Testing Pairwise Association between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data

Vincent Deblauwe 1, * Pol Kennel 2 Pierre Couteron 1
* Auteur correspondant
2 ARITH - Arithmétique informatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Background: Independence between observations is a standard prerequisite of traditional statistical tests of association. This condition is, however, violated when autocorrelation is present within the data. In the case of variables that are regularly sampled in space (i.e. lattice data or images), such as those provided by remote-sensing or geographical databases, this problem is particularly acute. Because analytic derivation of the null probability distribution of the test statistic (e.g. Pearson's r) is not always possible when autocorrelation is present, we propose instead the use of a Monte Carlo simulation with surrogate data. Methodology/Principal Findings: The null hypothesis that two observed mapped variables are the result of independent pattern generating processes is tested here by generating sets of random image data while preserving the autocorrelation function of the original images. Surrogates are generated by matching the dual-tree complex wavelet spectra (and hence the autocorrelation functions) of white noise images with the spectra of the original images. The generated images can then be used to build the probability distribution function of any statistic of association under the null hypothesis. We demonstrate the validity of a statistical test of association based on these surrogates with both actual and synthetic data and compare it with a corrected parametric test and three existing methods that generate surrogates (randomization, random rotations and shifts, and iterative amplitude adjusted Fourier transform). Type I error control was excellent, even with strong and long-range autocorrelation, which is not the case for alternative methods. Conclusions/Significance: The wavelet-based surrogates are particularly appropriate in cases where autocorrelation appears at all scales or is direction-dependent (anisotropy). We explore the potential of the method for association tests involving a lattice of binary data and discuss its potential for validation of species distribution models. An implementation of the method in Java for the generation of wavelet-based surrogates is available online as supporting material.
Type de document :
Article dans une revue
PLoS ONE, Public Library of Science, 2012, pp.1-9
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00804436
Contributeur : Pol Kennel <>
Soumis le : lundi 25 mars 2013 - 15:10:35
Dernière modification le : jeudi 11 janvier 2018 - 06:26:07
Document(s) archivé(s) le : mercredi 26 juin 2013 - 04:02:50

Fichier

journal.pone.0048766.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : lirmm-00804436, version 1

Collections

Citation

Vincent Deblauwe, Pol Kennel, Pierre Couteron. Testing Pairwise Association between Spatially Autocorrelated Variables: A New Approach Using Surrogate Lattice Data. PLoS ONE, Public Library of Science, 2012, pp.1-9. 〈lirmm-00804436〉

Partager

Métriques

Consultations de la notice

181

Téléchargements de fichiers

257