Adaptive Jacobian Vision Based Control for Robots with Uncertain Depth Information

Abstract : This paper presents a simple vision based setpoint controller with adaptation to uncertainty in depth information. Depth uncertainty plays a special role in vision based control as it appears nonlinearly in the overall Jacobian matrix and hence cannot be adapted together with other uncertain kinematic parameters. We propose a novel parameter update law to update the uncertain parameters of the depth. It is proved that system stability can be guaranteed for the vision regulation task in presence of uncertainties in depth information, robot kinematics and dynamics. Simulation results are presented to illustrate the performance of the proposed controller.
Type de document :
Article dans une revue
Automatica, Elsevier, 2010, 46, pp.1228-1233. 〈10.1016/j.automatica.2010.04.009〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00629327
Contributeur : Chao Liu <>
Soumis le : mercredi 5 octobre 2011 - 15:50:17
Dernière modification le : jeudi 11 janvier 2018 - 06:26:07

Identifiants

Collections

Citation

Chien Chern Cheah, Chao Liu, Jean-Jacques E. Slotine. Adaptive Jacobian Vision Based Control for Robots with Uncertain Depth Information. Automatica, Elsevier, 2010, 46, pp.1228-1233. 〈10.1016/j.automatica.2010.04.009〉. 〈lirmm-00629327〉

Partager

Métriques

Consultations de la notice

102