Improving Many-Task Computing in Scientific Workflows Using P2P Techniques - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2010

Improving Many-Task Computing in Scientific Workflows Using P2P Techniques

Abstract

Large-scale scientific experiments are usually supported by scientific workflows that may demand high performance computing infrastructure. Within a given experiment, the same workflow may be explored with different sets of parameters. However, the parallelization of the workflow instances is hard to be accomplished mainly due to the heterogeneity of its activities. Many-Task computing paradigm seems to be a candidate approach to support workflow activity parallelism. However, scheduling a huge amount of workflow activities on large clusters may be susceptible to resource failures and overloading. In this paper, we propose Heracles, an approach to apply consolidated P2P techniques to improve Many-Task computing of workflow activities on large clusters. We present a fault tolerance mechanism, a dynamic resource management and a hierarchical organization of computing nodes to handle workflow instances execution properly. We have evaluated Heracles by executing experimental analysis regarding the benefits of P2P techniques on the workflow execution time.
Fichier principal
Vignette du fichier
paper07-1.pdf (619.14 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-00641008 , version 1 (14-11-2011)

Identifiers

  • HAL Id : lirmm-00641008 , version 1

Cite

Jonas Dias, Eduardo Ogasawara, Daniel De Oliveira, Esther Pacitti, Marta Mattoso. Improving Many-Task Computing in Scientific Workflows Using P2P Techniques. MTAGS: Many-Task Computing on Grids and Supercomputers, 2010, New Orleans, United States. pp.31-40. ⟨lirmm-00641008⟩
320 View
448 Download

Share

Gmail Mastodon Facebook X LinkedIn More