Fast ideal cubing in quadratic number and function fields

Abstract : We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output, we present a variation based on Shanks' NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our formulas, when combined with double base chains using binary and ternary exponents, lead to faster exponentiation.
Type de document :
Communication dans un congrès
CHiLE: Conference on Hyperelliptic curves, discrete Logarithms, Encryption, etc., 2009, Frutillar, Chile. 2009, 〈http://inst-mat.utalca.cl/chile2009/〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00430686
Contributeur : Laurent Imbert <>
Soumis le : lundi 9 novembre 2009 - 15:19:51
Dernière modification le : jeudi 24 mai 2018 - 15:59:21

Identifiants

  • HAL Id : lirmm-00430686, version 1

Collections

Citation

Laurent Imbert, Michael Jacobson Jr, Arthur Schmidt. Fast ideal cubing in quadratic number and function fields. CHiLE: Conference on Hyperelliptic curves, discrete Logarithms, Encryption, etc., 2009, Frutillar, Chile. 2009, 〈http://inst-mat.utalca.cl/chile2009/〉. 〈lirmm-00430686〉

Partager

Métriques

Consultations de la notice

121