Elliptic Curves Associated with Simplest Quartic Fields

Abstract : We are studying the infinite family of elliptic curves associated with simplest cubic fields. If the rank of such curves is 1, we determine the whole structure of the Mordell-Weil group and find all integral points on the original model of the curve. Note however, that we are not able to find them on the Weierstrass model if the parameter is even. We have also obtained similar results for an infinite subfamily of curves of rank 2. To our knowledge, this is the first time that so much information has been obtained both on the structure of the Mordell-Weil group and on integral points for an infinite family of curves of rank 2. The canonical height is the main tool we used for that study.
Type de document :
Article dans une revue
Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2007, 19 (1), pp.81-100
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00145846
Contributeur : Sylvain Duquesne <>
Soumis le : vendredi 11 mai 2007 - 17:01:56
Dernière modification le : jeudi 24 mai 2018 - 15:59:20
Document(s) archivé(s) le : mercredi 7 avril 2010 - 03:35:21

Identifiants

  • HAL Id : lirmm-00145846, version 1

Citation

Sylvain Duquesne. Elliptic Curves Associated with Simplest Quartic Fields. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2007, 19 (1), pp.81-100. 〈lirmm-00145846〉

Partager

Métriques

Consultations de la notice

197

Téléchargements de fichiers

157