Detection of Sequential Outliers using a Variable Length Markov Model - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2008

Detection of Sequential Outliers using a Variable Length Markov Model

Résumé

The problem of mining for outliers in sequential datasets is crucial to forward appropriate analysis of data. Therefore, many approaches for the discovery of such anomalies have been proposed. However, most of them use a sample of known typical sequences to build the model. Besides, they remain greedy in terms of memory usage. In this paper we propose an extension of one such approach, based on a Probabilistic Suffix Tree and on a measure of similarity. We add a pruning criterion which reduces the size of the tree while improving the model, and a sharp inequality for the concentration of the measure of similarity, to better sort the outliers. We prove the feasability of our approach through a set of experiments over a protein database.
Fichier principal
Vignette du fichier
lirmm-00324526v1.pdf (440.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00324526 , version 1 (07-10-2019)

Identifiants

Citer

Cécile Low-Kam, Anne Laurent, Maguelonne Teisseire. Detection of Sequential Outliers using a Variable Length Markov Model. ICMLA: International Conference on Machine Learning and Applications, Dec 2008, San Diego, CA, United States. pp.571-576, ⟨10.1109/ICMLA.2008.137⟩. ⟨lirmm-00324526⟩
107 Consultations
113 Téléchargements

Altmetric

Partager

More