Learning from each other
Abstract
Since its inception, the field of machine learning has seen the advent of several learning paradigms, designed to frame the issues central to the learning activity, provide effective learning methods, and investigate the power and limitations inherent to the process of successful learning. We propose a formalization that underlies the key concepts of many such paradigms and discuss their relevance to scientific discovery, with the aim of assessing what scientists can expect from machines designed to assist them in their quest for the discovery of valid laws. We illustrate the formalization on several variations of a card game, and highlight the differences that paradigms impose on learners, as well as the assumptions they make on the nature of the learning process. We use the formalization to describe a multi-agent interaction protocol inspired by these paradigms that has been validated recently. We propose extensions to this protocol.