Constraint Acquisition as Semi-Automatic Modeling

Abstract : Constraint programming is a technology which is now widely used to solve com- binatorial problems in industrial applications. However, using it requires consid- erable knowledge and expertise in the field of constraint reasoning. This paper introduces a framework for automatically learning constraint networks from sets of instances that are either acceptable solutions or non-desirable assignments of the problem we would like to express. Such an approach has the potential to be of assistance to a novice who is trying to articulate her constraints. By restricting the language of constraints used to build the network, this could also assist an expert to develop an efficient model of a given problem. This paper provides a theoretical framework for a research agenda in the area of interactive constraint acquisition, automated modelling and automated constraint programming.
Type de document :
Communication dans un congrès
Springer. IA: Artificial Intelligence, 2003, Cambridge, United Kingdom. pp.111-124, 2003
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00191968
Contributeur : Christine Carvalho de Matos <>
Soumis le : lundi 26 novembre 2007 - 11:46:22
Dernière modification le : jeudi 24 mai 2018 - 15:59:23
Document(s) archivé(s) le : lundi 12 avril 2010 - 05:07:36

Fichier

D199.PDF
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00191968, version 1

Collections

Citation

Joël Quinqueton, Remi Coletta, Christian Bessière, Barry O'Sullivan, Eugene C. Freuder, et al.. Constraint Acquisition as Semi-Automatic Modeling. Springer. IA: Artificial Intelligence, 2003, Cambridge, United Kingdom. pp.111-124, 2003. 〈lirmm-00191968〉

Partager

Métriques

Consultations de la notice

168

Téléchargements de fichiers

128