Computational discovery of regulatory elements in a continuous expression space - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Journal Articles Genome Biology Year : 2012

Computational discovery of regulatory elements in a continuous expression space

Abstract

Approaches for regulatory element discovery from gene expression data usually rely on clustering algorithms to partition the data into clusters of co-expressed genes. Gene regulatory sequences are then mined to find over-represented motifs in each cluster. However, this ad-hoc partition rarely fits the biological reality. We propose a novel method called RED2 that avoids data clustering by estimating motif densities locally around each gene. We show that RED2 detects numerous motifs not detected by clustering-based approaches, and that most of these correspond to characterized motifs. RED2 can be accessed online with a user-friendly interface at http://www.atgc-montpellier.fr/RED2/.
Fichier principal
Vignette du fichier
gb-2012-13-11-r109.pdf (1.05 Mo) Télécharger le fichier
Origin Publisher files allowed on an open archive
Loading...

Dates and versions

lirmm-00796453 , version 1 (04-03-2013)

Identifiers

Cite

Mathieu Lajoie, Olivier Gascuel, Vincent Lefort, Laurent Brehelin. Computational discovery of regulatory elements in a continuous expression space. Genome Biology, 2012, 13 (11), pp.41. ⟨10.1186/gb-2012-13-11-r109⟩. ⟨lirmm-00796453⟩
407 View
389 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More