Odometers on Regular Languages

Valerie Berthe 1 Michel Rigo 2
1 ARITH - Arithmétique informatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Odometers or "adding machines" are usually introduced in the context of positional numeration systems built on a strictly increasing sequenceof integers. We generalize this notion to systems defined on an arbitrary infinite regular language. In this latter situation, if (A,<) is a totally ordered alphabet, then enumerating the words of a regular language L over A with respect to the induced genealogical ordering gives a one-to-one correspondence between N and L. In this general setting, the odometer is not defined on a set of sequences of digits but on a set of pairs of sequences where the first (resp. the second) component of the pair is an infinite word over A (resp. an infinite sequence of states of the minimal automaton of L). We study some properties of the odometer like continuity, injectivity, surjectivity, minimality,. . .We then study some particular cases: we show the equivalence of this new function with the classical odometer built upon a sequence of integers whenever the set of greedy representations of all the integers is a regular language; we also consider substitution numeration systems as well as the connection with BETA-numerations.
Type de document :
Article dans une revue
Theory of Computing Systems, Springer Verlag, 2007, 40, pp.001-031
Liste complète des métadonnées

Contributeur : Valerie Berthe <>
Soumis le : mardi 27 février 2007 - 12:19:45
Dernière modification le : jeudi 24 mai 2018 - 15:59:21
Document(s) archivé(s) le : mardi 6 avril 2010 - 22:29:13



  • HAL Id : lirmm-00130835, version 1



Valerie Berthe, Michel Rigo. Odometers on Regular Languages. Theory of Computing Systems, Springer Verlag, 2007, 40, pp.001-031. 〈lirmm-00130835〉



Consultations de la notice


Téléchargements de fichiers