Modeling and Clustering Users with Evolving Profiles in Usage Streams

Chongsheng Zhang 1 Florent Masseglia 2 Xiangliang Zhang 3
1 AxIS - Usage-centered design, analysis and improvement of information systems
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Paris-Rocquencourt
2 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Existing data stream models commonly assume that users' records or profiles in data streams will not be updated once they arrive. In many applications such as web usage, however, the users' records/profiles may evolve along time. This kind of streaming transactions are referred to as bi-streaming data - the data evolves temporally in two dimensions, the flowing of transactions as with the traditional data streams, and the evolving of users' profiles inside the streams, which makes bi-streaming data different from traditional data streams. The two-dimensional evolving of bi-streaming data brings difficulties on modeling and clustering for exploring the users' behaviours. This paper will propose three models to summarize bi-streaming data, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, the models summarize the behaviours of each user as an object. Based on these models, clustering algorithms are employed to identify the user groups. The proposed models are tested on a real-world data set showing that the DDS model can summarize the bi-streaming data efficiently and effectively, providing better basis for clustering user profiles than the other two models.
Type de document :
Communication dans un congrès
TIME'2012: 19th International Symposium on Temporal Representation and Reasoning, Sep 2012, United Kingdom. pp.133-140, 2012, 〈http://www.tech.dmu.ac.uk/STRL/time12/〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00753791
Contributeur : Florent Masseglia <>
Soumis le : lundi 19 novembre 2012 - 16:12:03
Dernière modification le : vendredi 25 mai 2018 - 12:02:04
Document(s) archivé(s) le : jeudi 21 février 2013 - 11:31:25

Fichier

time12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00753791, version 1

Collections

Citation

Chongsheng Zhang, Florent Masseglia, Xiangliang Zhang. Modeling and Clustering Users with Evolving Profiles in Usage Streams. TIME'2012: 19th International Symposium on Temporal Representation and Reasoning, Sep 2012, United Kingdom. pp.133-140, 2012, 〈http://www.tech.dmu.ac.uk/STRL/time12/〉. 〈lirmm-00753791〉

Partager

Métriques

Consultations de la notice

457

Téléchargements de fichiers

567