On exact algorithms for treewidth

Abstract : We give experimental and theoretical results on the problem of computing the treewidth of a graph by exact exponential-time algorithms using exponential space or using only polynomial space. We first report on an implementation of a dynamic programming algorithm for computing the treewidth of a graph with running time O*(2n). This algorithm is based on the old dynamic programming method introduced by Held and Karp for the Traveling Salesman problem. We use some optimizations that do not affect the worst case running time but improve on the running time on actual instances and can be seen to be practical for small instances. We also consider the problem of computing Treewidth under the restriction that the space used is only polynomial and give a simple O*(4n) algorithm that requires polynomial space. We also show that with a more complicated algorithm using balanced separators, Treewidth can be computed in O*(2.9512n) time and polynomial space.
Type de document :
Article dans une revue
ACM Transactions on Algorithms, Association for Computing Machinery, 2012, 9 (1), pp.12:1--12:23. 〈http://dl.acm.org/citation.cfm?id=2390188〉. 〈10.1145/2390176.2390188〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00804792
Contributeur : Dimitrios M. Thilikos <>
Soumis le : mardi 26 mars 2013 - 12:37:11
Dernière modification le : jeudi 24 mai 2018 - 15:59:22

Lien texte intégral

Identifiants

Citation

Hans L. Bodlaender, Fedor V. Fomin, Aries Koster, Dieter Kratsch, Dimitrios M. Thilikos. On exact algorithms for treewidth. ACM Transactions on Algorithms, Association for Computing Machinery, 2012, 9 (1), pp.12:1--12:23. 〈http://dl.acm.org/citation.cfm?id=2390188〉. 〈10.1145/2390176.2390188〉. 〈lirmm-00804792〉

Partager

Métriques

Consultations de la notice

119