Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Ouvrages Année : 2009

Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design

Anne Laurent
Marie-Jeanne Lesot

Résumé

Today, fuzzy methods provide tools to handle data sets in relevant, robust and interpretable ways, making it possible to model and exploit imprecision and uncertainty in data modeling and data mining. Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design presents innovative, cutting-edge fuzzy techniques that highlight the relevance of fuzziness for huge data sets in the perspective of scalability issues, from both a theoretical and experimental point of view. It covers a wide scope of research areas including data representation, structuring and querying as well as information retrieval and data mining. It encompasses different forms of databases, including data warehouses, data cubes, tabular or relational data, and many applications among which music warehouses, video mining, bioinformatics, semantic web and data streams.
Fichier principal
Vignette du fichier
lirmm-00408734v1-EditorProof.pdf (44.68 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00408734 , version 1 (09-10-2019)

Identifiants

  • HAL Id : lirmm-00408734 , version 1

Citer

Anne Laurent, Marie-Jeanne Lesot (Dir.). Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design. Anne Laurent; Marie-Jeanne Lesot. Information Science Reference, 380 p., 2009, 978-1-60566-858-1. ⟨lirmm-00408734⟩
225 Consultations
30 Téléchargements

Partager

More