Fast Ideal Cubing in Quadratic Number and Function Fields

Laurent Imbert 1 Michael Jacobson Jr 2 Arthur Schmidt 2
1 ARITH - Arithmétique informatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output, we present a variation based on Shanks' NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our formulas, when combined with double base chains using binary and ternary exponents, lead to faster exponentiation.
Type de document :
Article dans une revue
Advances in Mathematics of Communications, AIMS, 2010, 4 (2), pp.237-260. 〈10.3934/amc.2010.4.237〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00484731
Contributeur : Laurent Imbert <>
Soumis le : mercredi 19 mai 2010 - 01:00:10
Dernière modification le : jeudi 24 mai 2018 - 15:59:21

Lien texte intégral

Identifiants

Collections

Citation

Laurent Imbert, Michael Jacobson Jr, Arthur Schmidt. Fast Ideal Cubing in Quadratic Number and Function Fields. Advances in Mathematics of Communications, AIMS, 2010, 4 (2), pp.237-260. 〈10.3934/amc.2010.4.237〉. 〈lirmm-00484731〉

Partager

Métriques

Consultations de la notice

189