3D datasets segmentation based on local attribute variation

Abstract : We present a Graph-based method for low-level segmentation of unfiltered 3D data. The core of this approach is based on the construction of a local neighborhood structure and its recursive subdivision. The Minimum Spanning Tree (MST) is the graph support used to measure the attribute variation through the region. The subdivision criterion relies on the evidence for a boundary between two partitions, which is detected through MST edge analysis. Although our algorithm converges to a local minimum, our experiments show that it produces segments that satisfy global properties. We assume that the 3D image is composed of regions homogeneous according to some criterion (color, curvature, etc.), but no assumption about noise, nor spatial repartition/shape of the regions or points is made. Robustness is achieved by choosing the appropriate neighborhood and the analysis of noise impact on the MST construction. We demonstrate the performance of our algorithm with experimental results on real images.
Type de document :
Communication dans un congrès
IROS: Intelligent Robots and Systems, Oct 2007, San Diego, CA, United States. Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp.3205-3210, 2007, 〈10.1109/IROS.2007.4399484〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00203640
Contributeur : Carla Silva Rocha Aguiar <>
Soumis le : jeudi 10 janvier 2008 - 16:40:15
Dernière modification le : jeudi 24 mai 2018 - 15:59:24
Document(s) archivé(s) le : jeudi 27 septembre 2012 - 14:05:08

Identifiants

Collections

Citation

Carla Silva Rocha Aguiar, André Crosnier, Sébastien Druon. 3D datasets segmentation based on local attribute variation. IROS: Intelligent Robots and Systems, Oct 2007, San Diego, CA, United States. Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pp.3205-3210, 2007, 〈10.1109/IROS.2007.4399484〉. 〈lirmm-00203640〉

Partager

Métriques

Consultations de la notice

354

Téléchargements de fichiers

420