Learning transformation rules from transformation examples: An approach based on Relational Concept Analysis

Abstract : In Model Driven Engineering (MDE), model transformations are basic and primordial entities, thus easing their design and implementation is an important issue. A quite recently proposed way to create model transformations consists in deducing a transformation from examples of transformed models. Examples are easier to write than a transformation program and are often already available. We propose in this paper a method based on a machine learning method of the lattice domain, the Relational Concept Analysis, and an implementation of this method.
Type de document :
Communication dans un congrès
G. Guizzardi; L. Kutnoven. EDOC: Enterprise Distributed Object Computing Conference, Oct 2010, Vittoria, Brazil. IEEE Computer Society, 14th International Enterprise Distributed Object Computing Conference, pp.27-32, 2010, 〈http://edoc2010.inf.ufes.br/〉. 〈10.1109/EDOCW.2010.32〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00533375
Contributeur : Marianne Huchard <>
Soumis le : vendredi 5 novembre 2010 - 18:30:27
Dernière modification le : vendredi 20 juillet 2018 - 19:58:02
Document(s) archivé(s) le : vendredi 26 octobre 2012 - 15:02:44

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xavier Dolques, Marianne Huchard, Clémentine Nebut, Philippe Reitz. Learning transformation rules from transformation examples: An approach based on Relational Concept Analysis. G. Guizzardi; L. Kutnoven. EDOC: Enterprise Distributed Object Computing Conference, Oct 2010, Vittoria, Brazil. IEEE Computer Society, 14th International Enterprise Distributed Object Computing Conference, pp.27-32, 2010, 〈http://edoc2010.inf.ufes.br/〉. 〈10.1109/EDOCW.2010.32〉. 〈lirmm-00533375〉

Partager

Métriques

Consultations de la notice

195

Téléchargements de fichiers

699