Skip to Main content Skip to Navigation
Journal articles

A Knowledge-Rich Distributed Decision Support Framework: A Case Study for Brain Tumour Diagnosis

Abstract : The HealthAgents project aims to provide a decision support system for brain tumour diagnosis using a collaborative network of distributed agents. The goal is that through the aggregation of the small data sets available at individual hospitals, much better decision support classifiers can be created and made available to the hospitals taking part. In this paper, we describe the technicalities of the HealthAgents framework, in particular how the interoperability of the various agents is managed using semantic web technologies. On the broad scale the architecture is based around distributed data-mart agents that provide ontological access to hospitals’ underlying data that has been anonymized and processed from proprietary formats into a canonical format. Classifier producers have agents that gather the global data from participating hospitals such that classifiers can be created and deployed as agents. The design on a microscale has each agent built upon a generic-layered framework that provides the common agent program code, allowing rapid development of agents for the system. We believe that our framework provides a well-engineered, agent-based approach to data sharing in a medical context. It can provide a better basis on which to investigate the effectiveness of new classification techniques for brain tumour diagnosis.
Document type :
Journal articles
Complete list of metadata
Contributor : Madalina Croitoru Connect in order to contact the contributor
Submitted on : Friday, September 2, 2011 - 11:54:24 AM
Last modification on : Tuesday, September 6, 2022 - 4:53:29 PM

Links full text




David Dupplaw, Madalina Croitoru, Srinandan Dasmahapatra, Alex Gibbs, Horacio Gonzales-Velez, et al.. A Knowledge-Rich Distributed Decision Support Framework: A Case Study for Brain Tumour Diagnosis. Knowledge Engineering Review, Cambridge University Press (CUP), 2011, 26 (3), pp.247-260. ⟨10.1017/S0269888911000105⟩. ⟨lirmm-00618606⟩



Record views