Web Access Log Mining with Soft Sequential Patterns - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2006

Web Access Log Mining with Soft Sequential Patterns

Abstract

Mining the time-stamped numerical data contained in web access logs is interesting for numerous applications (e.g. customer targeting, automatic updating of commercial websites or web server dimensioning). In this context, the algorithms for sequential patterns mining do not allow processing numerical information frequently. In previous works we defined fuzzy sequential patterns to cope with the numerical representation problem. In this paper, we apply these algorithms to web mining and assess them through experiments showing the relevancy of this work in the context of web access log mining.

Domains

Other
Fichier principal
Vignette du fichier
lirmm-00095914v1.pdf (141.9 Ko) Télécharger le fichier
Loading...

Dates and versions

lirmm-00095914 , version 1 (07-10-2019)

Identifiers

Cite

Céline Fiot, Anne Laurent, Maguelonne Teisseire. Web Access Log Mining with Soft Sequential Patterns. Applied Artificial Intelligence, Aug 2006, Genova, Italy. pp.519-524, ⟨10.1142/9789812774118_0074⟩. ⟨lirmm-00095914⟩
73 View
105 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More