Do the Properties of an S-adic Representation Determine Factor Complexity?

Abstract : The S-adic conjecture postulates the existence of a condition C such that a sequence has linear complexity if and only if it is an S-adic sequence satisfying C for some finite set S of morphisms. We present an overview of the factor complexity of S-adic sequences and we give some examples that either illustrate some interesting properties, or that are counterexamples to what might seem to be a "good" condition C.
Type de document :
Article dans une revue
Journal of Integer Sequences, University of Waterloo, 2013, 16 (2), pp.Art 13.2.6. 〈https://cs.uwaterloo.ca/journals/JIS/vol16.html〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00797654
Contributeur : Gwenaël Richomme <>
Soumis le : mardi 10 juillet 2018 - 16:04:40
Dernière modification le : dimanche 15 juillet 2018 - 10:36:35

Fichier

durand2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00797654, version 1

Collections

Citation

Fabien Durand, Julien Leroy, Gwenaël Richomme. Do the Properties of an S-adic Representation Determine Factor Complexity?. Journal of Integer Sequences, University of Waterloo, 2013, 16 (2), pp.Art 13.2.6. 〈https://cs.uwaterloo.ca/journals/JIS/vol16.html〉. 〈lirmm-00797654〉

Partager

Métriques

Consultations de la notice

265

Téléchargements de fichiers

2