A New Method of Pipeline Detection in Sonar Imagery Using Self-Organizing Maps

Abstract : The main purpose of this paper is to detect and follow the pipeline in sonar image. This work is performed by two steps. The first one is to split an transformed line image of pipeline signal into regions of uniform texture using the Gray Level Co-occurrence Matrix Method (GLCM) which is widely used in texture segmentation application. The last one addresses the unsupervised learning method based on the Artificial Neural Networks (Self-Organizing Map or SOM) used for determining the comparative model of pipeline from the image. To increase the performance of SOM, we propose a penalty function based on data histogram visualization for detecting the position of pipeline. After a brief review of both techniques (GLCM and SOM), we present our method and some results from several experiments on the real world data set.
Type de document :
Communication dans un congrès
IROS: Intelligent Robots and Systems, Oct 2003, Las Vegas, United States. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.541-546, 2003
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00269444
Contributeur : Christine Carvalho de Matos <>
Soumis le : jeudi 3 avril 2008 - 08:12:00
Dernière modification le : jeudi 11 janvier 2018 - 06:26:17
Document(s) archivé(s) le : vendredi 21 mai 2010 - 01:13:09

Fichier

D110.PDF
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00269444, version 1

Collections

Citation

Puttipipatkajorn Amornrit, Bruno Jouvencel, Salgado-Jimenez Tomas. A New Method of Pipeline Detection in Sonar Imagery Using Self-Organizing Maps. IROS: Intelligent Robots and Systems, Oct 2003, Las Vegas, United States. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.541-546, 2003. 〈lirmm-00269444〉

Partager

Métriques

Consultations de la notice

139

Téléchargements de fichiers

75