Web Access Log Mining with Soft Sequential Patterns - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2006

Web Access Log Mining with Soft Sequential Patterns


Mining the time-stamped numerical data contained in web access logs is interesting for numerous applications (e.g. customer targeting, automatic updating of commercial websites or web server dimensioning). In this context, the algorithms for sequential patterns mining do not allow processing numerical information frequently. In previous works we defined fuzzy sequential patterns to cope with the numerical representation problem. In this paper, we apply these algorithms to web mining and assess them through experiments showing the relevancy of this work in the context of web access log mining.


Fichier principal
Vignette du fichier
lirmm-00095914v1.pdf (141.9 Ko) Télécharger le fichier

Dates and versions

lirmm-00095914 , version 1 (07-10-2019)



Céline Fiot, Anne Laurent, Maguelonne Teisseire. Web Access Log Mining with Soft Sequential Patterns. Applied Artificial Intelligence, Aug 2006, Genova, Italy. pp.519-524, ⟨10.1142/9789812774118_0074⟩. ⟨lirmm-00095914⟩
68 View
99 Download



Gmail Mastodon Facebook X LinkedIn More