Computational discovery of regulatory elements in a continuous expression space
Abstract
Approaches for regulatory element discovery from gene expression data usually rely on clustering algorithms to partition the data into clusters of co-expressed genes. Gene regulatory sequences are then mined to find over-represented motifs in each cluster. However, this ad-hoc partition rarely fits the biological reality. We propose a novel method called RED2 that avoids data clustering by estimating motif densities locally around each gene. We show that RED2 detects numerous motifs not detected by clustering-based approaches, and that most of these correspond to characterized motifs. RED2 can be accessed online with a user-friendly interface at http://www.atgc-montpellier.fr/RED2/.
Origin | Publisher files allowed on an open archive |
---|
Loading...