Do the Properties of an S-adic Representation Determine Factor Complexity?

Fabien Durand 1 Julien Leroy 1 Gwenaël Richomme 2, 3, 4
2 ESCAPE - Systèmes complexes, automates et pavages
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 ARITH - Arithmétique informatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : The S-adic conjecture postulates the existence of a condition C such that a sequence has linear complexity if and only if it is an S-adic sequence satisfying C for some finite set S of morphisms. We present an overview of the factor complexity of S-adic sequences and we give some examples that either illustrate some interesting properties, or that are counterexamples to what might seem to be a "good" condition C.
Type de document :
Article dans une revue
Journal of Integer Sequences, University of Waterloo, 2013, 16 (2), pp.Art 13.2.6. 〈https://cs.uwaterloo.ca/journals/JIS/vol16.html〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00797654
Contributeur : Gwenaël Richomme <>
Soumis le : jeudi 7 mars 2013 - 08:30:13
Dernière modification le : jeudi 11 janvier 2018 - 06:27:05

Identifiants

  • HAL Id : lirmm-00797654, version 1

Citation

Fabien Durand, Julien Leroy, Gwenaël Richomme. Do the Properties of an S-adic Representation Determine Factor Complexity?. Journal of Integer Sequences, University of Waterloo, 2013, 16 (2), pp.Art 13.2.6. 〈https://cs.uwaterloo.ca/journals/JIS/vol16.html〉. 〈lirmm-00797654〉

Partager

Métriques

Consultations de la notice

112