Improving the Arithmetic of Elliptic Curves in the Jacobi Model

Abstract : The use of elliptic curve cryptosystems on embedded systems has been becoming widespread for some years. Therefore the resistance of such cryptosystems to side-channel attacks is becoming crucial. Several techniques have recently been developed. One of these consists of finding a representation of the elliptic curve such that formulae for doubling and addition are the same. Until now, the best result has been obtained by using the Jacobi model. In this paper, we improve the arithmetic of elliptic curves in the Jacobi model and we relax some conditions required to work efficiently on this model. We thus obtained the fastest unified addition formulae for elliptic curve cryptography (assuming that the curve has a 2-torsion point)
Type de document :
Article dans une revue
Information Processing Letters, Elsevier, 2007, 0, pp.5. 〈10.1016/j.ipl.2007.05.012〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00145805
Contributeur : Sylvain Duquesne <>
Soumis le : vendredi 11 mai 2007 - 16:02:01
Dernière modification le : jeudi 24 mai 2018 - 15:59:20
Document(s) archivé(s) le : mercredi 7 avril 2010 - 03:35:19

Identifiants

Citation

Sylvain Duquesne. Improving the Arithmetic of Elliptic Curves in the Jacobi Model. Information Processing Letters, Elsevier, 2007, 0, pp.5. 〈10.1016/j.ipl.2007.05.012〉. 〈lirmm-00145805〉

Partager

Métriques

Consultations de la notice

269

Téléchargements de fichiers

549