Characterization of the Closest Discrete Approximation of a Line in the 3-Dimensional Space

Abstract : The present paper deals with discrete lines in the $3$-dimensional space. In particular, we focus on the minimal $0$-connected set of closest integer points to a Euclidean line. We propose a definition which leads to geometric, arithmetic and algorithmic characterizations of naive discrete lines in the $3$-dimensional space.
Type de document :
Communication dans un congrès
G. Bebis et al. ISVC'06: International Symposium on Visual Computing, Nov 2006, Lake Tahoe, Nevada, USA, Springer Berlin / Heidelberg, 4291, pp.618-627, 2006, LNCS. 〈10.1007/11919476_62〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00135626
Contributeur : Jean-Luc Toutant <>
Soumis le : jeudi 8 mars 2007 - 13:32:47
Dernière modification le : jeudi 24 mai 2018 - 15:59:20

Identifiants

Collections

Citation

Jean-Luc Toutant. Characterization of the Closest Discrete Approximation of a Line in the 3-Dimensional Space. G. Bebis et al. ISVC'06: International Symposium on Visual Computing, Nov 2006, Lake Tahoe, Nevada, USA, Springer Berlin / Heidelberg, 4291, pp.618-627, 2006, LNCS. 〈10.1007/11919476_62〉. 〈lirmm-00135626〉

Partager

Métriques

Consultations de la notice

116