Abstract : In this paper we investigate powers of prefixes of Sturmian sequences. We give an explicit formula for ice(ω), the initial critical exponent of a Sturmian sequence ω, defined as the supremum of all real numbers p > 0 for which there exist arbitrary long prefixes of ω of the form up, in terms of its S-adic representation. This formula is based on Ostrowski's numeration system. Furthermore we characterize those irrational slopes α of which there exists a Sturmian sequence ω beginning in only finitely many powers of 2 + ε, that is for which ice(ω) = 2. In the process we recover the known results for the index (or critical exponent) of a Sturmian sequence. We also focus on the Fibonacci Sturmian shift and prove that the set of Sturmian sequences with ice strictly smaller than its everywhere value has Hausdorff dimension 1.