Statistical Cells Timing Metrics Characterization

Abstract : To characterize statistical moments of cell delays and slopes, the standard method is Monte Carlo (MC) method. However, this method suffers from very high computational cost. In this paper, we propose a technique to quickly and accurately estimate Standard Deviation (SD) of standard cell delays and slopes. The proposed technique is based on the identification, performed with a reduced set of MC simulations, of delay and output slope SD functions that take input slope, output load and supply voltage as input arguments. These identified functions are then used to estimate SDs of delays and slopes at different operating conditions (input slope, output load, supply voltage). This proposed method provides at least % of CPU gains, with respect to MC, while keeping high accuracy.
Type de document :
Communication dans un congrès
FTFC'12: IEEE Faible Tension Faible Consommation, Jun 2012, Paris, France. session4-paper3, 2012
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00762131
Contributeur : Nadine Azemard <>
Soumis le : jeudi 6 décembre 2012 - 15:01:07
Dernière modification le : lundi 23 juillet 2018 - 14:20:01

Identifiants

  • HAL Id : lirmm-00762131, version 1

Collections

Citation

Nadine Azemard, Zeqin Wu, Philippe Maurine, Gille Ducharme. Statistical Cells Timing Metrics Characterization. FTFC'12: IEEE Faible Tension Faible Consommation, Jun 2012, Paris, France. session4-paper3, 2012. 〈lirmm-00762131〉

Partager

Métriques

Consultations de la notice

156