Using Formal Concept Analysis to Extract a Greatest Common Model - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2012

Using Formal Concept Analysis to Extract a Greatest Common Model

Résumé

Data integration and knowledge capitalization combine data and information coming from different data sources designed by different experts having different purposes. In this paper, we propose to assist the underlying model merging activity. For close models made by experts of various specialities, we partially automate the identification of a Greatest Common Model (GCM) which is composed of the common concepts (core concepts) of the different models. Our methodology is based on Formal Concept Analysis which is a method of data analysis based on lattice theory. A decision tree allows to semi-automatically classify concepts from the concept lattices and assist the GCM extraction. We apply our approach on the EIS-Pesticide project, an environmental information system which aims at centralizing knowledge and information produced by different specialized teams.
Fichier principal
Vignette du fichier
iceis_2012-Versionfinale.pdf (541.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00727009 , version 1 (12-06-2020)

Identifiants

Citer

Bastien Amar, Abdoulkader Osman Guédi, André Miralles, Marianne Huchard, Thérèse Libourel Rouge, et al.. Using Formal Concept Analysis to Extract a Greatest Common Model. 14th International Conference on Enterprise Information Systems (ICEIS), Jun 2012, Wroclaw, Poland. pp.27-37. ⟨lirmm-00727009⟩
462 Consultations
145 Téléchargements

Partager

More