WebUser: mining unexpected web usage - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Journal Articles International Journal of Business Intelligence and Data Mining Year : 2011

WebUser: mining unexpected web usage

Haoyuan Li
Anne Laurent
Pascal Poncelet

Abstract

Web usage mining has been much concentrated on the discovery of relevant user behaviours from Web access record data. In this paper, we present WebUser, an approach to discover unexpected usage in Web access log. We present a belief-driven method for extracting unexpected Web usage sequences, where the belief system consists of a temporal relation and semantics constrained sequence rules acquired with respect to prior knowledge. Our experiments show the effectiveness and usefulness of the proposed approach. Further, discovered rules of unexpected Web usage can be used for Web content personalisation and recommendation, site structure optimisation, and critical event prediction.
Fichier principal
Vignette du fichier
IJBIDM09.pdf (1.54 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-00798139 , version 1 (22-03-2019)

Identifiers

Cite

Haoyuan Li, Anne Laurent, Pascal Poncelet. WebUser: mining unexpected web usage. International Journal of Business Intelligence and Data Mining, 2011, 6 (1), pp.90-111. ⟨10.1504/IJBIDM.2011.038276⟩. ⟨lirmm-00798139⟩
102 View
150 Download

Altmetric

Share

More