Mining Evolving data Streams for Frequent Patterns - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Accéder directement au contenu
Article Dans Une Revue Pattern Recognition Année : 2007

Mining Evolving data Streams for Frequent Patterns

Résumé

A data stream is a potentially uninterrupted flow of data. Mining this flow makes it necessary to cope with uncertainty, as only a part of the stream can be stored. In this paper, we evaluate a statistical technique which biases the estimation of the support of patterns, so as to maximize either the precision or the recall, as chosen by the user, and limit the degradation of the other criterion. Theoretical results show that the technique is not far from the optimum, from the statistical standpoint. Experiments performed tend to demonstrate its potential, as it remains robust even under significant distribution drifts.

Dates et versions

lirmm-00365474 , version 1 (03-03-2009)

Identifiants

Citer

Pierre-Alain Laur, Richard Nock, Jean-Émile Symphor, Pascal Poncelet. Mining Evolving data Streams for Frequent Patterns. Pattern Recognition, 2007, 40 (2), pp.492-503. ⟨10.1016/j.patcog.2006.03.006⟩. ⟨lirmm-00365474⟩
367 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More