets of query rewritings.

OUTLINE The investigations done so far focussed on building foundations for reasoning on JSON

data on top of NoSQL systems. An interesting perspective on this work is that it has been charac-

terized by seeking for connections with other formalisms and transfer results. From one side, we

outlined a connection with existential rules, which allow us to see our rules as frontier-guarded ones

and directly inherit decidability. These fall in the class of greedy bounded treewidth existential rules,

40

and widening this work can help at exploring more this class of rules. On the other side, it has been in-

teresting to explore the relationships with word and tree rewriting and better understand their points

of contact. As we already said, frontier suffix tree rules can be considered as a very interesting rule

language for reasoning on JSON data. There are furthermore several extensions that we can imagine

of. First of all, a notion of contexts can be added. Then, a notion of prefix rules, applying at the root

level instead of the leaves, can be developed. Furthermore, acyclicity conditions can be developed

so as to mix frontier suffix (or prefix) rules with general rules while still preserving decidability.

As part of the ongoing work in the thesis of Olivier Rodriguez we are implementing a library for

manipulating tree languages, on top of which a query rewriting system for frontier suffix rules can

be built [110]. This will allow us to develop and compare the performance of query rewriting using

different optimizations. A very preliminary version of the system has been developed for reasoning

with key inclusions over trees. In this work a technique for parallelizing the query rewriting process

has also been presented [109].

41

Figure 1.6: The MyCF Browser (video)

1.5 APPLICATIONS OF ONTOLOGIES AND RULES

This last section will presents the main applications of ontologies that we have developed, with a

particular emphasis on the lesson learned from these projects. Applications are important as they

allow one to both apply existing results and technologies as well as identify new interesting questions

that can fuel more fundamental study. We present two multi-disciplinary projects at the frontier of

knowledge representation and computer graphics. This work has been done in collaboration with

the Inria IMAGINE team in Grenoble, which specializes on image synthesis. The overall goal of these

projects has been to use ontologies and rules to enable a better exploitation of 3D models and scenes.

THE MY CORPORIS FABRICA PROJECT

The My Corporis Fabrica project has been led by Olivier Palombi, a neurophysicians affiliated to the

Imagine team. The project focussed on using ontologies and rules integrating tools enabling a bet-

ter visualization and simulation 3D models of the human anatomy [104]. An example illustrated in

Figure 1.6 is the MyCF browser [20]. This approach has been extended later to models of the human

embryo development [107]. This is a multi-disciplinary project which has seen many participants.

From the medical side, Olivier Palombi, Favier Valentin, and Pierre-Yves Rabattu worked on the med-

ical validation of the ontologies. From the computer graphics side, François Faure, Jean-Claude Léon,

Damien Rhomer and Benoît Masse worked on the development of 3D models and simulations. To-

gether with Marie-Christine Rousset, we dealt with knowledge engineering and reasoning aspects of

the project.

42

https://www.youtube.com/watch?v=10RuOwT_4cg

Figure 1.7: 3DAA Module in the SALOME Environment (hydraulic pump model)

THE 3D ASSEMBLY ANALYSIS PROJECT

The 3D Assembly Analysis project has been led by Jean-Claude Léon, Professor of mechanical en-

gineering, affiliated to the Imagine team. The project focussed on ontologies for verification and

visualization of CAD models 3D of manufactory products [122, 123, 121, 29]. The approach has been

prototyped as a plugin within the SALOME software platform developed by OpenCascade, EDF R&D

and CEA [7]. This is illustrated in Figure 1.7. This displays a CAD model of an hydraulic pump we will

use later for examples. In this collaboration, Jean-Claude Léon and Harold Vilmart (funded by EDF)

dealt with the 3D and geometry part of the project.

LESSONS LEARNED

The goal of the remainder of the section is to present the main lessons that we have learn from these

projects. Our aim is to outline (1) which type of semantic information was needed by the applica-

tions, (2) what semantic informations have been useful for and (3) the requirements of rule languages

for this applicative use case, and their relationships with the Semantic Web standards.

TYPES AND FUNCTIONS The main concern of both the MyCF and 3DAA projects has been to enable

a better exploitation of a collection of 3D models. This goes through the process of labelling the

different 3D entities (being solids or meshes) of a scene with semantic information for their type and

function. Here, type and function are intended from the application-domain point of view. Of course

the type information allows one to select all objects of a certain class. In the anatomical context, this

can be the set of bones or tendons within a particular anatomical entity (such as the leg, arm, etc). In

the mechanical context, this can be all screws of an airplane wing, or a hydraulic pump.

However, to really make the system interesting from a user perspective, domain experts soon pointed

43

Figure 1.8: Visualization by querying in MyCF

out that taxonomies for classes and properties are not enough. In both the anatomy and CAO con-

text, it is critical to point the function of an object, and to be able to query such functions. In the

anatomy context, this translate in the possibility of performing a pathological analysis. For instance,

being able to select all anatomical entities that participate in a given physiological functions, like the

gait or the stability of the knee makes one able to point anatomical entities that may be responsible

for a pathology. In the mechanical context, functions are even richer and range from micro-level

functions such as the planar support provided by a planar contact between two assembly compo-

nents to macro-level function such as determining that a set of solids accomplishes the functions of

an hydraulic pump (which does liquid flow circulation and pressure generation). This information

can be used to assist the CAD editing, as it allows one to retrieve existing objects starting from their

functional description to build new assemblies. So, beside type information (classes) functional in-

formations are a really important semantic information that were needed by both applications and

knowledge engineering must account for that.

VISUALIZATION BY QUERYING Dealing with 3D models, the best way to report to the user the result

of a query is by visualizing it. As 3D scenes can be very complex and articulated, this revealed to be

particularly helpful.

Concerning anatomy models in MyCF, one should note that body entities can largely vary in size,

and that they can be very close to each other or even hide each other, making their selection difficult.

44

(a)
(a) (b)

(b)

(a) (b)

(c)

(d)

Figure 1.9: (a-c) Visualization by querying in 3DAA: (a) piled-up components (b) groups of solids with
same form (c) geometrical contacts and interferences between solids (d) Groupings: ex-
ample of rolling bearings

Queries leveraging on knowledge and reasoning can provide a much more accurate selection. This is

illustrated for instance in Figure 1.8 on a model of the leg. The query result displays the two bones of

the leg (in yellow) where the sartorius muscle is attached. Queries can be generated from templates.

It is worth mentioning that the visualization system of MyCF has also been employed to support

anatomy teaching at Grenoble university. Beside visualization, queries have been used to select parts

of models that can be exported to create simulations [20] of the human body movements using the

SOFA tool [61]. The goal was to generate simulations of certain physiological functions such as the

gait, the flexion of the knee, etc. Queries made possible the automatic selection (through recursive

rules) of the correct set of bones, muscles, ligaments, etc, are required to set up all the 3D objects as

well as the mechanical simulation parameters.

For CAD models, the complexity of the scene can even increase when compared with that of the

human body (which is a fixed model). In Figure 1.9 several cases of visualization are illustrated. The

example (a) shows two stacked Belleville washers, which constitute a so called “piled-up component”

which can be difficult to spot in a large model by simply navigating in the CAD editor. Then (b)

illustrates groups of solids which have the same topological form (in the picture, the same color is

assigned to solids of the same form). Finally (c) illustrates geometrical interferences between solids,

as well as planar and cylindrical contacts between solids. Note that in all of the cases one needs a

module which processes the results of the queries and make them more readable at the interface

level. This is standard for computer graphic applications.

45

Finally, queries can be used to verify the coherence of models, notably verifying that certain config-

urations between solids that are implausible either from the anatomical or mechanical perspective

do not arise. This feature has been leveraged in both the MyCF and the 3DAA project.

Summing up, a rich semantic annotation of 3D models, and in particular concerning the function

of objects, opens up for the selection of components based on complex queries. This can serve as the

basis of visualization, preparation of simulations, or verification of the model coherence with respect

to the domain knowledge.

KNOWLEDGE ENGINEERING The MyCF and 3DAA projects started with the will of being compliant

with Semantic Web technologies and leverage Triplestores such as Jena [46] and Virtuso [8] for storing

and querying data. And indeed, both the MyCF and 3DAA factbases have a proper RDF representa-

tion. Nevertheless, to meet the application requirements, the rulebases developed for both projects

did not fit the typical OWL 2 fragments.

The case of MyCF. The Semantic Web promotes the reuse of publicly available ontologies thereby

capitalizing on the efforts made to build knowledge bases. Accordingly, the MyCF ontology reuses

the FMA ontology, which is considered a reference model for anatomy [111]. MyCF inherits from

FMA a taxonomy of 70.000 anatomical entities. This is however far from being sufficient for exploit-

ing 3D models of the human anatomy. MyCF needs to add part-of relations between anatomical

entities (saying for example that the sartorius muscle is part of the leg) complementing subclass-of

relations (indeed, the sartorius muscle is not a subclass of the leg). Further, MyCF needs functional

entities, such as gait, breath, and stability, that denote the functions of the human body, and are

the fundamental knowledge to explain the role of each anatomical entity. Hence, 4000 physiolog-

ical functions had to be added, and anatomical entities had to be linked with them (this has been

done manually by physicians involved in this project). Finally, on top of this, 3D scenes modelling

patient-specific anatomical entities had to be linked with the proper anatomical entities. So, impor-

tant additions had to be done to the ontology fragment imported from FMA. However, importing an

existing ontology obliges one to embrace the modelling choices that have been made with it. In this

case, the crux is that every anatomical entity in FMA is represented by a class.13 This made the ex-

tensions required for MyCF possible only using meta-modeling (also called punning) where classes

can also be seen as terms (individuals of meta-classes). This is illustrated for instance in Figure 1.8

where all yellow boxes represent classes which are linked by properties such as part-of and insert-on.

This modeling evades from first-order logic interpretations and hinders the use of reasoners with a

first-order semantic (those for OWL in particular). The language OWL 2 full (which is undecidable)

allows for domain-metamodeling but there is no reasoner for it. The approach here has been to keep

the dataset in RDF and add datalog rules over RDF triples, akin to RDF deductive triplestores [98].

RDF being a simply exchange format for triples make that Triplestores do not reject this encoding of

the factbase (while an OWL reasoner would). The resulting knowledge base contains a set of datalog

13In other ontologies, like Gene Ontology [13] terms are rather used to represent genetic entities, which makes extension
much simpler.

46

rules over RDF triples, mostly akin to transitivity and property chains. The Jena RDF engine has been

used for doing reasoning [46].

A similar situation arose in the follow up project concerning the development of the MyCF Embryo

ontology [107], which inherited from the human developmental anatomy ontology EHDAA2 [19].

Overall, in spite of this incongruence with the most widespread Semantic Web ontology languages

like OWL, query answering is evidently decidable here as reducible to datalog reasoning. We believe

that domain-metamodeling occurs in many applicative cases similar to the one just described and

we believe that extending OWL reasoners to support these cases would be helpful for seamlessly

reusing ontologies [92].

The case of 3DAA. In this project the aforementioned problems have not been encountered, be-

cause a novel ontology model for assemblies and manufactory products has been created from scratch.

To define a bit better the goal of this project we precise that, in contrast with the MyCF project, where

all 3D models have been manually linked to anatomy concepts by medical experts, the goal of the

3DAA projects was to propose an automatic method for inferring semantic annotations for solids in

a 3D scene, using a reference ontological model. This is done by a two phase approach. In the first

phase, a CAD model is analyzed from the geometric point of view with a geometric modeler such as

SALOME [7] so as to extract an RDF factbase describing the solids it contains, their interfaces, and

their properties. In the second phase, this factbase is enriched by reasoning. The originality here is

that rules are used to compute inferences that would be cumbersome to implement in the geometric

modeler. Thus, the computation is balanced between two complementary systems each focussing

on the tasks that they can handle at best (being it geometry or reasoning). The specificity of the on-

tology vocabulary here is that it uses only binary relations. The knowledge base contains a taxonomy

of 300 classes to which 100 inference rules are added. The rules contain existentially quantified vari-

ables and multiple frontier variables. Because of this, they are best expressed as existential rules,

and do not fit any OWL fragment. Moreover, rules can feature from 10 to 20 atoms in their body and

head, and this fragmentation is due to the choice of working with binary properties and from the

articulation of the ontology model. We believe that this fragmentation is a common problems when

expressing a complex business logic over binary predicates. This shows the interest of having higher

arity predicates, and raises the interesting question of optimizing reasoning in this kind of situations.

Finally, this project also shows that existential rules need extensions to be practically useful. The

application called for the use of negation and inequalities in the rule body. Moreover, the application

showed that it would be interesting to extend rules beyond a first order logic setting. An interesting

example is that of having set-variables [86, 45] to capture slightly more sophisticated mechanical

objects. Figure 1.9.(d) shows the example of the rolling bearings. These are defined as “maximal sets

of spheres, all being in contact with the same internal and external rings”.

To conclude, knowledge engineering is an important part of the process of deploying applications

based on ontologies. Standards constitute a valid starting point for building ontologies, but can also

bring constraints that the deployment of real applications needs to overcome. We advocate that

existential rules and their extensions are a valid framework for building applications.

47

2 RESEARCH PROJECT

We conclude this dissertation with a presentation of our vision of the forthcoming research activities.

PROJECT IMPLEMENTATION The presented research program will be carried on in the context of

several actions in which I am involved with a principal role. I lead the ANR CQFD project (2019-24)

and I will lead the Inria team BOREAL (creation planned for January 2022), which will be the follow

up of the Inria GraphIK team, of which I am currently a member. Both projects strongly commit

to the investigation of reasoning on heterogeneous and federated data - the topic I will be targeting.

Another important initiative is the participation in the Inria-DFKI Project R4Agri (2021-24) focussing

on reasoning on heterogenous data for Agriculture. Finally, I lead the Inria ADT project proposal

(Aide pour Développement Technologique, Inria engineer funding) and supervise the development

activity for a major version of Graal, a library for reasoning on heterogeneous and federated data.14

In parallel with these activities, I have discussions and exchanges with companies interested in rule-

based data integration to seek for synergies between industry and research on the topic of reasoning.

The project that will be presented will therefore draw from a long term vision of reasoning on data

englobing all of these initiatives.

KNOWLEDGE AND RULE-BASED LANGUAGES

FOR EXPLOITING HETEROGENEOUS AND FEDERATED DATA

FACING THE DATA VARIETY ISSUE Current information systems are grounded on the exploitation of

data coming from an increasing number of sources. Handling the variety of data becomes a more and

more challenging issue for enterprises and institutions willing to get new insights from their data.

To illustrate, it is well known that the most challenging issue for data-scientists is that of accumu-

lating high quantities of high-quality data to run their mining and analytic tasks. In reason of this,

it has been regularly reported that they spend most of their time gathering, cleaning, preparing and

organizing data from numerous sources.15 In many contexts, it has also been recognized that the

bottleneck for exploiting a data source is the translation of the (unstructured) domain-expert ques-

tions into sets of (structured) database queries or programs [91]. This process can take up to days

depending on the organisation, largely encompassing the time of running queries or data analysis

task themselves. Finally, errors in data or data processing over multiple databases can lead to bad

analysis supporting wrong decisions thereby raising the urgence for tracing data, and justify and ex-

plain answers to queries.

As an illustrative case of data-variety, let us consider the MIMIC project for healthcare [79]. MIMIC

is one of the largest electronic patient record datasets. It has been released to the scientific commu-

nity by the Beth Israel Deaconess Hospital in Boston with the aim of promoting the creation of tools

14The proposal has received a very positive evaluation. For administrative reasons, the funding has been postponed after
the creation of the BOREAL Inria team. In spite of these delays, the development started in fall 2020 with other credits.

15The 2017 and 2018 Data Scientist Report, CrowdFlower.

48

for preventing mortality in hospital intensive care units. The case of data variety here is well illus-

trated by Stonebraker in a seminal article on the topic of heterogeneous and federated data [116].

MIMIC contains data acquired from autonomous databases, which have been deployed by indepen-

dent units of the hospital. For example, it contains i) patient meta-data (such as date of birth, ethnic-

ity, admission date) retrieved from structured data sources, ii) time-stamped data sourced from bed-

side activities like diagnosis, medications, and other clinical procedures obtained by monitoring the

patient’s activity and iii) progress notes written by doctors and nurses combined with prescription

information drawn from semi-structured and unstructured data. Not only MIMIC data is diverse,

but at the moment of exploiting it, users want queries which may (1) draw each time from a different

source or (2) cross query multiple sources at once. For example, before analyzing clinical timelines

issued from a given source, target patients can be selected by considering their admission records

or clinical profiles from another database [50, 62]. There is therefore the need to integrate all of this

data in a unified view to allow for its exploitation, and this comes at a cost.

Following Lenzerini [91], let us outline some of the main issues when facing the data variety issue.

To to implement a data-service Q (here intended as a query or a data-centric program) one should

cope with several challenges.

- Data sources relevant for Q may be heterogeneous. That is, they may exhibit high differences

with respect to data models, languages, and the systems that are actually in use. Not to mention the

fact that data can differ also with respect to the level of refinement, certainty, and dynamicity. The

heterogeneity issue is not new per se [126, 125], but it is magnifying of importance in our times, as in-

formations is produced everywhere, and there is an increasing interest in integrating disparate data.

With the diversification of the nature of data and the possible type of target applications the available

data management solutions are constantly growing and evolving. However, in spite of heterogeneity,

one must be able to implement a data-service Q on each type of data source.

- Data sources relevant for Q may periodically undergo a corrective maintenance, and more gen-

erally through evolutions, thereby departing from their initial design [91]. Evolutions are triggered

by new applicative requirements. Indeed, databases are always coupled with applications, and when

applications evolve, databases must follow. Concretely, typical operations consist at altering the data

structures (being them relations, records, graphs) their fields, their data types, as well as integrity and

dependency constraints. Operational databases may be huge and have for example from hundred to

thousands tables [80]. The result is that ”the data stored in different sources and the processes oper-

ating over them tend to be redundant, mutually inconsistent, and obscure for many users” [91]. What

should be observed here is that maintaining a data-service Q over a data-source is an unavoidable,

time-consuming, and code-degrading activity.

- Data sources relevant for Q may need to be cross-queried. As organizations grow and ramify in

different departments and units, it is inevitable that their information systems become more and

more scattered into autonomous databases, each designed, deployed, and tuned, for a specific pur-

pose. This is well illustrated by the example of MIMIC. The same holds also for scientific datasets,

when the problems of interest scales, the datasets begin to multiply. This however creates a per-

49

petual tension with decision making process which requires information to be reunited. Moreover,

when multiple autonomous databases are cross-queried or interoperating, explanations for query

results become more and more important to point out the reason for errors.

For all these reasons, providing a data-service in a data-variety setting is a significant challenge.

On the user side: it can be difficult for domain-experts and data-analysts to retrieve relevant in-

formation without knowing data storage details, and more specifically translate their analysis ques-

tions into structured database queries because of the complexity of independent frameworks and

languages. This makes domain-expert users dependent on IT-experts for accessing data [91].

On the administrator and data curator side: it can be time-consuming to implement data-services

on top of independet heterogeneous sources, implement data-services that include multiple sources,

maintaining data-services after source corrective maintenance, export and reuse data consistently,

provide justification for results of queries and point out errors. This results in data-services that are

coded and maintained across sources, which is costly to deploy, maintain, and debug.

These are among the main barriers for the exploitation of heterogeneous and federated data. Hence,

we believe that these issues calls for integration paradigms allowing one to better understand data,

mechanisms for automatically accessing and querying that adapt to the different types of sources, as

well as declarative languages to drive the whole data processing.

KNOWLEDGE-BASED DATA MANAGEMENT

In this research project, we pursue the Knowledge-Based Data Management (KBDM) approach to

attack the grand challenges posed by the exploitation of heterogenous and federated data. The idea

of KBDM is to orchestrate access to information through a three-layer architecture, which is common

to data-integration [90] and Ontology-Based Data Access (OBDA) [105].

This is constituted by a data-source level, a mapping level, and a knowledge-base level, as il-

lustrated in Figure 2.1. The data level contains the databases to exploit.16 At the opposite, the

knowledge-base (KB) level is the one which is i) closer to the users and ii) where the business logic is

performed through reasoning with expressive rule languages. The mapping layer lies in between: its

purpose is to select and transform the data populating the KB. The KB is built around a conceptual

model (or ontological model) of the application domain to which conform both the factbase and the

rulebase. The factbase is instanciated by the mappings. Importantly, the rulebase considered here

is a set of existential rules (and extensions thereof) which can model not only ontological knowledge

and database constraints, but more generally declarative data processing needed by the applications.

What really characterizes KBDM is the idea of leveraging on (1) formalized domain-knowledge and

(2) rule-based languages to effectively exploit data. Let us explain the importance of both.

16 At the source level, the heterogeneity of data can be qualified in many aspects. It is important to mention that the main
focus here is on the integration of structured and semi-structured data. Unstructured data like text is out of scope.

50

Rulebase

Query

Mappings

Analysis / Decision

Data Data Data

Knowedge
Base

Factbase

Figure 2.1: Architecture of a KBDM System

KNOWLEDGE. Leveraging domain-knowledge allows curators to bind source data with concepts and

relations of the ontological vocabulary of the KB. This brings a very strong semantics for the raw data.

By “strong semantics” here we mean that the semantics is both related to the application domain

(hence meaningful for domain-experts) and logical (hence it enables reasoning). This paves the way

to a more principled reuse of data, with benefits for both users and data curators (administrators).

First of all, this allows one to palliate to the aforementioned difficulties in accessing data. Concretely,

domain-experts and data-analysts can formulate a high level query at the conceptual level using the

ontological vocabulary, which frees them to know data storage details. This makes them less depen-

dent from IT-experts in translating their questions into queries. Evidently, making users independent

from IT-experts in exploring data shortens the analysis time. But, more generally, allows for a wider

reuse of information by opening up the information system to more users [91, 105].

Another net advantage of using mappings is that queries and data-services expressed at the KB

level are insensitive to changes in the design or the number of the underlying sources. This is very

important for mitigating the costs of maintaining data services. Typically, when one source evolves all

data-services using that source must be maintained. In KBDM, a data-service is rather expressed at

the conceptual level, and then automatically translated to every source of interest by using mappings.

Therefore, the maintenance activity is circumscribed to the mapping level - while the data-services

are left untouched. It is also important to notice that building on a domain-ontology is key to guide

the specification of data services. Indeed, replacing domain knowledge with a model too closed to

the raw data could degenerate again to multiple implementations of the same data service (although

this time at the conceptual level) taking with it all the issues we mentioned before.

Summing up, leveraging knowledge provides a strong semantics which leads to a better access and

reuse of source data and eases the maintenance of data services - and even more if facing data variety.

51

RULE-BASED LANGUAGES. Existential rules (and extensions thereof) can be seen as a uniform high-

level declarative language to perform data processing, which moreover opens up for explainability

of queries and traceability of data. It is well acknowledged that declarativity allows for greater mod-

ularity and reusability. For instance, using rules mitigates one of the problems of deploying data-

services on domain-specific applications, which is that of encoding domain-knowledge inside each

data-service implementation. Existential rules settle the basis for very expressive data-processing

which, despite sharing the same logical foundations, can go beyond queries mediated by ontolo-

gies or database constraints. A very recent example illustrating recursive queries for analytics is [72].

Finally, rule based reasoning supports explainability by design. This is particularly helpful when

needed to understand wether a wrong query result is caused by the data or by the processing.

Summing up, the result of adopting the KBDM approach is that of having a unified view of a collec-

tion of sources, in the spirit of data-integration, where domain-specific knowledge and mappings set

the basis for data access, and rules are the explainable declarative language driving data processing.

KBDM AS FEDERATED SYSTEMS The classic approach for handling heterogeneous data consists at

centralizing all information in a datawarehouse with ETL-style (Extract, Load, Transform) proce-

dures. However, the focus of this projects leans more towards federated systems, that are middleware

abstracting over a set of autonomous databases. One of the main interests of federated databases

is the possibility of integrating diverse sources without necessarily moving the data or changing the

platforms (although, as we shall discuss next, this approaches can be mixed with materialization in

KBDM). By leaving data at the level of sources, it is possible to quickly integrate autonomous system

without embarking on the expensive creation and deployment of a datawarehouse. Delegating data

processing to the underlying autonomous systems also allows each database to perform at best on

the tasks it has been originally deployed and tuned for (for example a NoSQL system may perform

better at querying JSON data than a datawarehouse integrating the same type of data). Federated

systems also allows one to better deal with frequently updated sources as these hold the latest fresh

copy of data.

CONVERGING EXISTING PARADIGMS KBDM is the convergence of well known paradigms for exploit-

ing data such as data-integration, ontology-based data access, and ontology-mediated query answer-

ing. With respect to data-integration (and data exchange) OBDA considers that the notion of target

schema (typically featuring functional and inclusion dependencies) is replaced by that of an ontology

[91]. With respect to OBDA, the KBDM approach wants to stress the fact that the rule base allows one

to define possibly very complex data processing, on top of an ontological vocabulary. As a matter of

fact, OBDA primarly focussed on rulebases made by Description Logic ontologies supporting virtual-

ization, notably DL-Lite [41]. In KBDM, the aim is to study existential rules, as well as the extensions

of this formalisms called by data processing.

52

ON TOP OF DATABASE SYSTEMS An important factor of success for OBDA systems has the possibility

of deploying them on top of existing database systems developed and optimized over many decades.

The same holds for KBDM. There is a very large number of efficient SQL, NoSQL, graph-based, solu-

tions that are available and provide extremely performant access to data. As such, the focus of this

project will be on reasoning on top of existing databases and on best reusing them. It is also worth

noting that a new breed of multi-store systems (also called polystores) has emerged during the last

years [103]. These systems tackle the problem of efficiently accessing data specifically in federating

settings by optimizing query and data access. Polystores add to the critical mass of database tech-

nologies available to build efficient federated KBDM systems that allow for intelligent access to data.

DIALOGUING WITH ML SYSTEMS It is not rare today to see a tendency in opposing reasoning and

machine learning approaches. Yet, many advocate that the future will be in the combination of the

two [68]. Although this is not the main focus of the research project presented here, let us mention

that KBDM systems and machine learning systems can dialog and support each other. We foresee

at least three types of interactions. The first, is to use KBDM systems to integrate and prepare the

data needed by machine learning tasks. The second, is to use machine learning algorithms to gen-

erate data which feeds a KBDM system. The third is to inductively learn rules for reasoning, or learn

decision trees that can be converted as rules, which again can feed a KBDM system. Making calls to

machine learning algorithms (as if they where external services) during forward chaining reasoning

is also among the possibilities, but it requires to extend the expressivity of the typical rule languages.

RESEARCH PROGRAM

The study of KBDM systems with existential rules and their extensions opens to really many issues.

In this section, we shall present the questions that constitute the principal focus of our attention for

the next years.

◦ KBDM needs a study of architectures exploring the configurations of the three layers of the

systems namely sources, mappings and knowledge base, best suiting applicative use-cases.

◦ KBDM needs foundational work for better understanding the decidability and complexity trade-

offs of reasoning with queries, rules, constraints and mappings.

◦ KBDM needs efficient algorithms for query answering based on approaches mixing material-

ization and virtualization, and leveraging more on the data-source capabilities.

◦ KBDM needs means to introspect the system in place, in particular concerning the traceability

and explanation of answers to queries.

◦ KDBM needs implementations and testing assessing the efficiency of the proposed techniques,

and more generally a platform for realizing software developments and experimental analysis.

53

ARCHITECTURES AND MAPPING LANGUAGES

The realm of possibilities in heterogeneous and federated data management calls for a study of

KBDM architectures ranging over several configurations. This includes the case where the system

accesses a single source (through multiple mapping assertions) to the case where a federation of in-

dependent sources is targeted, to the more complex case of multi-level architectures, where KBDM

systems progressively refining information are stacked and connected through expressive mapping

layers (i.e., one KBDM system is seen as a source for another KBDM system) in order to achieve com-

plex data manipulations.

When designing a KBDM architecture, an important question is to define the mappings required

for integrating heterogeneous data. A mapping is a data-access directive expressed according to the

API of the source, then used to instantiate some relations of the vocabulary of the knowledge base.

From the data-model point on view, we are interested in considering mappings allowing one to han-

dle data differing in content, format, and platforms, in particularly for federations of NoSQL systems.

However, beside structural heterogeneity, also the refinement of data pose interesting challenges.

Motivated by ongoing collaborations with INRAE (French National Research Institute for Agron-

omy) and the R4Agri project (2021-2024) with DFKI (German Institute for Artificial Intelligence), we

plan to study the mappings needed to integrate data which differ in terms of refinement. Taking

agronomy as the application domain, we realize that the spectrum of data refinement can vary from

raw sensor data, to operational data, to “smart-data” produced with added value provided by experts.

Integrating smart-data, can imply the manipulation and transformation of complex objects. A con-

crete example we are concerned with is that of production and transformations itineraries, found in

many INRAE applications [30, 77]. Integrating such types of information may call for more expres-

sive mapping languages, in particular enriched with recursion. At the opposite side, in a project with

DFKI we find that handling time-stamped data produced by sensors on a field may require aggre-

gations over time windows in mappings as well as adding so called interpretation capabilities [73].

Interpretation capabilities make that the mapping result is possibility specified as a function of the

knowledge base (in addition of course of the source data), that is, data injected in the knowledge

base depends on previous content of the knowledge base. This lifts the expressivity of mappings,

and raises interesting questions in terms of reasoning and implementations.

FOUNDATIONS OF RULE LANGUAGES

The main source of expressivity of a KBDM system comes from its rulebase. In line with the research

we presented at the beginning of this dissertation, the analysis and design of rule languages for rea-

soning on data is an issue to which we shall pay particularly attention. First of all, we will continue

investigating the fundamental decision problem for existential rules, notably query answering, chase

termination, boundedness and First-Order rewritability. Several open questions have already been

presented in Section 1.3. We will also continue seeking for decidable extension of rule languages

for reasoning with tree-like data. This project has been motivated by the work on JSON databases

54

presented in Section 1.4, but it actually can also be seen as a way of studying fragments of the gbts

(greedy bounded treewidth) class of existential rules [119]. Then, going towards more advanced data

processing needed by KBDM, an important research direction will be the extension of existential

rules with capabilities that are really needed by applications manipulating data such as functions,

builtin-predicates, stratified-negation, and aggregates. Among these extensions our interest will be

in particular for aggregates and set variables, whose practical utility has been illustrated by the 3DAA

project in Section 1.5 for instance. These features are known for sensibly increasing the complex-

ity of the reasoning tasks, and the goal here is to import existing results and study practically useful

extensions of existential rules that still retain decidable query answering.

ALGORITHMS AND OPTIMIZATIONS FOR QUERY ANSWERING

Reasoning opens up for a better exploitation of data. However, the expressivity of rules makes also

computation more involved. Reasoning therefore requires optimizations. We present the approach

that to us should be followed to make KDBM reasoning efficient from an algorithmic standpoint.

DATA AND MAPPINGS IN-THE-LOOP Moving from the KB to the KBDM setting we add the dimension

of data, and with it that of mappings. In KBDM optimizing reasoning calls for studying the interplay

between queries, rules, mappings, and data. Indeed, it has been shown that, even in the presence of

a single source, reasoning should not be agnostic to the underlying databases [32], and rather take

advantage of their capabilities to maximize the performance gainings. This generally helps at further

pruning the rewriting set of a query or to limit the materialization phase by avoiding multiple integra-

tions of the same information. This issue has been investigate in the OBDA setting for DL ontologies,

and our goal is to investigate it for the case of existential rules which has been little considered so far.

PHYSICAL-LEVEL REASONING Rule language express data processing at the conceptual (or ontolog-

ical) level. In analogy with the evaluation of queries in database systems, conceptual-level reasoning

should however be decoupled from physical-level reasoning. As for databases, it should be up to the

reasoner to determine its own physical data-access strategy. Although this seems evident, it is exactly

the opposite of what is done for instance by common implementations of the chase, where rules ex-

pressed at the conceptual level are applied as they are. Hence physical-level reasoning is mirroring

conceptual-level reasoning. From a performance perspective, this could lead to suboptimality by (1)

applying useless rules, (2) computing too many joins, (3) slowing down the update of the knowledge

base. The issue of (1) is long known and led to strategy like semi-naive evaluation [10], GRD-driven

evaluation [15], datalog-first [87] to mention few. The issue of (3) has been studied recently in [120].

We plan to focus on (2) and in particular on the reshaping and composition of rules for generating

data layouts and reasoning-plans able to speed up the task.

SELF-TUNING REASONERS Although deciding non-trivial properties of existential rules is generally

undecidable, the amount of sufficient conditions developed ensuring termination of forward or back-

55

ward chaining made us progress in the understanding of logical reasoning within this language, and

we argue that this constitutes a solid ground to handle a large portion of rulesets found in real ap-

plications. It is time to go further in the refinement of self-tuning reasoners that are able to chose a

complex strategy depending on the input data and rules. Surprisingly, there are very few proposals

that go in this sense. Toward this goal, the first is to design and choose efficient combined approaches

for query answering [93]. Such approaches rely on judiciously mixing materialization, virtualization,

saturation and reformulation. In passing, let us mention that, beside the methodological interest,

this is also a need encountered by one of the companies using rule-based engines we are discussing

with.

FACTORIZED REPRESENTATIONS Finally, we plan to consider the use of factorized representations of

materialized facts or rewritten queries, introducing knowledge compilation techniques for rules [83]

as well as features of regular languages [26]. This can be helpful to approach the gbts class of exis-

tential rules [117], whose models feature repeating patterns which we already show are found when

reasoning on NoSQL databases. This can allow one also to go beyond conjunctive queries as the

main language for query rewriting, but also fact saturation, thereby storing compact representations

of the chase result.

EXPLANATIONS

Justifying the results of queries serves to achieve a better understanding of data and processing. The

need for justifications even increases when federating multiple systems. We choose to illustrate this

towards the biais of an industrial application of rules (edited by a company we are discussing with).

This consists of a data-service classifying accountancy expenses (belonging to one among several

classes). Data comes from different operational databases and classification is done by several hun-

dreds of rules. Importantly, roughly half of the rules are written by hand by experts, while the remain-

ing half have been inductively learned. Despite the efficiency of the automatic classification system

in place, in this context it is paramount to be able at any time to justify the classification outcomes.

First, it is important to outline the provenance of the data, notably the origin (data-source) and the

time of import. Indeed, the data sources of the company may be more or less complete and trust-

worthy in their data export at a given time. Then, it is important to explain the sequence of rules that

supports the classification, and show the contradictions (especially when these concern conflicts be-

tween manually edited and learned rules). Indeed, when finding an unexpected answer to a query

the critical problem is to know whether this is due to a problem in the data (and hence under the

responsibility of the entity produced the data) or in the system processing the data (and hence under

the responsibility of the entity who edited the software). Hence, having mechanisms for explaining

answers to queries, tracing the original data needed for answering the query is key to attack this kind

of problems. In all of applicative contexts like this one, correctness of information largely comes be-

fore fast processing. We plan to import and investigate existing provenance-based frameworks [115]

into existential rules. The first step is to use metadata (origin, subjects, confidence, quality, time va-

56

lidity, etc) to ensure the traceability of facts in the knowledge base. Second, the system should be able

to handle explanation questions, asking why an answer is a result to a query or why a result expected

by the user is not an answer to a query. In a KBDM system, the additional difficulty is that relevant

data is not at the user level, hence mappings have to be incorporated in the explanation process.

We believe that these features are key for making existential rules a valid declarative data-processing

language from the practical perspective.

SOFTWARE DEVELOPMENT

The foundational and algorithmic study of KDBM systems we target will be complemented by a

software development activity pursuing the ambitious goal of developing and maintaining an open-

source Java library for KBDM with existential rules (and extensions thereof). This project is related

with the ADT project we mentioned at the beginning of the section, and builds on the Graal library [2]

which is the main software of the GraphIK team. The current version of Graal focuses on reasoning

over existential rules knowledge bases, and the goal is to prepare and maintain a major version of this

tool tackling the issues raised by heterogeneous and federated data. The new version of Graal, will

be designed to be a general platform for implementing and testing algorithms and optimizations for

KBDM. Beside the fact that the tool will target efficiency by including state of the art techniques for

reasoning on data within KDBM systems, there are several points that make this project distinctive.

(Genericity) the tool will be designed to allow one to implement and compare different reasoning

techniques - in the same platform. This is important for accelerating prototyping and doing mean-

ingful experimental comparisons, by isolating specific factors in order to explain performance shifts.

(Reusabilty) by capitalizing on the experience built in the development of the first version of Graal,

an important goal is to make the new version a glassbox by working on the readability of the code, its

extensibility and reusability, which is a necessary feature for attracting users willing to develop novel

extensions, but also to ease the long term maintainability of the tool.

(Expressivity) None of the current available tools is targeting efficient algorithms for existential

rules with heterogeneous and federated data, although proposals for existential rules (e.g., VLog [43],

RDFOx [100]) or heterogeneity (e.g., Ontop [39]) or federation (e.g., Corese [52]) already exist.

It is worth mentioning that the project started in fall 2020 with the hiring of Florent Tornil as an

engineer working on the next version of the Graal tool. Not only having such a tool will constitute a

scientific contribution, but it will also be instrumental in building novel applications and establishing

new collaborations both at the industrial (with the companies we are discussing with) and research

level (within projects like CQFD and R4Agri).

57

REFERENCES

[1] (Software) CouchDB. couchdb.apache.org.

[2] (Software) Graal. graphik-team.github.io/graal.

[3] (Software) IBM Informix. www.ibm.com/products.

[4] (Software) MongoDB. www.mongodb.com.

[5] (Software) Oracle NoSQL Database. nosql.oracle.com.

[6] (Software) PostgreSQL. www.postgresql.org.

[7] (Software) SALOME. www.salome-platform.org .

[8] (Software) Virtuoso. virtuoso.openlinksw.com.

[9] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive Active XML. In PODS, 2004.

[10] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical Level.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1995.

[11] Serge Abiteboul and Victor Vianu. Regular path queries with constraints. J. Comput. Syst. Sci.,

58(3):428–452, June 1999.

[12] Miklos Ajtai and Yuri Gurevich. Datalog vs first-order logic. 1994.

[13] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael

Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool

for the unification of biology. Nature genetics, 25(1):25–29, 2000.

[14] Jean-françois Baget. Représenter des connaissances et raisonner avec des hypergraphes: de la

projectiona la dérivation sous contraintes. Université de Montpellier II. Phd Thesis, 2001.

[15] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with ex-

istential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.

[16] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël Thomazo. Walk-

ing the complexity lines for generalized guarded existential rules. In IJCAI 2011, pages 712–717,

2011.

[17] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël Thomazo. Walk-

ing the complexity lines for generalized guarded existential rules. In Toby Walsh, editor,

IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,

Barcelona, Catalonia, Spain, July 16-22, 2011, pages 712–717. IJCAI/AAAI, 2011.

[18] Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. First-order rewritability of

frontier-guarded ontology-mediated queries. In Proceedings of the Twenty-Seventh Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swe-

den., pages 1707–1713, 2018.

[19] Jonathan Bard. A new ontology (structured hierarchy) of human developmental anatomy for

the first 7 weeks (c arnegie s tages 1–20). Journal of anatomy, 221(5):406–416, 2012.

[20] Armelle Bauer, Federico Ulliana, Ali-Hamadi Dicko, Benjamin Gilles, Olivier Palombi, and

58

https://couchdb.apache.org/
https://graphik-team.github.io/graal
https://www.ibm.com/products/informix?mhsrc=ibmsearch_a&mhq=Informix
www.mongodb.com
https://docs.oracle.com/en/database/other-databases/nosql-database/
www.postgresql.org
https://www.salome-platform.org/
virtuoso.openlinksw.com

François Faure. My Corporis Fabrica: making anatomy easy. In SIGGRAPH Studio, pages 16–1,

2014.

[21] Robert Baumgartner, M. Ceresna, Georg Gottlob, M Herzog, and V. Zigo. Web information

acquisition with lixto suite: a demonstration. In ICDE, 2003.

[22] Robert Baumgartner, Sergio Flesca, Georg Gottlob, and Christoph Koch. Visual web informa-

tion extraction with lixto. In VLDB, 2001.

[23] Bartosz Bednarczyk, Robert Ferens, and Piotr Ostropolski-Nalewaja. All-instances oblivious

chase termination is undecidable for single-head binary tgds. IJCAI, 2020.

[24] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies. J. ACM,

31(4):718–741, September 1984.

[25] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti,

Donatello Santoro, and Efthymia Tsamoura. Benchmarking the chase. In Proceedings of the

36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017,

Chicago, IL, USA, May 14-19, 2017, pages 37–52, 2017.

[26] Meghyn Bienvenu, Pierre Bourhis, Marie-Laure Mugnier, Sophie Tison, and Federico Ulliana.

Ontology-mediated query answering for key-value stores. In IJCAI: International Joint Confer-

ence on Artificial Intelligence, 2017.

[27] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Martin Rezk, and Guohui Xiao. OBDA Be-

yond Relational DBs: A Study for MongoDB. In Proceedings of the 29th International Workshop

on Description Logics, Cape Town, South Africa, April 22-25, 2016., 2016.

[28] Pierre Bourhis, Michel Leclère, Marie-Laure Mugnier, Sophie Tison, Federico Ulliana, and

Lily Gallois. Oblivious and semi-oblivious boundedness for existential rules. In IJCAI 2019-

International Joint Conference on Artificial Intelligence, 2019.

[29] Flavien Boussuge, Christopher M Tierney, Harold Vilmart, Trevor T Robinson, Cecil G Arm-

strong, Declan C Nolan, Jean-Claude Léon, and Federico Ulliana. Capturing simulation intent

in an ontology: Cad and cae integration application. Journal of Engineering Design, 30(10-

12):688–725, 2019.

[30] Patrice Buche, Juliette Dibie-Barthelemy, Liliana Ibanescu, and Lydie Soler. Fuzzy web data

tables integration guided by an ontological and terminological resource. IEEE Transactions on

Knowledge and Data Engineering, 25(4):805–819, 2011.

[31] Peter Buneman, Wenfei Fan, and Scott Weinstein. Path constraints in semistructured

databases. Journal of Computer and System Sciences, 61(2):146–193, 2000.

[32] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. Teaching an RDBMS about on-

tological constraints. Proceedings of the VLDB Endowment, 2016.

[33] Marco Calautti, Georg Gottlob, and Andreas Pieris. Chase termination for guarded existential

rules. In Tova Milo and Diego Calvanese, editors, Proceedings of the 34th ACM Symposium on

Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4,

2015, pages 91–103. ACM, 2015.

59

[34] Marco Calautti and Andreas Pieris. Oblivious chase termination: The sticky case. In 22nd

International Conference on Database Theory, ICDT 2019 (to appear), 2019.

[35] A. Calì, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expressive

relational constraints. In Proceedings of the Eleventh International Conference on Principles of

Knowledge Representation and Reasoning, KR’08, page 70–80. AAAI Press, 2008.

[36] A. Calì, G. Gottlob, and T. Lukasiewicz. A General Datalog-Based Framework for Tractable

Query Answering over Ontologies. In PODS’09, pages 77–86, 2009.

[37] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering

under expressive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

[38] Andrea Calı, Georg Gottlob, and Andreas Pieris. Query rewriting under non-guarded rules.

Proc. AMW, 2010.

[39] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Mar-

tin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Ontop: Answering sparql queries over

relational databases. Semantic Web, 8(3):471–487, 2017.

[40] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo

Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite

family. J. Autom. Reasoning, 39(3):385–429, 2007.

[41] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo

Rosati. Tractable reasoning and efficient query answering in description logics: The DL-Lite

family. J. Autom. Reasoning, 39(3):385–429, 2007.

[42] Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus. Verification of evolving graph-

structured data under expressive path constraints. In 19th International Conference on

Database Theory, 2016.

[43] David Carral, Irina Dragoste, Larry González, Ceriel Jacobs, Markus Krötzsch, and Jacopo Ur-

bani. Vlog: A rule engine for knowledge graphs. In International Semantic Web Conference,

pages 19–35. Springer, 2019.

[44] David Carral, Irina Dragoste, and Markus Krötzsch. Detecting chase (non)termination for ex-

istential rules with disjunctions. In Carles Sierra, editor, Proceedings of the Twenty-Sixth In-

ternational Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August

19-25, 2017, pages 922–928. ijcai.org, 2017.

[45] David Carral, Irina Dragoste, Markus Krötzsch, and Christian Lewe. Chasing sets: How to use

existential rules for expressive reasoning. In IJCAI, 2019.

[46] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and Kevin

Wilkinson. Jena: Implementing the semantic web recommendations. In Proceedings of the

13th International World Wide Web Conference on Alternate Track Papers & Posters, WWW Alt.

’04, page 74–83, New York, NY, USA, 2004. Association for Computing Machinery.

[47] A. K. Chandra and M. Y. Vardi. The implication problem for functional and inclusion depen-

dencies is undecidable. SIAM J. Comput., 14(3):671–677, 1985.

60

[48] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in re-

lational data bases. In Proceedings of the 9th Annual ACM Symposium on Theory of Computing,

May 4-6, 1977, Boulder, Colorado, USA, pages 77–90, 1977.

[49] Michel Chein and Marie-Laure Mugnier. Graph-based Knowledge Representation - Computa-

tional Foundations of Conceptual Graphs. Advanced Information and Knowledge Processing.

Springer, 2009.

[50] Peinan Chen, Vijay Gadepally, and Michael Stonebraker. The BigDAWG monitoring frame-

work. In High Performance Extreme Computing Conference (HPEC), 2016 IEEE, pages 1–6. IEEE,

2016.

[51] Hubert Comon, Max Dauchet, Florent Jacquemard, Denis Lugiez, Sophie Tison, and Marc

Tommasi. Tree automata techniques and applications. 1997.

[52] Olivier Corby and Catherine Faron Zucker. Corese: A corporate semantic web engine. In In-

ternational Workshop on Real World RDF and Semantic Web Applications, International World

Wide Web Conference, 2002.

[53] Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable

optimization problems for database logic programs (preliminary report). In ACM Symposium

on Theory of Computing, pages 477–490, 1988.

[54] Stathis Delivorias. Chase Variants & Boundedness. (Caractérisation des Bornes de Chaînage

Avant en Règles Existentielles (Datalog+)). PhD thesis, University of Montpellier, France, 2019.

[55] Stathis Delivorias, Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana. On the k-

boundedness for existential rules. In International Joint Conference on Rules and Reasoning,

pages 48–64. Springer, 2018.

[56] Stathis Delivorias, Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana. Characterizing

boundedness in chase variants. Theory Pract. Log. Program., 21(1):51–79, 2021.

[57] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Maurizio Lenzerini and

Domenico Lembo, editors, Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS 2008, June 9-11, 2008, Vancouver, BC,

Canada, pages 149–158. ACM, 2008.

[58] Ronald Fagin. A normal form for relational databases that is based on domians and keys. ACM

Trans. Database Syst., 6(3):387–415, 1981.

[59] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa. Data exchange: semantics

and query answering. Theoretical Computer Science, 336(1):89–124, 2005.

[60] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: semantics

and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[61] François Faure, Christian Duriez, Hervé Delingette, Jérémie Allard, Benjamin Gilles, Stéphanie

Marchesseau, Hugo Talbot, Hadrien Courtecuisse, Guillaume Bousquet, Igor Peterlik, and

Stéphane Cotin. SOFA: A Multi-Model Framework for Interactive Physical Simulation. In Yohan

Payan, editor, Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, volume 11 of

61

Studies in Mechanobiology, Tissue Engineering and Biomaterials, pages 283–321. Springer, June

2012.

[62] Vijay Gadepally, Jeremy Kepner, and Albert Reuther. Storage and database management for big

data. In Big Data: Storage, Sharing, and Security, pages 15–41. Auerbach Publications, 2016.

[63] Lily Gallois. Dialogue entre la procédure du chase et la réécriture sur les mots. (Dialog between

chase approach and string rewriting system approach). PhD thesis, University of Lille, France,

2019.

[64] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. That’s all folks! llu-

natic goes open source. Proc. VLDB Endow., 7(13):1565–1568, August 2014.

[65] Tomasz Gogacz and Jerzy Marcinkowski. All–instances termination of chase is undecidable.

In International Colloquium on Automata, Languages, and Programming, pages 293–304.

Springer, 2014.

[66] Tomasz Gogacz, Jerzy Marcinkowski, and Andreas Pieris. All-instances restricted chase termi-

nation. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, pages 245–258, 2020.

[67] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and optimiza-

tion in semistructured databases. In Proceedings of the 23rd International Conference on Very

Large Data Bases, VLDB ’97, pages 436–445, San Francisco, CA, USA, 1997. Morgan Kaufmann

Publishers Inc.

[68] Georg Gottlob. Knowledge processing, logic, and the future of ai. Vienna World Logic Day

Lecture, 2021.

[69] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive power of languages

for web information extraction. J. ACM, 10, 2004.

[70] Gösta Grahne and Adrian Onet. Anatomy of the chase. Fundam. Inform., 157(3):221–270, 2018.

[71] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka,

Boris Motik, and Zhe Wang. Acyclicity notions for existential rules and their application to

query answering in ontologies. J. Artif. Intell. Res., 47:741–808, 2013.

[72] Jiaqi Gu, Yugo H. Watanabe, William A. Mazza, Alexander Shkapsky, Mohan Yang, Ling Ding,

and Carlo Zaniolo. Rasql: Greater power and performance for big data analytics with recursive-

aggregate-sql on spark. In Proceedings of the 2019 International Conference on Management of

Data, SIGMOD ’19, page 467–484, New York, NY, USA, 2019. Association for Computing Ma-

chinery.

[73] L Hallau, M Neumann, B Klatt, B Kleinhenz, T Klein, C Kuhn, M Röhrig, C Bauckhage, K Ker-

sting, A-K Mahlein, et al. Automated identification of sugar beet diseases using smartphones.

Plant pathology, 67(2):399–410, 2018.

[74] André Hernich. Computing universal models under guarded tgds. In Alin Deutsch, editor, 15th

International Conference on Database Theory, ICDT ’12, Berlin, Germany, March 26-29, 2012,

pages 222–235. ACM, 2012.

62

[75] André Hernich and Nicole Schweikardt. Cwa-solutions for data exchange settings with target

dependencies. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, June 11-13, 2007, Beijing, China, pages 113–122, 2007.

[76] Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi. Undecidable

boundedness problems for datalog programs. Journal of Logic Programming, 25(2):163–190,

1995.

[77] Liliana Ibanescu, Juliette Dibie, Stéphane Dervaux, Elisabeth Guichard, and Joe Raad. Po2-a

process and observation ontology in food science. application to dairy gels. In Research Con-

ference on Metadata and Semantics Research, pages 155–165. Springer, 2016.

[78] Yannis E. Ioannidis. A time bound on the materialization of some recursively defined views. In

Proceedings of the 11th International Conference on Very Large Data Bases - Volume 11, VLDB

’85, page 219–226. VLDB Endowment, 1985.

[79] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad

Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,

a freely accessible critical care database. Scientific data, 3:160035, 2016.

[80] Evgeny Kharlamov, Dag Hovland, Martin G. Skjæveland, Dimitris Bilidas, Ernesto Jiménez-

Ruiz, Guohui Xiao, Ahmet Soylu, Davide Lanti, Martin Rezk, Dmitriy Zheleznyakov, Martin

Giese, Hallstein Lie, Yannis E. Ioannidis, Yannis Kotidis, Manolis Koubarakis, and Arild Waaler.

Ontology based data access in statoil. J. Web Sem., 44:3–36, 2017.

[81] Mickael Kifer. Rules and Ontologies in F-logic. In RW, 2005.

[82] Mickael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and frame-

based languages. J. ACM, 1995.

[83] Mélanie König, Michel Leclere, and Marie-Laure Mugnier. Query rewriting for existential rules

with compiled preorder. In IJCAI: International Joint Conference on Artificial Intelligence, pages

3006–3112, 2015.

[84] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo. Sound, complete

and minimal ucq-rewriting for existential rules. Semantic Web, 6(5):451–475, 2015.

[85] George Konstantinidis and José Luis Ambite. Optimizing the chase: Scalable data integration

under constraints. Proc. VLDB Endow., 7(14):1869–1880, 2014.

[86] Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost. Attributed description

logics: Reasoning on knowledge graphs. In IJCAI, pages 5309–5313, 2018.

[87] Markus Krötzsch, Maximilian Marx, and Sebastian Rudolph. The power of the terminating

chase (invited talk). In 22nd International Conference on Database Theory (ICDT 2019). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[88] Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, and Federico Ulliana. A single ap-

proach to decide chase termination on linear existential rules. In ICDT 2019-International

Conference on Database Theory, 2019.

[89] Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana. On bounded positive existential

63

rules. In Maurizio Lenzerini and Rafael Peñaloza, editors, Proceedings of the 29th International

Workshop on Description Logics, Cape Town, South Africa, April 22-25, 2016., volume 1577 of

CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[90] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the Twenty-

first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5,

Madison, Wisconsin, USA, pages 233–246, 2002.

[91] Maurizio Lenzerini. Managing data through the lens of an ontology. AI Magazine, 39(2):65–74,

2018.

[92] Maurizio Lenzerini, Lorenzo Lepore, and Antonella Poggi. Metamodeling and metaquerying

in OWL2QL. Artificial Intelligence, 292:103432, 2021.

[93] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query answering in the description

logic el using a relational database system. In IJCAI, volume 9, pages 2070–2075, 2009.

[94] David Maier, Jeffrey D Ullman, and Moshe Y Vardi. On the foundations of the universal relation

model. ACM Transactions on Database Systems (TODS), 9(2):283–308, 1984.

[95] Jerzy Marcinkowski. Achilles, turtle, and undecidable boundedness problems for small

datalog programs. Society for Industrial and Applied Mathematics Journal on Computing,

29(1):231–257, 1999.

[96] Bruno Marnette. Generalized schema-mappings: from termination to tractability. In Jan

Paredaens and Jianwen Su, editors, Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 - July 1, 2009, Prov-

idence, Rhode Island, USA, pages 13–22. ACM, 2009.

[97] Marie-Laure Mugnier. Data access with horn ontologies: Where description logics meet exis-

tential rules. Künstliche Intell., 34(4):475–489, 2020.

[98] Marie-Laure Mugnier, Marie-Christine Rousset, and Federico Ulliana. Ontology-mediated

queries for nosql databases. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 30, 2016.

[99] Jeffrey F Naughton. Data independent recursion in deductive databases. Journal of Computer

and System Sciences, 38(2):259–289, 1989.

[100] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. Rdfox: A highly-

scalable rdf store. In International Semantic Web Conference, pages 3–20. Springer, 2015.

[101] Adrian Onet. The chase procedure and its applications. PhD thesis, Concordia University,

Canada, 2012.

[102] Piotr Ostropolski-Nalewaja, Jerzy Marcinkowski, David Carral, and Sebastian Rudolph. A jour-

ney to the frontiers of query rewritability. CoRR, abs/2012.11269, 2020.

[103] M Tamer Özsu and Patrick Valduriez. Principles of distributed database systems, 4th Edition,

volume 2. Springer, 2020.

[104] Olivier Palombi, Federico Ulliana, Valentin Favier, Jean-Claude Léon, and Marie-Christine

Rousset. My corporis fabrica: an ontology-based tool for reasoning and querying on complex

64

anatomical models. Journal of biomedical semantics, 5(1):20, 2014.

[105] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-

erini, and Riccardo Rosati. Linking data to ontologies. J. Data Semant., 10:133–173, 2008.

[106] Emil L. Post. Recursive unsolvability of a problem of thue. In Journal of Symbolic Logic, page

1–11, 1947.

[107] Pierre-Yves Rabattu, Benoit Massé, Federico Ulliana, Marie-Christine Rousset, Damien

Rohmer, Jean-Claude Léon, and Olivier Palombi. My corporis fabrica embryo: An ontology-

based 3d spatio-temporal modeling of human embryo development. Journal of biomedical

semantics, 6(1):1–15, 2015.

[108] Swan Rocher. Querying Existential Rule Knowledge Bases: Decidability and Complexity. (Inter-

rogation de Bases de Connaissances avec Règles Existentielles : Décidabilité et Complexité). PhD

thesis, University of Montpellier, France, 2016.

[109] Olivier Rodriguez, Reza Akbarinia, and Federico Ulliana. Querying key-value stores under

single-key constraints: Rewriting and parallelization. In International Joint Conference on

Rules and Reasoning, pages 198–206. Springer, 2019.

[110] Olivier Rodriguez, Marie-Laure Mugnier, and Federico Ulliana. Tree rewriting under con-

straints (technical report). 2021.

[111] Cornelius Rosse, José L Mejino, Bharath R Modayur, Rex Jakobovits, Kevin P Hinshaw, and

James F Brinkley. Motivation and organizational principles for anatomical knowledge rep-

resentation: the digital anatomist symbolic knowledge base. Journal of the American Medical

Informatics Association, 5(1):17–40, 1998.

[112] Marie-Christine Rousset and Federico Ulliana. Extracting bounded-level modules from deduc-

tive rdf triplestores. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,

2015.

[113] Sebastian Rudolph and Markus Krötzsch. Flag & check: Data access with monadically defined

queries. In Proc. 32nd Symposium on Principles of Database Systems (PODS’13), pages 151–162.

ACM, June 2013.

[114] Yehoshua Sagiv. On computing restricted projections of representative instances. In Proceed-

ings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS

’85, page 171–180, New York, NY, USA, 1985. Association for Computing Machinery.

[115] Pierre Senellart. Provenance and probabilities in relational databases. SIGMOD Rec., 46(4):5–

15, 2017.

[116] Michael Stonebraker. ACM SIGMOD blog: The case for polystores, 2015.

[117] M. Thomazo, J.-F. Baget, M.-L. Mugnier, and S. Rudolph. A Generic Querying Algorithm for

Greedy Sets of Existential Rules. In KR, 2012.

[118] Michaël Thomazo. Conjunctive Query Answering Under Existential Rules - Decidability, Com-

plexity, and Algorithms. PhD thesis, Montpellier 2 University, France, 2013.

[119] Michaël Thomazo, Jean-François Baget, Marie-Laure Mugnier, and Sebastian Rudolph. A

65

generic querying algorithm for greedy sets of existential rules. In Gerhard Brewka, Thomas

Eiter, and Sheila A. McIlraith, editors, Principles of Knowledge Representation and Reasoning:

Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012.

AAAI Press, 2012.

[120] Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani. Materializing knowledge

bases via trigger graphs. Proceedings of the VLDB Endowment, 2021.

[121] Federico Ulliana, Jean-Claude Léon, Olivier Palombi, Marie-Christine Rousset, and François

Faure. Combining 3d models and functions through ontologies to describe man-made prod-

ucts and virtual humans: Toward a common framework. Computer-Aided Design and Applica-

tions, 12(2):166–180, 2015.

[122] Harold Vilmart, Jean-Claude Léon, and Federico Ulliana. Extraction et inférence de connais-

sances à partir d’assemblages mécaniques définis par une représentation cao 3d. In EGC: Ex-

traction et Gestion des Connaissances, pages 21–32, 2017.

[123] Harold Vilmart, Jean-Claude Léon, and Federico Ulliana. From cad assemblies toward

knowledge-based assemblies using an intrinsic knowledge-based assembly model. Computer-

Aided Design and Applications, 15(3):300–317, 2018.

[124] Zhe Wang, Kewen Wang, and Xiaowang Zhang. Forgetting and unfolding for existential rules.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[125] Gio Wiederhold. Mediators in the architecture of future information systems. Computer,

25(3):38–49, March 1992.

[126] Gio Wiederhold. Intelligent integration of information. In Proceedings of the 1993 ACM SIG-

MOD international conference on Management of data, pages 434–437, 1993.

66

	Research Activity
	Overview
	The Existential Rule Framework
	Existential Rules Boundedness
	Reasoning on NoSQL Databases
	Applications of Ontologies and Rules

	Research project

