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RESUMO

Descoberta de Motifs Restritos no Espaço-Tempo

Muitos fenômenos podem ser observados e organizados como uma sequência de
observações em uma linha do tempo que pode ser modelada como uma série temporal.
Uma área relevante que está sendo explorada na análise de séries temporais é a de
descoberta de padrões. Padrões são subsequências de séries temporais relacionadas a
algumas propriedades ou comportamentos especiais. Um padrão particular que ocorre
um número significativo de vezes em séries temporais é denominado motif. Vários
fenômenos importantes de uma série temporal apresentam comportamentos diferentes
quando observados em pontos do espaço (por exemplo, séries coletadas por sensores e
IoT) e são melhor modelados como séries espaço-temporais, em que cada série temporal
é associada a uma posição no espaço. Um padrão espaço-temporal é uma sequência de
eventos que são limitados no espaço e no tempo. Encontrar padrões que são frequentes
e restritos em um espaço e tempo pode nos permitir compreender como um fenômeno
ocorre.

Diversos trabalhos foram desenvolvidos com o objetivo de identificar motifs em
séries temporais, entretanto não foram identificados trabalhos que abordassem técnicas
para dados espaço-temporais. Nesta tese comparamos diferentes abordagens de
identificação de motifs em séries temporais com suas principais diferenças. Propo-
mos dois métodos para a identificação automática de motifs restritos no espaço-tempo
em séries espaço-temporais, o CSA e o CSTMP . Comparamos experimentalmente os
métodos propostos com dois outros métodos alternativos: a técnica Matrix Profile e a
combinação da técnica Matrix Profile e DBScan. Nossos resultados mostram que CSA

e o CSTMP são inovadores e obtém resultados superiores as técnicas estado da arte
para séries temporais e suas adaptações para séries espaço-temporais, sendo avaliados
em dois datasets.

Palavras-chave: Séries Espaço-Temporais; Motifs; Sequências Restritas



ABSTRACT

Discovering Motifs Restricted in Space-Time

Many phenomena can be observed and organized as a sequence of observations
on a timeline that can be modeled as a time series. A relevant area that is being explored in
time series analysis is pattern discovery. Patterns are subsequences of time series related
to some special properties or behaviors. A particular pattern that occurs a significant
number of times in time series is called motif. Several important phenomena of a time
series present different behaviors when observed at points in space (for example, series
collected by sensors and IoT) and are best modeled as space-time series. Each time
series is associated with a position in space. A space-time pattern is a sequence of events
that are limited in space and time. Finding patterns that are frequent and restricted in
space and time can allow us to understand how a phenomenon occurs.

Several works have been developed to identify motifs in time series. However,
studies that address spatiotemporal data techniques have not been identified. In this
thesis, we compare different approaches to identifying motifs in time series with their main
differences. We propose two methods for automatically identifying space-time restricted
motifs in space-time series, the CSA and CSTMP . We experimentally compare the pro-
posed methods with two other alternative methods: the Matrix Profile technique and the
ensemble of the Matrix Profile and DBScan techniques. Our results show that CSA and
CSTMP are innovative and obtain results that outperform the state-of-the-art techniques
for time series and their adaptations for space-time series, being evaluated in two datasets.

Keywords: Spatial-Time Series; Motifs; Restricted Sequences
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1- Introduction

Under the data deluge scenario, data scientists are pushed to provide new ways

for efficiently collecting, storing, processing, and organizing a large amount of data [Tsai

et al., 2015]. We are immersed in a scenario with massively growing datasets from many

sources, types, and formats. The analysis of this data can reveal useful information and

significant insights about the domain. Such scenario opens a set of research opportunities

involving knowledge discovery [Han et al., 2011; Shumway and Stoffer, 2017]. In this

context, many phenomena can be observed and organized as a sequence of observations

in a timeline that can be modeled as a time series, enabling discoveries.

A relevant area that is being explored in time series analysis is finding patterns

[Patel et al., 2002]. Patterns are sub-sequences of time series that are related to some

special properties or behaviors [Han et al., 2007]. Earlier efforts on frequent patterns

discovery focused on finding association rules on transactional databases. In this context,

a transaction is a set of items and we want to extract frequent subsets of items, also called

itemsets, according to a given threshold. The problem of pattern mining successively

evolved to augmented versions, according to data characteristics and analytics objectives,

including sequential pattern mining where the temporal dimension of records is considered.

It concerns, for instance, successive transactions belonging to the same customer [Han

et al., 2007].

The discovery of pattern enables the understanding of some specific behaviors ob-

served in time series, in many areas of knowledge, such as weather prediction [McGovern

et al., 2011], wind generation [Fan and Kamath, 2015], image recognition [Chi et al., 2012],

seismic amplitude [Cassisi et al., 2013]. A vast number of patterns discovery techniques,

methods, and algorithms have been developed [Mueen, 2014; Serrà and Arcos, 2016;

Torkamani and Lohweg, 2017; Yeh et al., 2018]. They include discovering patterns of a

particular/variable length [Li and Lin, 2010; Tang and Liao, 2008], or without constraints

(parameter-free algorithms) [Nunthanid et al., 2012], or in multivariate time series [Minnen

et al., 2007; Yeh et al., 2017a].

However, various important time-series phenomena present different behaviors

when observed at points of space (for example, series collected by sensors and IoT
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devices) and are better modeled as spatial-time series, in which each time series is

associated to a position in space [Fu, 2011]. This scenario motivates the definition of new

techniques for pattern mining, dedicated to spatio-temporal datasets [Fu, 2011; Mooney

and Roddick, 2013]. Under such scenarios, some patterns might not be discovered when

we restrict the analysis to the time-only dimension. The challenge becomes to identify

regions of space and time where the patterns are frequently observed. Finding patterns

that are frequent in a constrained space and time, i.e., finding spatial-time patterns, may

enable us to comprehend how a phenomenon occurs.

Consider as an example the spatial-time series dataset at the seismic surveys. In

some applications, there is a need for analyzing the subsoil structure of a large terrain area

to discover specific interesting information like specific boundaries between geologic layers

[Zhou, 2014]. For that purpose, a set of receivers are placed in specific fixed positions of a

large terrain area and each of them captures the values reflected by the different materials

of the subsoil. In this way, each receiver indicates the position of a time series where the

time is related to the subsoil depth in a form that the earlier values are more superficial.

This operation collects a huge volume of three-dimensional spatial-time data that needs to

be analyzed to find specific interesting patterns. In this domain, finding a frequent pattern

of textures in the entire dataset is of little interest. However, some patterns (Figure 1)

occurring in a constrained depth interval and a specific space location may lead to highly

valuable lithology change indicator such as horizons, indicated by the numbers 1, 3 and 4

(which stand for kind of layers) or bright spots, indicated by the number 2 (potential areas

of hydrocarbon accumulation) [Zhou, 2014].
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Figure 1 – Seismic Interpretation (adapted from Borges et al. [2020] )
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This work addresses such problem by presenting approaches to discover patterns

that are frequent on a constrained time and space and may not be frequent in the entire

dataset. Defining the input data as a collection of spatio-temporal series, where each time

series is a collection of observations and each observation is a continuous (non-discrete)

value, we aim to find all patterns that are frequent in a constrained space and time. To

tackle this problem, we propose in this work two evolving approaches.

At first, we propose an approach to discover and rank motifs in spatial-time series,

denominated Combined Series Approach (CSA). CSA is based on partitioning the

spatial-time series into blocks, combining subsequences of spatial-time series. Motifs are

validated according to both temporal and spatial constraints and ranked according to their

entropy, the number of occurrences, and the proximity of their occurrences.

At the second approach, we introduce the Constrained Spatio-Temporal Matrix

Profile (CSTMP ) algorithm. CSTMP it is an adaptation of the Matrix Profile approach

Yeh et al. [2017b] in order to discover motifs that are restricted in space-time in spatio-

temporal data that span two spatial dimensions. In CSTMP , the distance between the

neighboring space-time series’ sub-sequences is calculated iteratively by identifying and

grouping the motifs that are directly reachable by density with each other.

We evaluated our approaches on a synthetic and on the seismic dataset. They

were able to identify spatial-time patterns that could not be identified using the traditional

approach. Besides, they were able to prioritize patterns that were meaningful according to

their number of occurrences and quality. Our approaches outperform traditional methods

designed only for time series, managing to find sets of motifs with different configurations

as demonstrated in the synthetic dataset experiments. Moreover, the identified patterns on

the seismic dataset correspond to candidate areas for seismic horizons and bright spots

that are of high value for domain experts.

In addition to this introduction, this work is organized as follows. Chapter 2 presents

the background for time series data mining and the Related Works from Motif Discovery,

including the main concepts, evidencing the differences with the solution proposed in

this work. Chapter 3 formalizes the problem definition. Chapter 4 presents the CSA,

our first approach to discovery spatial-time motifs. In Chapter 5 we deeper our analysis

and present CSTMP , which is an evolved approach based on Matrix Profile. Chapter 6

describes and explains the experiments using CSA and the CSTMP . Finally, chapter 7

presents the conclusion and future work.
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2- State of the art

In this chapter, we introduce the general concepts about time series, spatial-time

series, sub-sequences, sliding windows, normalization, and data indexing. Concepts

related to motif discovery. In addition, state of the art motif discovery techniques are

explored.

2.1- Background

A time series t is an ordered sequence of values in time: t =< t1, t2, · · · , tm >

, ti 2 R, where each ti is a value, |t| = m is the number of elements in t, and tm is the

most recent value in t [Shumway and Stoffer, 2017].

A subsequence is a continuous sample of a time series with a defined length.

The p
th subsequence of size n in a time series t, represented as seqn,p(t), is an ordered

sequence of values < tp, tp+1, . . ., tp+n�1 >, where |seqn,p(t)| = n and 1  p  |t| � n.

Subsequences enable the analysis of data samples to evaluate some local properties

[Chiu et al., 2003].

Sliding windows consist in exploring all possible subsequences of a time series

[Keogh and Lin, 2005; Lampert et al., 2008]. Sliding windows produce a set of subse-

quences of the same length. A sliding windows of size n for a time series t is a function

swn(t) that produces a matrix W of size (|t| � n+ 1) by n. Each line wi in W is the i-th

subsequence of size n from t. Given W = swn(t), 8wi 2W , wi = seqn,i(t). This concept

is widely used in time series analysis to make comparisons between subsequences to

find their similarities [Van Hoan and Exbrayat, 2013].

Figure 2 depicts the application of the above definitions to a time series. The blue

line represents a time series t, the red line represents a subsequence from the time series,

and the green dashed lines are examples of some of the subsequences extracted from

time series based on sliding windows.

A spatial-time series st can be described as a pair (t, p), such as a time series t
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Figure 2 – An example of a time series, sub-sequences, and sliding windows [Borges
et al., 2020]

with an associated position p [Shekhar et al., 2016]. The position can be its geographical

coordinates or any other reference that can represent the place where data has been

observed. If the position is a function of time, it is a trajectory spatial-time series. Otherwise,

it is a permanent spatial-time series. In this work, we are interested in permanent spatial-

time series and for the sake of simplicity, from now on, we are calling them spatial-time

series.

Data preprocessing techniques are key activities for enabling or improving the

quality of data mining. In time series context, data is usually a continuous numerical value.

For pattern discovery, some methods do not process them efficiently [Daw et al., 2003].

Due to that, during pattern discovery, two data preprocessing techniques are commonly

applied in sequence: (i) data normalization and (ii) Symbolic Aggregate Approximation

(SAX).

Normalization is commonly used to enable the effectiveness of time series com-

parison methods. One of the most common normalization methods is z-score [Keogh and

Ratanamahatana, 2005]. As a result of this normalization method, the normalized time se-

ries has zero as average and one as standard deviation. Equation 1 (a) describes z-score

normalization, where ti is an observation of the time series t, µt is the average, �t is the

standard deviation of the time series, and t
0 is the transformed time series. Additionally,

the min-max is another normalization method that applies a linear transformation to the

original data, where the minimum value (min(t)) and the maximum value (max(t)) are

used to transform each value ti to another value t
0
i

in a range varying from [0, 1], as shown

in Equation 1(b) [Ogasawara et al., 2009].
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t
0
i
= (ti�µt)

�t
t
0
i
= ti�min(t)

max(t)�min(t)

(a) (b)
(1)

SAX is an indexing technique. It consists primarily in partitioning the domain of a

variable into ranges such that each range is associated with a particular symbol [Lin et al.,

2007]. The SAX alphabet size defines the number of partitions for the domain. Thus, all

values are replaced by their respective associated symbol. Given an alphabet (a1, · · · , an)

of size n, the values of time series t are divided into n ranges ([�1,�1], · · · , [�n�1,1])

according to Gaussian function (with different sizes, but same probability), such that each

value ti is mapped to an alphabet value ak, where 1  k  n [Lin et al., 2003].

2.2- Motif discovery

Given a sequence q and time series t, q is a motif in t with support �, if and

only if q is included in t at least � times. The length of a motif q (|q|) is also known

as word size. Formally, given a sequence q and a time series t where W = sw|q|(t),

motif(q, t,�) $ 9 R ✓ W , (|R| � �), such that 8wi 2 R, wi = q [Mueen, 2014]. An

important property regarding motifs is that the repeated subsequence is not previously

known and is discovered when scanning the entire data. It can be discovered by making a

comparison between subsequences that are obtained using sliding windows [Chiu et al.,

2003].

Many methods proposed in the literature to discover motifs in time series are

computationally intensive [Patel et al., 2002]. Due to that, many works aim to improve the

effectiveness of motif discovery and reduce the computational resources needed. Such

a process requires some data preprocessing such as normalization and indexing before

running the motif discovery algorithms to increase the performance and precision of results

[Mueen, 2014].

There are some main approaches to discover motifs, such as (i) brute force; (ii)

heuristic-based; and (iii) matrix profile. The brute force approach is the simplest method. It

has a high computational cost, especially when used to discover sequences of greater size

in large datasets [Mueen et al., 2009]. It is indicated for discovering sequences of smaller
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size [Li and Nallela, 2009]. In this method, the coverage and accuracy are complete since

it makes all possible comparisons between all subsequences of a time series. For the

sake of our work, we can group time series motif discovery approaches according to the

exactness (exact or approximate), length (fixed or variable), and dimension (single or

multiple).

The brute force approach is the simplest method, but it has a high computational

cost, specially when used for large dataset [Mueen et al., 2009]. It is indicated for low

dimensional data [Li and Nallela, 2009]. In this method the coverage and accuracy is

complete since it makes all possible comparisons between all subsequences of a time

series.

The random projections approach was proposed to handle large dataset reducing

dimensionality taking samples of data aleatory [Li and Nallela, 2009]. It optimizes the

execution time and reduces the computational consumption in identifying motifs [Buhler

and Tompa, 2002; Chiu et al., 2003]. In random projection, the search for similar subse-

quences is speed-up using hash-based methods for matching certain random elements of

the sequence. It includes SAX indexing and sliding windows. Each symbolic subsequence

is inserted in a subsequences matrix. Each line index corresponds to the initial position of

subsequence in time axis. The next step is to build the collision matrix which is used to

indicated potential motifs in the time series. The collision matrix is initially null and has the

same quantity of lines and columns that correspond to the total number of subsequences

identified. The collision matrix is built from the random projection process where two

columns of the subsequence matrix are randomly selected and mask and for each position

in mapped as a hash structure that has as input the symbolic values that correspond to

position of selected columns. If two subsequences has the same symbolic value in the

mask position then it is placed in hash structure.

The matrix profile is based on computing the distance of a sequence of size n

with the most similar subsequence present in the time series. It is called matrix profile,

since the naive implementation of this technique is to compute all pairwise distance for all

sequences present in the time series. However, it can use efficient algorithms, such as

Fast Fourier Transform (FFT) to enable very fast computation [Yeh et al., 2018]. Matrix

profile has two manifold advantages. It can handle numeric data directly and uses a matrix

for support comparisons of subsequences which can be used to other tasks rather than

motif discovery [Yeh et al., 2017b,a, 2018; De Paepe et al., 2020]. Due to its important, a
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entire section is dedicated to it.

2.3- Matrix Profile

Yeh et al. [2017a] published a novel technique to perform all-pairs-similarity-search

on two time-series, producing two new series: the Matrix Profile and the Matrix Profile

Index. The Matrix Profile is defined as the vector containing the z-normalized Euclidean

distances between each subsequence from the first series and its closest matching

subsequence from the second time series. The Matrix Profile Index contains the location

of the closest matching subsequence in the second series for each subsequence. By

itself, the Matrix Profile can be used for anomaly detection in contexts where anomalies

are defined by unique behavior [De Paepe et al., 2020].

In general, given two series of n real values, S1 2 Rn and S2 2 Rn and a

subsequence length m, the Matrix Profile M 2 Rn�m+1 and a Matrix Profile Index I 2

Rn�m+1 are new series such that for each i 2 [0, n � m], Ii contains the index of the

start of the subsequence of S2 length m that best matches S1i,m and Mi contains the

corresponding distance. In the case a self-join is performed where S1 = S2, an additional

constraint is added to prevent trivial matches, where subsequences match themselves or

nearby subsequences, called exclusion zone.

The default distance measure used is the z-normalized Euclidean distance, which

removes the effect of a changing data offset over time and thus focuses more on shape

instead of amplitude. Typical causes of a changing offset are wandering baselines in

sensors or natural phenomena (e.g., the gradual change in temperature throughout

seasons) [De Paepe et al., 2020].

We present three important algorithms for calculating the Matrix Profile, which are

described in Sections 2.3.1, 5.1.1, and 2.3.3.
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2.3.1 STAMP

The Matrix Profile was originally published together with the STAMP (Scalable

Time Series Anytime Matrix Profile) [Yeh et al., 2017b], an anytime algorithm to calculate

the Matrix Profile over a time series and the corresponding Index. Internally, STAMP uses

a similarity search algorithm called MASS [Mueen et al., 2017] that under z-normalized

Euclidean iteratively calculates the distance of each subsequence to every subsequence

by using the Fast Fourier Transform (FFT).

The STAMP is outlined in Algorithm 1. In line 2, the length of TB is extracted. In

line 3, the matrix profile PAB and matrix profile index IAB are initialized. From lines 4

to line 6, the distance profiles D are calculated, using each subsequence B[idx] in the

time series TB and TA. The pairwise minimum for each element in D is performed with

the paired element in PAB (i.e., min(D[i], PAB[i]) for i = 0 to length(D) -1). Then, as the

minimum pair operations are performed, IAB[i] is updated with idx (when D[i]  PAB[i]).

Finally, the result PAB and IAB are returned in line 7. In this format, STAMP computes the

MP for the general similarity join. It is possible to change the algorithm to compute the

self-similarity join MP of a time series TA, just by replacing TB in line 2 with TA, replace B

with A in line 5, and ignore trivial matches in D when performing ElementWiseMin in line

6.

The overall complexity of the algorithm is O(n2 log n) where n is the length of the

time series. Since all subsequences are compared using the MASS algorithm, the n log n

factor comes from the FFT subroutine.

Algorithm 1 – STAMP (TA, TB,m)
Input: Two time series, TA and TB

Interested subsequence length m

Output: A matrix profile PAB and associated matrix profile index IAB of TA

join TB

1 begin
2 nB  Length(TB)
3 PAB  infs, IAB  zeros, idxes 1 : nB �m+ 1
4 for each idx in idxes do
5 D  MASS(B[idx], TA)
6 PAB, IAB  ElementWiseMin(PAB, IAB, D, idx)
7 return PAB, IAB
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2.3.2 STOMP

STOMP is similar to STAMP [Keogh and Kasetty, 2003] in that it can be seen as

highly optimized nested loop searches, with the repeated calculation of distance profiles as

the inner loop. However, while STAMP must evaluate the distance profiles in random order

(to allow its anytime behavior), STOMP performs an ordered search. It is by exploiting

the locality of these searches that STOMP can reduce the time complexity by a factor of

O(n log n). STOMP uses the z-normalized Euclidean distance di,j , as shown below, of two

time series subsequences Ti,m and Tj,m using their dot product, QTi,j :

di,j =

s

2m

✓
1� QTi,j �mµiµj

m�i�j

◆
(2)

Here m is the subsequence length, µi is the mean of Ti,m, µj is the mean of T(j,m),

�i is the standard deviation of Ti,m, and �j is the standard deviation of Tj,m. Note that

QTi,j can be decomposed as:

QTi,j =
m�1X

k=0

Ti+kTj+k (3)

The time required to compute di,j depends only on the time required to compute

QTi,j . To solve this problem, STOMP pre-computes and stores the means and standard

deviation in O(n) space and time, thus, it takes O(1) to compute di,j [Yeh et al., 2017b].

The pseudo-code of STOMP algorithm is shown in Algorithm 2. It begins in line

2 by computing the matrix profile length l. In line 3, it calculates the mean and standard

deviation of every subsequence in T . Line 4 calculates the first dot product vector QT .

Line 5 initializes the matrix profile P and matrix profile index I. The loop in lines 6-13

calculates the distance profile of every subsequence of T in sequential order, with lines 7-9

updating QT according to (3). Then update QT [1] in line 10 is done with the pre-computed

QTf irst in line 3. Line 11 calculates distance profile D according to (2). Finally, line 12

compares every element of P with D: if D[j] < P [j], then P [j] = D[j], I[j] = i.

The time complexity of STOMP is O(n2). Thus, it can achieve a O(n log n) factor

speedup over STAMP [Keogh and Kasetty, 2003]. The O(n log n) speedup clearly makes

little difference for small datasets, however, when considering the datasets with millions of

data points, this O(n log n) factor begins to produce a significant performance gain.
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Algorithm 2 – STOMP (T,m)
Input: A time series T and a subsequence length m

Output: Matrix profile P and the associated matrix profile index I of T
1 begin
2 n Length(T ), l n�m+ 1
3 µ,�  ComputeMeanStd(T,m)
4 QT  SlidingDotProduct(T [1 : m], T ), QTfirst  QT

5 D  CalculateDistanceProfile (QT, µ,�)
6 P  D, I  ones // initialization
7 for i=2 to l do
8 for j=l downto 2 do
9 QT [j] QT [j� 1]�T [j� 1]⇥T [i� 1]+T [j+m� 1]⇥T [i+m� 1]

10 QT [1] QTfirst[i]
11 D  CalculateDistanceProfile (QT, µ,�, i)
12 P, I  ElementWiseMin (P, I,D, i)

13 return P, I

2.3.3 AAMP

In many applications it is preferred to not normalize the time-series data because

the anomalies can be detected based on the point values, and not the shapes. AAMP

[Akbarinia and Cloez, 2019] has been designed for such applications. It is an efficient

algorithm for computing matrix profile with the pure (non-normalized) Euclidean distance.

AAMP is executed in a set of iterations, such that in each iteration the distance of sub-

sequences is computed incrementally. The time complexity of AAMP is O(n⇥ (n�m))

with small constants, where n is the time series length and m the subsequence length.

The experiments reported in [Akbarinia and Cloez, 2019] show that the performance of

AAMP is significantly better than that of STAMP and SCRIMP++ (an improved version of

STOMP).

Di,j =
q
D2

i�1,j�1 � (ti�1 � tj�1)2 + (ti+m�1 � tj+m�1)2 (4)

The main idea behind AAMP is that for computing the distance between subse-

quences it uses diagonal sliding windows, such that in each sliding window, the Euclidean

distance is incrementally computed only between the subsequences that have a precise dif-

ference in their start position. Let Ti = hti, ti+1, . . . , ti+m�1i and Tj = htj , tj+1, . . . , tj+m�1i

be two subsequences. The sliding windows in AAMP allow to use Equation (4) for incre-
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mental computation of the distance between subsequences Ti and Tj (denoted by Di,j)

by using the yet computed distance between subsequences Ti�1 and Tj�1 (denoted as

Di�1,j�1).

Algorithm 3 – AAMP Algorithm
Input: T : time series; n: length of time series; m: subsequence length
Output: P : Matrix profile;

1 begin
2 for i=1 to n do
3 P[i] =1 ;
4 for k=1 to n-m-1 do
5 dist = EucDistance(T1,m, Tk,m) if dist ¡ P[1] then
6 P[1] = dist;
7 if dist ¡ P[k] then
8 P[k] = dist;
9 for i=2 to n - m + 1 - k do

10 dist =
p

(dist2 � (ti�1 � ti�1+k)2 + (ti+m�1 � ti+m+k�1)2 if dist ¡

P[i] then
11 P[i] = dist;
12 if dist ¡ P[i+k] then
13 P[i+k] = dist;

Algorithm 3 shows the pseudo-code of AAMP. Initially, the algorithm sets all values

of the matrix profile to infinity (i.e., maximum distance). Then, it performs n � m � 1

iterations using a variable k (1  k  n � m � 1). In each iteration k, the algorithm

compares each subsequence Ti,m with the subsequence that is k positions far from it, i.e.,

Ti,m+k. To do this, AAMP firstly computes the Euclidean distance of the first subsequence

of the time series, i.e., T1,m, with the one that stars at position k, i.e., Tk,m. This first

distance computation is done using the normal formula of Euclidean distance. Then, in a

sliding window, the algorithm incrementally computes the distance of other subsequences

with the subsequences that are k position far from them, and this is done by using Equation

(4) in O(1). If the computed distance is smaller than the previous minimum distance that is

kept in the matrix profile P , then the smaller distance is saved in the matrix profile.
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2.4- Related work

After motif discovering process, an important task in motif analysis is how to sort the

motifs according to their relevance [Castro and Azevedo, 2012]. A standard classification

method is k-motif which considers the total number of occurrences of the motifs in time

series. Also, motifs can be sorted according to their relevance degree. For instance, some

motifs can be similar to a straight line (i.e., constant observations) and depending on the

data domain may not be relevant. Such motifs can be low qualified or discarded to avoid

distorting the analysis [Chiu et al., 2003].

Some approaches to evaluate the significance and relevance of motifs were pro-

posed in the literature. A statistical approach to assess the relevance of motifs is based

on information gain which measures how expected is the motif to occurs [Castro and

Azevedo, 2012]. The Log-odds considers the degree of how rare the motif is by comparing

the amount of occurrence with the expected chance of having occurrence based on proba-

bilistic distribution [Yang et al., 2004]. Castro and Azevedo [2012] proposed the estimation

of expectation for the frequency of a motif based on Markov Chain models. The value

is assessed making the comparison between actual frequency and estimated based on

hypothesis tests.

Considering the exact motif discovery approach, some specific method to address

the dimensionality and motif length problem were proposed. Jiang et al. [2008] proposed

an efficient motif discovery algorithm PMDGS (P-Motif Discovery based on Grid Structure)

that processes data streams. Mueen et al. [2009] proposed a motif discovery algorithm

for exact time series called MK (Mueen-Keogh) and observed that MK was faster than

brute-force [Chiu et al., 2003]. Narang and Bhattacherjee [2010] introduced the Par-MK,

Par-MK-SLB, and Par-MK-DLB, which are all parallel multi-threaded algorithms for exact

motif discovery that focus on load balancing. Mueen et al. [2011] proposed a disk-aware

algorithm to discover exact motifs in large time series databases. Cassisi et al. [2013]

applied a motif discovery technique for an exact time series to study recurrent patterns in

seismic amplitude time series of the Etna 2011 periodic eruptive activity. Chi and Wang

[2013] introduced a method based on cloud model theory to extract the top k-motifs.

Truong and Anh [2015] proposed a fast method for motif discovery in time series based on

Dynamic Time Warping distance.
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When it comes to approximate motif discovery, the approaches aim to reduce the

complexity and consequently the computational cost. Some work proposed approaches

to improve the accuracy and efficiency of Random Projection Algorithm as proposed

in Chiu et al. [2003]. Lin et al. [2007] created a new symbolic representation for time

series (SAX) for indexing. Mohammad and Nishida [2009] proposed two algorithms called

MCFull and MCInc that address constrained motif discovery problem. Castro and Azevedo

[2010] addressed motif discovery problem as an approximate top k-frequent subsequence

discovery problem. Lin et al. [2010] presented an approach that uses subseries joins

to get similarity among subseries of the time series. Armstrong and Drewniak [2011]

developed the algorithm MD-RP for unsupervised motif discovering in time series. Narang

and Bhattcherjee [2011] designed the new sequential and parallel Motif discovery and

data deduplication algorithms based on bloom filters.

Finally, Regarding variable-length motif discovery, Wilson et al. [2008] proposed

the Motif Tracking Algorithm (MTA) that uses a small number of parameters based on

the implementation of the Bell immune memory theory. Yankov et al. [2007] presented

a novel algorithm that discovers motifs in time series with invariance to uniform scaling.

It enables to reduce parameters such as motif length. Nunthanid et al. [2011] described

the VLMD motif discovery algorithm that does not require the motif length parameter.

Such an algorithm automatically returns motif lengths from all possible sliding window

lengths reducing a set of possibilities of the sliding window lengths. Nunthanid et al.

[2012] presented the k-Best Motif Discovery (kBMD) algorithm that is parameter-free. It

produces a set of the best motif that is ranked by a scoring function based on similarity of

motif locations and shapes. Mueen [2013] proposed the MOEN, an exact free-parameter

algorithm to enumerate motifs that is faster than brute-force approach due to a novel

bound on the similarity function that uses only linear space. Mohammad and Nishida

[2014] proposed an extension of the MK algorithm called MK++ to handle multiple motifs

of variable lengths considering maximum overlap of subsequences.

Finally, when it comes to space modeling, Du et al. [2009] modeled space by

discrete attributes that resemble states of an object. In the context of their paper, they refer

to the state of companies in the stock market. It is, in fact, a state-space model [Shumway

and Stoffer, 2017] where a trajectory is the registration of state transitions. In this way, it

differs significantly from our work, since such a phenomenon may not be constrained in

space and time.
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The approaches presented in the literature review propose to solve the problem of

discovering patterns only in time series. We did not find studies that propose to solve the

identification of patterns in space-time series. To the best of our knowledge, this is the first

solution to address the problem of identifying frequent sequences constrained in space

and time.
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3- Problem Statement

The patterns discovery approaches presented in the literature review propose to

solve the problem of discovering patterns on time series. In the context of spatial-time

series, we observe a more complex scenario due to spatial constraints. Considering

a dataset containing spatial-time series, each spatial-time series STs has a position in

space. If we apply to this scenario a traditional known pattern discovery method on each

spatial-time series, the patterns found will be in the same spatial-time series only. Also,

even when some patterns are discovered, considering the entire dataset, those are not

fully explored including subsequences appearing in neighboring spatial-time series are

not discovered as patterns.

Depending on the dataset, such similar subsequences in neighboring time series

can correspond to some relevant information. Discovering and grouping patterns in spatial-

time series datasets can address some real-world problems. Such scenario was not

studied in previous works as discussed in Section 2.4. The problem formalization for this

new scenario is presented as follows.

A spatial-time series dataset (for short, dataset) S is a set of spatial-time series

st. We are interested in finding patterns that occur in a constrained space and time. In our

work, sequences may only be frequent inside spatial-time parallelogram (for short, block).

A block b is a couple ({st}, i) where {st} is a subset of neighboring spatial-time series

and i is a time interval. The size of a block b is the product of the number of spatial-time

series by the interval length: |b| = |{st}| · |i|.

Let B be a partition of S into blocks b. Let � and  be two support values such that

� � . A subsequence q is a spatial-time pattern if and only if there exists a block b such

that q is included at least � times in it and q occurs in at least  different spatial-time series

inside b.

From the definition above, the problem can be summarized as the discovery of

patterns in restricted spatial-time series dataset. To address the problem, we propose two

approaches that are discussed in the following chapters.
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4- Combined Series Approach (CSA)

The motif discovery approaches presented in the literature review propose to solve

the problem of discovering motifs on time series. In the context of spatial-time series, we

observe a more complex scenario due to spatial constraints. In this chapter, we present

the CSA approach to discovery space-time motifs.

In order to highlight this challenging problem, Figure 3a shows a synthetic dataset,

containing twelve spatial-time series (ST1 · · ·ST12) where each spatial-time series STi

has a position in space. Figure 3b presents a flat representation of the this dataset. The

ordering of time-series obeys their spatial placement. For example, ST2 is both close to

ST1 and ST3.

If we apply to this scenario a known motif discovery method on each spatial-

time series for a support � � 2, we can only observe the motifs which are marked as

green worm-like shape found only in ST3 as shown in Figure 3. Also, even when some

motifs are discovered, considering the entire dataset, those motifs are not fully explored:

there are many other equivalent worm-like shapes that are not discovered, although

appearing in close spatial-time series (ST2, ST4). It is also possible to observe that similar

subsequences appearing in neighboring spatial-time series are not discovered as motifs.

They are depicted in Figure 3 as orange trapezium-like and red stripe-like motifs.

Depending on the dataset, such similar subsequences in neighboring time series

can correspond to some relevant information. Discovering and grouping motifs in spatial-

time series datasets can address some real-world problems. Such scenario was not

studied in previous works as discussed in Section 2.4.

We are interested in finding motifs that occur in a constrained space and time.

In our work, sequences may only be frequent inside spatial-time blocks, where we find

neighboring time series. A spatial-time series dataset (for short, dataset) S is a set of

spatial-time series st. A block b is a couple ({st}, i) where {st} is a subset of neighboring

spatial-time series and i is a time interval. The size of a block b is the product of the

number of spatial-time series by the interval length: |b| = |{st}| · |i|.

Let B be a partition of S into blocks b. Let � and  be two support values such that

� � . A subsequence q is a spatial-time motif if and only if there exists a block b such
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Figure 3 – (b)A synthetic dataset with twelve spatial-time series: ST1 · · ·ST12. Traditional
motif discovery algorithm applied in this spatial-time series dataset finds only the two
green worm-like in ST3 as motifs.

that q is included at least � times in it and q occurs in at least  different spatial-time series

inside b.

From the definition above, the problem can be summarized as the discovery of

spatial-time motifs in a spatial-time series dataset. To address the defined problem, we

developed the Combined Series Approach (CSA).

4.1- General Principle

The Combined Series Approach (CSA) is organized in three main steps: (i)

normalization & SAX indexing; (ii) discovery of spatial-time motifs; (iii) ranking of spatial-

time motifs. CSA is summarized in Algorithm 4. It takes as input a spatial-time series

dataset S, a word size w, an alphabet size a, sbx, sby and tb corresponding to spatial block

sizes, temporal block sizes, and � and  constraints.
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Algorithm 4 – Combined Series Approach
1 function CSA(S,w, a, sbx, sby, tb,�,)
2 DS  normSAX(S, a)
3 stmotifs discoverSTMotifs(DS,w, sb, tb,�,)
4 rstmotifs rankSTMotifs(stmotifs)
5 return rstmotifs

6 function normSAX(S, a)
7 Sz  zscore(S)
8 DS  SAX(Sz, a)
9 return DS

10 function discoverSTMotifs(S,w, sbx, sby, tb,�,)
11 B  partition(S, sbx, sby, tb)
12 stmotifs ;
13 for each bi,j 2 B do
14 cs combine(bi,j,k)
15 motifs discover(cs, w,�)
16 stmotifs validate(motifs,�,) [ stmotifs

17 return stmotifs

18 function rankSTMotifs(stmotifs)
19 stmotifs group(stmotifs)
20 for each mi 2 stmotifs do
21 enti =

P|ft(mi)|
k=1

⇣
ft(mi)k

n
· log2

⇣
ft(mi)k

n

⌘⌘

22 Oi  occurrences(mi)
23 occi  log2(Oi)
24 proxi  1

aw(mst(wam(Oi)))

25 rank = proj(norm(ent, occ, dist))
26 return order(stmotifs, rank)
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4.2- Normalization & SAX indexing

The first step of the CSA, described by the normSAX function of Algorithm 4,

applies z-score data normalization in the entire dataset. Right after normalization, SAX

indexing method is applied for a given alphabet a. It transforms the numeric data from S

into letters according to the data distribution, as described in Section 2.1. The output of

such transformation is DS.

4.3- Spatial-time Motif Discovery

The second step of CSA corresponds to discoverSTMotifs function. In line 11,

the indexed spatial-time series dataset S is partitioned into blocks (B). These blocks are

created based on spatial block size (sbx, sby) and temporal block size (tb). The spatial block

size (sbx, sby) delimit the number of neighboring spatial-time series inside each block. The

tb specifies the time interval for subsequences of spatial-time series. B is the partition of

S into a set of blocks {bi,j,k}. Formally, each block bi,j,k contains sbx · sby · tb observations,

8i 2 [1, |st.t|
tb

], 8j 2 [1, |S|
sbx

], 8k 2 [1, |S|
sby

]. Each block bi,j,k contains sbx · sby subsequences

qm, such that qm = seqtb,(i�1)·(tb)+1(S(j�1)·sb+m.t), 8m 2 [1, sb].

In line 14, all sequences inside a block are combined into a single time series

cs, such that cs is the concatenation of sequences inside the block bi,j,k. Formally,

cs = q1k · · · kqm and |cs| =
P

m

i=1 |qi| = sbx · sby · tb.

The discover function (line 15) checks all subsequences of size w in cs. It applies

an adapted algorithm [Mueen, 2013] for time series identification of motifs of length w. It

starts applying a hash function for registering the positions of each individual subsequence

si. If the number of occurrences of si is greater than �, si is a temporal motif and included

at motifs. Then, in line 16, motifs are validated according to both � and . It checks the

number of distinct spatial-time series for them is greater or equal to . It is worth mentioning

that any motif whose sequence appears distributed between neighboring subsequences

of a block (for example, qk and qk+1) are fake occurrences and not considered during �

and  validation. Motifs that validates both � and  are added at stmotifs.
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4.4- Rank motifs

Since the number of motifs can be high, especially when working with larger

alphabets, it is important to establish ways to rank them in a way that more “interesting”

ones are presented first. The third step of CSA, described by the rankSTMotifs function

of Algorithm 4, makes a balance among three criteria: (i) the number of occurrences

(significant higher occurrences are better); (ii) proximity (occurrences that are close to one

another are better than the ones that are sparsely distributed in the dataset); (iii) entropy

(higher entropy contains more information, which makes it more interesting).

Each motif corresponds to a sequence of SAX observations. All motifs that are

discovered inside discoverSTMotifs are local block motifs. At group function (line 2),

occurrences of motifs sharing the same sequence are grouped as long as they occur

in neighboring blocks. Then, for each group of motifs mi, metrics for ranking them are

computed. In line 21, the entropy of a motif mi of size n is computed (enti). The enti

is based on information theory and uses the frequency table (fm) for the characters

presented in a motif [Shannon, 1948] and is described in line 21. The higher is the entropy,

the higher is the information that motif mi encodes.

At line 22 the set of occurrences Oi for the motif mi is obtained. Then, at line

23, the impact of the number of occurrences (Oi) of the i-th motif in a logarithm scale is

computed (occi). This enables that only a significantly different number of occurrences

becomes apparent.

In line 24, the weight of the occurrences according to their proximity is computed.

Consider the pairs of position and time for the set of occurrences Oi of a motif mi

discovered in neighboring blocks. The distance between all these pairs is represented as

a weighted adjacent matrix (wam). Then, the minimum spanning tree (mst) is built from

the wam. Finally, the average weight (aw) for the edges of the mst is computed. Thus,

proxi establishes the reciprocal measure for aw for the motif occurrences. The closer this

measure is to 1, the closer are the occurrences in establishing a spatial-temporal pattern.

Once the entropy (enti), the amount of occurrences (occi), and the proximity (proxi)

has been computed for each motif, the ranking procedure can be applied. During ranking,

each of these dimensions are normalized using min-max and projected into the unit vector

that combines these three dimensions. Such projection provides a balance among these
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dimensions. The closer the projection of a motif mi is to (1, 1, 1), the better ranked it is.

Function rankSTMotifs returns the stmotifs ordered according to the computed rank.
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5- Constrained Spatio-Temporal Matrix Profile (CSTMP )

The traditional methods of identifying motifs (chapter 2) are restricted to the analysis

of time series, not identifying spatially neighboring motifs when applied to space-time

series. In the previous chapter, we introduced the Combined Series Approach (CSA),

a method capable of discovering and grouping motifs in spatial-time series datasets.

However, as observed, the CSA has some restrictions due to its modeling. With the use

of non-overlapping blocks, as defined in chapter 3, the motifs present in intercession of

blocks are not correctly identified. Besides, the CSA restricts the analysis of neighboring

series that are only in the same spatial dimension.

To deal with these restrictions, we introduce a simple and efficient identification

algorithm to discover motifs restricted in space-time, called Constrained Spatio-temporal

Matrix Profile (CSTMP ), and conduct computational analyzes to measure the assertive-

ness and performance. Our method can identify and group similar spatial-time motifs that

are density-reachable. CSTMP combines an evolution of the Matrix Profile approach for

spatio-temporal data with an incremental distance computation strategy using Euclidean

distance.

The overall method can be seen as a motif spatial-temporal identification and

grouping algorithm, where initially, the space-time series sts are grouped given the distance

radius to their neighbors. For each serie st and the set of its neighbors, the CSTMP

incrementally selects a block of subsequences from these series in a time interval i, where

it applies motif discovery. Finally, since all the series were visited, the motifs found are

ranked according to their frequency. As demonstrated by our experiments on various

datasets, CSTMP identifies space-time motifs with significantly higher quality than those

provided by previous approaches. Its computational time is also lower than the other

approaches, including the CSA.

Before presenting CSTMP , some definitions are necessary. A block b is a couple

(t, s) where t is the time interval and s is the spatial location. The size of a block b is the

product of range size with interval length: |b| = |b.r| · |b.i|. We define the set of all possible

blocks over D as PB(r, g).
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5.1- General Principle

The general scheme is given in Algorithm 25. The spatial-time series dataset is

a set of series where each spatial-time series st can be described as a pair (t, p), such

as a time series t with an associated position p (2.1). Based on p, the algorithm first

calculates the distance between all series. Then, for each st series, a set is created with

the series that is up to radius of stsn, given by neighborhood function (line 3-5). All these

defined sets are organized in STG. For each of the neighboring series groups group of

the set STG a for each loop (lines 7-19) performs a search for the frequent motifs. Each

series in the set of neighbors, if it has not yet been marked as visited (line 9), is traversed

in an iterative way (lines 8-22). At each iteration, the coreIndex element is defined (line

11), generating the spatio-temporal block (line 12). All sequences internal to the block are

then generated in function generateSequences.

The AAMP function is then applied to blockSeq (line 14), calculating the matrix

profile and generating all pairs with minimum distance from each other. From this set,

the even sequences of the element coreIndex are then selected. If they have a quantity

greater than the threshold defined in � (line 15), they are added to the group motifGroup

of the element coreIndex. Finally, the groups of motifs are ranked according to their

frequency (line 24).

5.1.1 Block Search

In each generated block, we want to identify the subsequences that can be reached

by the coreIndex element. We understand that these subsequences are those that, among

all the subsequences in the block, have the shortest distance to the CI element, thus

being most similar. For this purpose an algorithm must 1) incrementally calculate the

distance between all sequences and 2) select the subsequences that have the shortest

distance for the coreIndex element.

The goal of blockSearch Algorithm 6 is to calculate the distance between the

subsequences and identify the most similar of cI. For this, first, STAAMP Algorithm 28
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Algorithm 5 – CSTMP
Input: sts, ws, �, radius
Output: SMP : Spatial Matrix Profile

1 begin
2 SMP  1
3 motifGroup 1
4 foreach (st 2 sts) do
5 STG[st] neighborhood(sts, st, radius)
6 end
7 foreach (group 2 STG) do
8 foreach (st 2 group) do
9 if notV isited(st) then

10 for (i = 1 to (length(st)� ws)) do
11 coreIndex c(st, i)
12 block  getBlock(coreIndex, group)
13 blockSeq  generateSequences(block, ws)
14 stMotifs blockSearch(coreIndex, blockSeq, ws, SMP )
15 if lenght(stMotifs) > � then
16 SMP  merge(SMP, coreIndex,

stMotifs,motifGroup)
17 motifGroup++

18 end
19 end
20 st asV isited(st)

21 end
22 end
23 end
24 SMP  rankSTMotifs(SMP )

25 end

calculate the distance profile between all the sequences of the block (line 2). Then, a

search is performed on the output looking for the subsequnces with the shortest distance

to the CI element (line 3-7). As a result, a list of subsequences is returned.

Akbarinia and Cloez [2019] introduces the AAMP , a simple but efficient algorithm

for computing matrix profile with the pure Euclidean distance. AAMP is executed over a

time series in a set of iterations, such that in each iteration the distance of subsequences

is computed incrementally, as presented in Chapter 2. Since AAMP is a matrix profile-

specific approach for time series, we develop the STAAMP , presented in Section 5.1.1,

an adaptation of AAMP for our space-time series context. In this way, we can perform the

all-pairs-similarity-search in sequences of neighboring space-time series. STAAMP has

a worst-case complexity of O(n⇥ (n�m)) with small constants, where n is the number of

sequences in the block and m the sequence length.
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Algorithm 6 – BlockSearch
Input: ci: coreIndex; blockSeq: set of subsequences; ws: subsequence length;
SMP : spatial matrix profile
Output: sSeq: Set of Subsequences;

1 begin
2 SMP  STAAMP (coreIndex, blockSeq, ws, SMP )
3 for i = 1 to size(blockSeq) do
4 if SMP [i].n == CI then
5 sSeq.add(i)
6 end
7 end
8 end

The STAAMP the algorithm receive as input a set the subsequences and the

sequence length ws. It performs n iterations using a variable k (1  k  n), where n is

the number of subsequences to be analyzed (Line 5). In each iteration k, the algorithm

compares each subsequence Ti,m with the subsequence that is k positions far from it,

i.e., Ti,m+k. To do this, STAAMP firstly computes the Euclidean distance of the first

subsequence, i.e., T1,m, with the one that stars at position k, i.e., Tk,m. This first distance

computation is done using the normal formula of Euclidean distance (Line 7). Then, in a

sliding window, the algorithm incrementally computes the distance of other subsequences

with the subsequences that are k position far from them, and this is done by using the

incremental euclidean distance in O(1) (Line 17). If the computed distance is smaller than

the previous minimum distance that is kept in the matrix profile SMP , then the smaller

distance is saved in the matrix profile (Line 18-26).
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Algorithm 7 – STAAMP
Input: blockSeq: set of subsequences; ws: sequence length; SMP : spatial

matrix profile
Output: SMP : Spatial Matrix Profile;

1 begin
2 n size(blockSeq)
3 for i = 1 to n do
4 SMP [i] 1
5 end
6 for k = 1 to n do
7 dist Euc Distance(T1,ws, Tk,ws)
8 if dist < SMP [1].d then
9 SMP [1].n k

10 SMP [1].d dist

11 end
12 if dist < SMP [k].d then
13 SMP [k].n 1
14 SMP [k].d dist

15 end
16 for i = 2 to n� ws+ 1� k do
17 dist =

p
(dist2 � (ti�1 � ti�1+k)2 + (ti+ws�1 � ti+ws+k�1)2

18 if dist < SMP [i].d then
19 SMP [i].n i+ k

20 SMP [i].d dist

21 end
22 if dist < SMP [i+ k].d then
23 SMP [i+ k].n i

24 SMP [i+ k].d dist

25 end
26 end
27 end
28 end
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6- Experimental Evaluation

In this chapter, an evaluation of the methods presented in this work is provided. We

report the experimental results that show the effectiveness of CSA and CSTMP in the task

of identifying motifs restricted in space-time in different datasets. We compared the results

with the Matrix Profile, the state-of-the-art approach for detecting motifs in time series. In

addition, we suggest a baseline approach, where we combine the Matrix Profile technique

with the DBSCAN algorithm, adapting the approach to the spatio-temporal scenario.

In Section 6.1 below, the datasets used are presented, describing their characteris-

tics and mapped results. Section 6.2 presents the comparative analysis of the methods

applied to a synthetic dataset, detailing the employment and characteristics of these

approaches. Finally, in Section 6.3, a comparative and sensitivity analysis of approaches

is conducted in the seismic dataset, providing more information on the approach’s behavior

in real data.

6.1- Datasets

A synthetic and a real seismic spatial-time dataset have been used for evaluation.

Despite their size differences, these datasets allow us to analyze different types of motifs

restricted in space-time and provide a good discussion about each approach and its

effectiveness. We can better explain about datasets as follows:

Syntetic data: This is a dataset designed to better elucidate and understand the

problem of identifying restricted motifs in space-time. Each column is a spatial-time series

(varying from positions 1 to 36) with 40 observations in time. This dataset contains a set of

108 mapped occurrences, each with size 4 (ws = 4). Figure 4 shows the identified spatial-

time motifs series and highlights three motif groups. Each group allows an analysis of the

spatio-temporal distribution of the identified motifs, being a set more frequent in space

(red), a second set with more frequency in time (green), and a third group homogeneously

distributed both in space and time (green, blue).
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Figure 4 – Synthetic dataset with identified motifs

Seismic data: The seismic spatial-time series dataset, named F3 Block dgbes

[2018] are produced by the seismic reflection method was collected in a region located in

the Dutch sector of the North Sea. This method consists of generating artificial seismic

waves with energy sources that disturb the medium, such as explosives or air guns

(called seismic shots), and record the waveforms of the various interfaces in the subsoil

using sensors (geophones or hydrophones) in that acquisition air guns and hydrophones

were used. The generated wave propagates through the interior of the Earth and the

Sea. The partially reflected waves are used to find interfaces between layers that have

significant contrasting elastic properties. The arrival time of each reflection is related to

the propagation velocities of the seismic wave in each layer. In a first approximation, the

recorded amplitude is related to the contrast of the acoustic impedance, a product of

velocity and density of the layers that define the interface.

In the F3 Block dataset, each spatial-time series has a position in which the hy-

drophone is placed. The dataset is organized into inlines (direction of the ship navigation).

We selected inline 401 since it has been mapped by seismic specialists who have an-

notated some relevant information. Figure 5 presents inline 401, which consists of 920

spatial-time series with 440 observations in each. The horizontal axis represents the

position of the receivers, and the vertical axis represents the time, which is also related to

the depth at the subsoil. The location of seismic horizons noted by specialists is marked in

the data.
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Figure 5 – Seismic dataset with the mapped horizons

6.2- Analysis on the synthetic dataset

First, we conducted the experiments on the synthetic dataset, which, although

less complex, allows us to understand the proposed problem and the challenge of the

proposed solution. The main objective is to study the number of motifs discovered and

their occurrences and understand the computational cost.

We conducted our experiments by comparing the performance of our spatio-

temporal motif identification methods (CSA [Borges et al., 2020] and CSTMP) with the

variations of the Matrix Profile Yeh et al. [2018] (MP1 and MP2), in addition to two baseline

approaches (B1 and B2) where we combine the Matrix Profile results using the DBSCAN

algorithm. In Table 1, we list the approaches and their corresponding variations that are

used in the discussion of this section. The CSA and the Matrix Profile implementation are

available as an R Package in STMotif 1 and tsmp 2, respectively. The CSTMP is available

on the github platform 3.
1https://cran.r-project.org/web/packages/STMotif/index.html
2https://cran.r-project.org/web/packages/tsmp/index.html
3https://github.com/heraldoborges/cstmp

https://cran.r-project.org/web/packages/STMotif/index.html
https://cran.r-project.org/web/packages/tsmp/index.html
https://github.com/heraldoborges/cstmp
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Table 1 – Evaluated Approaches

Approach Variation Description
MP1 Applied to each ST-Series

MP MP2 Applied to the concatenated series
Baseline1 MP1 with DBScan
Baseline2 MP2 with DBScan
CSA1 CSA with sb = tb

CSA CSA2 CSA with sb > tb

CSA3 CSA with sb < tb

CSTMP CSTMP1 CSTMP

Matrix Profile is a technique that works for all-pair-similarity-search across a time

series, as described in the section 2.1. Matrix Profile is a technique that works for all-pair-

similarity-search across a time series, as described in the section 2.1. As it works only

with time series, some adaptations are necessary to apply the technique to spatial-time

series. At MP1, we intuitively apply the technique to each series separately requesting

one motif per series. At the end of the process, we have grouped all identified motif pairs

into one large set. In Figure 6, we present the result of applying the MP1 approach to the

syntetic data set. The approach found 36 motifs (72 occurrences), distributed by the data,

with a high error rate, correctly identifying only 14 occurrences.

Figure 6 – MP1 - Matrix Profile on syntetic dataset

Another way to apply the Matrix Profile, proposed in MP2, is to combine all spatial-

time series (STS) into a single series so that the end of the stsk series is concatenated with

the beginning of stsk+1. In Figure 7, we present the result of applying the MP2 approach

to the syntetic data set, requesting 54 motifs (108 occurrences). The result is worse than
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that presented in MP1, featuring a large number of motif sets, correctly identifying only 12

occurrences.

Figure 7 – MP2 - Matrix Profile on syntetic dataset

By conducting the experiments, it is possible to analyze that even increasing the

number of requested motifs, both in approaches MP1 and in MP2, they do not accurately

detect motifs, gradually increasing the recall and decreasing the accuracy. The results

become irrelevant since they present many errors in addition to identifying motifs that do

not respect the space-time constraint.

In the face of these problems, as an alternative to remove outliers and restrict the

observations identified in space and time, we present a baseline approach that combines

the Matrix Profile approach with the DBSCAN clustering algorithm. Given the motifs

identified by the Matrix Profile, the DBSCAN groups those close together into clusters and

mark as outliers those who are distant, respecting the radius of a neighborhood ✏ and a

minimum number of points minPts. For the analysis in synthetic dataset, we considered a

lower constraint, ✏ = 2, minPts = 3.

In Figure 8, we present the result of Baseline1 approach, applying DBSCAN to

MP1 results, requesting 1000 motifs. Likewise, in Baseline2, we use the results of MP2,

requesting also 1000 motifs, shown in Figure 9. DBSCAN can identify and remove outliers,

but the results show a high error rate, with low accuracy. Even performing a gradual

increase in the number of motifs requested, in both approaches, the results remain with

low precision, further decreasing the accuracy.

The Combined Series Approach (CSA) is an approach to discover and classify
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Figure 8 – Baseline1

Figure 9 – Baseline2

motifs in spatial time series. As the CSA is based on the partition of the space-time

series into blocks, an important aspect of being evaluated is the influence of the block’s

orientation on the number of motifs discovered and their occurrences.

Thus, we evaluated three orientations: in CSA1 using a square orientation (sb ⇡ tb),

in CSA2 a vertical rectangle (sb > tb) and in CSA3 a horizontal rectangle (sb < tb).

Figure 10 shows the result of CSA1 approach, using tb = 9 and sb = 10. For CSA2

we use tb = 9 and sb = 10 and the result is shown in the figure 11. For CSA3 we use a

vertical rectangle with tb = 9 and sb = 10 with the result shown in figure 12.

Table 2 presents the overall performance of the CSA under different block orien-

tation. The results demonstrate a strong influence of the orientation of the blocks on the
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Figure 10 – CSA1 - CSA on synthetic dataset - (sb ⇡ tb)

Figure 11 – CSA1 - CSA on synthetic dataset - (sb < tb)

results. In CSA1, the method is able to correctly identify all motifs mapped in the original

dataset.

Table 2 – Overall performance of CSA under different block orientation

Block orientation motifs sets of
occur.

CSA1 Square (9 x 10) 108 110

CSA2 Horizontal (9 x 4) 108 110

CSA3 Vertical (4 x 10) 21 108

The CSTMP approach, also proposed by this work, is developed specifically for

space-time data. For the application of the technique in synthetic data, we used as a
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Figure 12 – CSA1 - CSA on synthetic dataset - (sb > tb)

parameter, the word size with ws = 4 and radius = 7. The result of CSTMP is shown in

the Figure 13. The approach is able to identify a greater number of motifs than the previous

approaches, finding a set of 108 motifs, without making any mistakes. An important point

is that the approach is able to identify motifs that were not identified by the CSA approach.

Figure 13 – CSTMP1 Synthetic
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6.3- Analysis on the seismic dataset

In this section, we discuss the preliminary results of the approaches presented in

this work in discovering spatial-time restricted motifs using the inline 401 of the Netherlands

seismic spatial-time series dataset.

First, we evaluate the two suggested baseline approaches (Baseline1 and Baseline2).

As input, Baseline enables users to set the following parameters: word size, which is the

word size to be used by the Matrix Profile, varying between values 4 to 7. The DBSCAN

receives from the Matrix Profile a set of positions of the found motifs and the parameters

eps and minPts, generating a set of motif clusters. The eps parameter corresponds to the

radius size between two motifs so that one is considered a neighbor to the other, and the

minPts parameter is the minimum number of motifs in a neighborhood to be considered a

central point. A list of the parameters used is shown in table 3 below.

Table 3 – Baseline Input Parameters

Parameter Description (explored values)
ws Length of motif word (from 4 to 7)
eps size (radius) of the epsilon neighborhood.

minPts
number of minimum points required in the eps neighborhood for
core points (including the point itself).

Figure 14 – Baseline1(eps = 4;minPts = 10) - Seismic Dataset

To exemplify the application of Baseline1 in slice t401, three results are presented,

as seen in the images below. The Figure 14 shows the result with the parameters ws = 4,

eps = 4 and minPts = 10. The application of the Matrix Profile to each of the space-time
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series, independently, has a low execution time, in this case 104500, but identifies a greater

number of motifs for each series. Due to the large number of motifs found, DBScan builds

larger clusters, covering the entire slice. We can increase the space-time constraint of

the clusters by changing the parameter minPts, as we see in Figure 15 and Figure 16.

However, for this example, few horizons are correctly mapped.

Figure 15 – Baseline1(eps = 4;minPts = 12) - Seismic Dataset

Figure 16 – Baseline1(eps = 4;minPts = 14) - Seismic Dataset

For the application of Baseline2 the spatiotemporal series of slice t401 are con-

catenated, creating a single series t of size |t| = 404800 (920 series times 440 time units).

Conducting the matrix profile in this series requires approximately four hours of processing,

regardless of the number of motifs you want to find. The Figure 17 shows the result with

the parameters ws = 4, eps = 8 and minPts = 10. The mapped clusters present groups of

motifs sparse by the slice, not being able to map any horizon. Even increasing the size of

clusters, the result obtained remains very poor. Figures 18 and 19 exemplify these cases.

In the first case, using the parameter eps = 24, some larger sets are formed, but with a
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low recall, as many false-positive motifs are detected. In the second case, duplicating the

eps parameter, we have a similar situation, where a large number of false-positive motifs

are detected, without mapping and identifying the horizons.

Figure 17 – Baseline2(eps = 8;minPts = 5)- Seismic Dataset

Figure 18 – Baseline2(eps = 24;minPts = 15) - Seismic Dataset

Figure 19 – Baseline2(eps = 48;minPts = 50) - Seismic Dataset

The CSA Algorithm requires parameters alpha, word, tb, sb, �, and  to be
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specified. The description of these parameters and the range explored are summarized

in Table 4. These parameters influence both the quality of results and the computation

elapsed time. The alpha was chosen based on the data adjustment. We varied the

alphabet size for SAX encoding from 1 to 25, and measured the Mean Squared Error

(MSE) for each observation concerning the mean of each SAX character. The higher the

alphabet size, the lower is the MSE. The choice for the alphabet was identified by the

maximum curvature analysis as depicted in Figure 20. The point where the maximum

curvature is achieved (in red) indicates that increasing more the alphabet does not bring

much more benefit concerning the MSE.

Figure 20 – MSE for each alphabet size

Table 4 – CSA Input Parameters

Parameter Description (explored values)
alpha Size of the alphabet for SAX indexing (fixed at 7)
word Length of motif word (from 3 to 7)
tb x sb Temporal and spatial block size (40x10, 20x20, 10x40)

� Minimum number of occurrences inside each block (from 2 to 7)


Minimum number of spatial-time series with occurrences inside
each block (from 1 to 5)

In this analysis, the goal is to study the number of discovered motifs and their

occurrences and computational time as we vary block size (tb and sb), word, �, and .

To evaluate the influence of block orientation, we set three orientations: vertical

rectangle (tb = 40; sb = 10), square (tb = 20; sb = 20), and horizontal rectangle (tb = 10; sb

= 40). For a fair comparison, all of them contain the same amount of observations.

Table 5 presents the overall performance of both traditional approach and CSA

under different block orientation for all possible parameter combinations described in Table

4. The motifs column corresponds to the mean number of motifs whose occurrences were

grouped with at least one neighboring block and contained more than seven occurrences
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(the maximum � value adopted). In the case of the traditional approach, we considered it

as a block of 440 temporal observations with one spatial-time series, so that the same

grouping criteria could also be applied.

Table 5 – Overall performance of CSA under different block orientation

Block orientation motifs sets of
occur.

discovery
time (min)

ranking
time
(min)

elapsed
time
(min)

Traditional (440x1) 43 449 1.8 2.0 4.7

CSA Vertical (40x10) 85 673 1.6 1.8 4.2

CSA Square (20x20) 114 772 1.4 1.6 3.8

CSA Horizontal (10x40) 105 705 0.9 1.2 2.9

The traditional approach, on average, discovered 43 different motifs under 449

sets of occurrences. It means that the same motif contains, on average, ten different

spatial-temporal sets of occurrences. Also, the average discovery time and average time

to rank motifs were, respectively, 1.8 and 2.0 minutes. The average elapsed time was 4.7

minutes, which also includes the time to do the data normalization and SAX encoding.

The time for discovering motifs was approximately the same for all configuration,

except for Horizontal orientation. In this setup, as we increase the size of the word, there

is a lower number of possible motifs to discover. It becomes unnecessary to check for

motifs in between two consecutive spatial-time series. It makes less possible comparisons

for this setup, also meaning that a lower number of motifs are discovered. However, all

CSA block orientations discovered more motifs than traditional approach (the square had

the better performance. It discovered more than 2.5 times more motifs than traditional

approach).

Comparing the performance of different CSA orientations (Vertical, Square, and

Horizontal), we may expect that typically Horizontal orientation might break temporal

sequences. However, in our dataset, patterns often occurred in small time intervals spread

in space. Such behavior justifies the better performance of Horizontal orientation over

Vertical one. Additionally, Square orientation had a better balance between time and

space and was able to identify more patterns. The choice of block orientation is fairly

domain-dependent. Users may consider their knowledge about the data to set up this

parameter.

Table 6 disclosures the results of Table 5 according to the word size. It presents
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the number of discovered motifs and the sets of occurrences, applying the same criteria

used to produce Table 5. It can be observed that as we increase the word size, the number

of discovered motifs decreases. The same behavior occurs to the set of occurrences.

The highest number of identified motifs occurred in CSA Square orientation for word size

equals to four. Finally, the computation time (in minutes) for all discovered motifs also

decreases as we increase the word size. It is due to the ranking function overhead. It has

less impact on time when handling a lower number of occurrences.

Table 6 – Summary of Discovered Spatial-Time Motifs for different block orientation and
word size

Block Orientation word motifs set of occurences total time (min)

Traditional (440x1)

3 139 95862 9.5
4 65 6809 5.4
5 7 369 3.0
6 2 73 2.7
7 1 17 2.6

CSA Vertical (40x10)

3 168 62278 8.0
4 163 13980 4.7
5 60 2988 3.3
6 23 761 2.7
7 11 229 2.5

CSA Square (20x20)

3 184 62324 6.7
4 221 16887 4.5
5 103 4182 3.1
6 42 1157 2.4
7 19 352 2.1

CSA Horizontal (10x40)

3 187 52199 5.5
4 219 12901 3.7
5 89 2918 2.3
6 25 628 1.6
7 7 149 1.2

Table 12 presents the influence of � and  in the number of discovered motifs for

the CSA according to the CSA Square block orientation for word size equals to four. It is

possible to observe that as we increase �, lower number of occurrences are identified.

Also, as we increase  constraint, the number of occurrences also decreases.

Finally, we analyzed the top-k spatial-time motifs discovered using CSA Square

block orientation for word size of four, fixing � equals to three and  equals to three. In

this configuration, as presented in Table 8, we computed the top-5 distinct motifs that

accomplished the same criteria adopted to build Table 5.

The highest ranked motif (aagg) presented a good proximity value, an average
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Table 7 – Influence of � and  in the number of occurrences in Square (20x20) setup with
word size w = 4

�

 2 3 4 5 6 7
1 42725 30052 21349 13559 9621 6959
2 42253 29938 21297 13527 9589 6927
3 - 29640 21191 13461 9530 6895
4 - - 20073 13184 9368 6758
5 - - - 11900 8800 6490

Table 8 – Top five distinct motifs

motif proximity entropy occurrences rank
aagg 0.74 1.0 8.28 1.57
dfge 0.83 2.0 3.16 1.46
aaag 0.85 0.8 7.06 1.45
ggfa 1.00 1.5 3.17 1.40
egfa 0.75 2.0 3.17 1.39

entropy value, and a high occurrences value. Such combination produced a rank value

of 1.57. The second place (dfge), although exhibiting low occurrences value, has a good

proximity and entropy values. The third place (aaag) was similar to the first motif, but with

lower occurrences value. The fourth place (ggfa) compensated the low occurrences value

with an excellent proximity value. Finally, the fifth place (egfa) is similar to the second,

with a slightly lower proximity value.

In order to have an intuition on the quality of the ranked motifs, we have plotted the

top-ten discovered motifs as we see in Figure 21(a), according to the ranking function, on

top of the seismic dataset. The places where the motifs were plotted are in agreement

with annotations from specialists where seismic horizons are located. Also the yellow ones

are very close to a gas reservoir.

In a complementary analysis, we sorted the motifs according to the number of

occurrences. Figure 21(b) plots the top-ten distinct motifs sorted by their occurrences.

The set of occurrences for each motif was plotted, as long as their ranking value were

greater than 1.0. It can be observed that the occurrences of motifs matched more regions

where seismic horizons are located.

It is worth mentioning that the ranking function was conceived for general purpose

usage and did not focus on any aspect to target seismic horizons. Nevertheless, they were

able to discover the majority areas in which seismic horizons were annotated.

CSTMP is a hybrid approach that combines the features of a density-based

clustering approach, such as DBSCAN, and motif identification in a local search. The
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(a) (b)

Figure 21 – (a) Top-ten discovered motifs according to the ranking function (b) Top-ten
discovered motifs according to the number of occurrences, filtering the ones with ranking
function lower than 1.0

algorithm requires parameters as ws, � and radius to be initialized. The description of

these parameters and the range explored are summarized in Table 9. First, we study the

effect of the parameters of CSTMP applied to the seismic dataset, how they influence

the quality of results and processing time. Through this analysis, we want to study the

identified motifs, the number of occurrences and the computational time as we vary the

desired amount �, the radius size and the word size.

Table 9 – CSTMP Input Parameters

Parameter Description (explored values)
ws Length of motif word (from 4 to 7)

radius Size of the radius for local search (from 5 to 7)
� Minimum number of occurrences inside each block (from 3 to 7)

The choice of radius size is based on the neighborhood to be investigated. We

varied the radius size from 5 to 7 and measure the quality and associated time. The larger

the radius, the larger the search area and thus the longer is the processing time. For an

equal comparison, all of them used the same word size (ws = 4) and the same threshold

(� = 3).

Table 10 presents the overall performance of CSTMP with variations in radius size.

The motif column corresponds to the number of identified motif sets, where it maintains

high similarity to each other (observing the minimum value � = 3 occurrences by set).

The occurrences column corresponds to the total number of occurrences of the identified

motifs. Lastly, the discovery time to identify motifs with this setting is presented.
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Table 10 – Overall performance of CSTMP under different radius size

Radius size word size motifs occur. discovery
time (min)

5 (11 x 6) 4 1596 8651 2.8

6 (13 x 7) 4 1745 9564 3.6

7 (15 x 8) 4 2092 11745 4.5

As the radius size increased, the time for discovering motifs also increased. This

confirmation was already expected, since the increase in radius, with the consequent

increase in the block, generates a proportionally greater number of comparisons between

neighboring sequences.

Table 11 extends the results presented in Table 10 according to the radius size. For

each radius and word size, it shows the number of identified motif sets and the number of

occurrences, observing the minimum of � = 3 occurrences per set. It is possible to observe

that the increase in word size generates a small increase in the number of identified motifs.

This behavior occurs by generating small sets of motifs, with little similarity. Computation

time is also presented, which grows as the radius is increased.

Table 11 – Summary of Discovered Spatial-Time Motifs for different radius and word size

Radius size word motifs set of occurences total time (min)

5 (11x6)

4 1596 8651 2.8
5 1651 9169 3.0
6 1659 9309 3.3
7 1679 9628 3.6

6 (13 x 7)

4 1745 9564 3.6
5 1826 10367 3.8
6 1946 11121 3.9
7 2001 11756 4.1

7 (15 x8)

4 2092 11745 4.4
5 2146 12359 4.5
6 2237 13079 4.7
7 2254 13506 4.9

Finally, Table 12 presents the influence of � in the number of discovered motifs

for the CSTMP as the size of the radius increases. It is possible to observe that as we

increase �, lower number of occurrences are identified.

To assess the quality of the identified motifs, we traced two results, according to

the ranking of the group of motif sets found. In Figure 22, we present the top motifs with
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Table 12 – Influence of � in the number of motifs and occurrences with word size w = 4

�

Radius 3 4 5 6 7
5 1596 (8651) 210 (1377) 63 (667) 5 (52) 2 (27)
6 1745 (9564) 331 (2232) 54 (340) 5 (44) 1 (15)
7 2092 (11745) 474 (3013) 51 (354) 4 (36) -

the highest number of occurrences. Then, in Figure 23, we present the top motifs with

greater spatial coverage. It can be observed that the identified motifs cover the regions of

the mapped horizons, identifying, beyond the horizons, areas with potential accumulation

of hydrocarbons.

Figure 22 – Top discovered motifs according to the number of occurrences.

Figure 23 – Top discovered motifs according to spatial extension, filtering those that cover
a greater number of spatial-time series.
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7- Conclusion

Many applications observe phenomena whose values vary according to space

and time dimensions. Discovering phenomena which are dependent on the occurrence

in space and time requires extensions to traditional techniques adopted in time series

analysis. In this work, we present a challenging problem with high impact potential: the

discovery of motifs restricted in space and time. We tackle this problem by introducing

two novel approach for spatial-time series motif discovery, the CSA (Combined Series

Approach) and the CSTMP (Constrained Spatio-Temporal Matrix Profile). To the best of

our knowledge, this is the first work to propose a complete approach for spatial-time motif

discovery.

CSA supersedes traditional techniques when discovering spatial-time motifs, as

it has been shown in our experimental evaluation. Additionally, CSA exhibits two major

strengths points. Firstly, it is a divide-and-conquer algorithm that starts by discovering

motifs inside a given spatial-time block. These blocks are then merged if neighboring

blocks increase the number of occurrences of the discovered motifs. Such a technique

makes the algorithm resilient to the initial block selection. Secondly, once the blocks

have been defined, the algorithm is independent of the motif discovery algorithms applied.

Such property enables exploring different motif discovery algorithms, such as Random

Projection and Matrix Profile, to space-time series discovery.

We also propose CSTMP , an approach inspired by the Matrix Profile and DBScan

approaches. Our method can identify and group similar spatial time motifs that are

reachable by density. CSTMP handles some restrictions found in CSA, avoiding the

problem of non-overlapping blocks. Through CSTMP it is also possible to perform data

analysis with two spatial dimensions and one temporal dimension. The approach achieved

better results than traditional techniques such as Matrix Profile, even in a tailored approach,

with less processing time in many scenarios.

We have evaluated CSA and CSTMP against traditional approach using both

synthetic and seismic dataset. The two approaches was able to identify more motifs and

occurrences than the traditional approach. Also, the identified motifs were also well ranked

considering both spatial-time constraints and number of occurrences.
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Although the assessments were conducted using seismic data, the proposed

approaches were conceived generically and applied in different scenarios with spatio-

temporal data. Due to the potential of the techniques, opportunities open up to explore

other real-world applications modeled as spatio-temporal series (such as ocean surface

temperature data and pandemic propagation data). There are also opportunities to explore

different classification functions to address domain-specific problems.
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