On Approximating the $d$-Girth of a Graph
Abstract
For a finite, simple, undirected graph G and an integer d ≥ 1, a mindeg-d subgraph is a subgraph of G of minimum degree at least d. The d-girth of G, denoted g d (G), is the minimum size of a mindeg-d subgraph of G. It is a natural generalization of the usual girth, which coincides with the 2-girth. The notion of d-girth was proposed by Erdős et al. [13, 14] and Bollobás and Brightwell [7] over 20 years ago, and studied from a purely combinatorial point of view. Since then, no new insights have appeared in the literature. Recently, first algorithmic studies of the problem have been carried out [2,4]. The current article further explores the complexity of finding a small mindeg-d subgraph of a given graph (that is, approximating its d-girth), by providing new hardness results and the first approximation algorithms in general graphs, as well as analyzing the case where G is planar.
Origin | Publisher files allowed on an open archive |
---|
Loading...