Sieve Methods for Odd Perfect Numbers - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Mathematics of Computation Année : 2012

Sieve Methods for Odd Perfect Numbers

Résumé

Using a new factor chain argument, we show that 5 does not divide an odd perfect number indivisible by a sixth power. Applying sieve techniques, we also find an upper bound on the smallest prime divisor. Putting this together we prove that an odd perfect number must be divisible by the sixth power of a prime or its smallest prime factor lies in the range 10^8 < p < 10^1000. These results are generalized to much broader situations.

Dates et versions

lirmm-00739250 , version 1 (06-10-2012)

Identifiants

Citer

S. Adam Fletcher, P. Nielsen Pace, Pascal Ochem. Sieve Methods for Odd Perfect Numbers. Mathematics of Computation, 2012, 81, pp.1753-1776. ⟨10.1090/S0025-5718-2011-02576-7⟩. ⟨lirmm-00739250⟩
171 Consultations
0 Téléchargements

Altmetric

Partager

More