Human Discovery and Machine Learning

Abstract : This paper studies machine learning paradigms from the point of view of human cognition. Indeed, conceptions in both mahine learning and human learning evolved from a passive to an active conception of learning. Our objective is to provide an interaction protocol suited to both humans and machines, to eable assisting human discoveries by learning machines. We identify the limitations of common machine learning paradigms in the context of scientific discovery, and we propose an extension inspired by game theory and multi-agent systems. We present individual cognitive aspects of this protocol as well as social considerations, and we relate encouraging results concerning a game implementing it.
Type de document :
Article dans une revue
International Journal of Cognitive Informatics and Natural Intelligence, IGI Global, 2008, 2 (4), pp.55-69
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00274308
Contributeur : Christopher Dartnell <>
Soumis le : jeudi 17 avril 2008 - 18:10:30
Dernière modification le : jeudi 24 mai 2018 - 15:59:23
Document(s) archivé(s) le : jeudi 20 mai 2010 - 23:27:10

Identifiants

  • HAL Id : lirmm-00274308, version 1

Collections

Citation

Christopher Dartnell, Eric Martin, Hélène Hagège, Jean Sallantin. Human Discovery and Machine Learning. International Journal of Cognitive Informatics and Natural Intelligence, IGI Global, 2008, 2 (4), pp.55-69. 〈lirmm-00274308〉

Partager

Métriques

Consultations de la notice

260

Téléchargements de fichiers

859