Fuzzy Sequential Patterns for Quantitative Data Mining

Céline Fiot 1
1 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : The explosive growth of collected and stored data has generated a need for new techniques transforming these large amounts of data into useful comprehensible knowledge. Among these techniques, referred to as data mining, sequential pattern approaches handle sequence databases, extracting frequently occurring patterns related to time. Since most real-world databases consist of historical and quantitative data, some works have been done for mining the quantitative information stored within such sequence databases, uncovering fuzzy sequential patterns. In this chapter, we first introduce the various fuzzy sequential pattern approaches and the general principles they are based on. Then, we focus on a complete framework for mining fuzzy sequential patterns handling different levels of consideration of quantitative information. This framework is then applied to two real-life data sets: Web access logs and a textual database. We conclude on a discussion about future trends in fuzzy pattern mining.
Type de document :
Chapitre d'ouvrage
Galindo, J. Handbook of Research on Fuzzy Information Processing in Databases, Hershey, PA, Information Science Reference (USA), pp.18, 2008
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00273930
Contributeur : Celine Fiot <>
Soumis le : mercredi 16 avril 2008 - 16:47:54
Dernière modification le : jeudi 24 mai 2018 - 15:59:23

Identifiants

  • HAL Id : lirmm-00273930, version 1

Collections

Citation

Céline Fiot. Fuzzy Sequential Patterns for Quantitative Data Mining. Galindo, J. Handbook of Research on Fuzzy Information Processing in Databases, Hershey, PA, Information Science Reference (USA), pp.18, 2008. 〈lirmm-00273930〉

Partager

Métriques

Consultations de la notice

87