Dynamic Workload-Based Partitioning for Large-Scale Databases

Miguel Liroz-Gistau 1, * Reza Akbarinia 1 Esther Pacitti 1 Fabio Porto 2 Patrick Valduriez 1
* Auteur correspondant
1 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Applications with very large databases, where data items are continuously appended, are becoming more and more common. Thus, the development of efficient workload-based data partitioning is one of the main requirements to offer good performance to most of those applications that have complex access patterns, e.g. scientific applications. However, the existing workload-based approaches, which are executed in a static way, cannot be applied to very large databases. In this paper, we propose DynPart, a dynamic partitioning algorithm for continuously growing databases. DynPart efficiently adapts the data partitioning to the arrival of new data elements by taking into account the affinity of new data with queries and fragments. In contrast to existing static approaches, our approach offers a constant execution time, no matter the size of the database, while obtaining very good partitioning efficiency. We validated our solution through experimentation over real-world data; the results show its effectiveness.
Type de document :
Communication dans un congrès
DEXA'2012: 23rd International Conference on Database and Expert Systems Applications, Sep 2012, Vienna, Austria. pp.183-190, 2012, LNCS. 〈http://www.dexa.org/previous/dexa2012/index.html〉. 〈10.1007/978-3-642-32597-7_16〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748549
Contributeur : Miguel Liroz-Gistau <>
Soumis le : lundi 5 novembre 2012 - 14:43:13
Dernière modification le : jeudi 24 mai 2018 - 15:59:21
Document(s) archivé(s) le : mercredi 6 février 2013 - 03:55:08

Fichier

dexa_2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti, Fabio Porto, Patrick Valduriez. Dynamic Workload-Based Partitioning for Large-Scale Databases. DEXA'2012: 23rd International Conference on Database and Expert Systems Applications, Sep 2012, Vienna, Austria. pp.183-190, 2012, LNCS. 〈http://www.dexa.org/previous/dexa2012/index.html〉. 〈10.1007/978-3-642-32597-7_16〉. 〈lirmm-00748549〉

Partager

Métriques

Consultations de la notice

287

Téléchargements de fichiers

509