Excluding Graphs as Immersions in Surface Embedded Graphs
Résumé
We prove a structural characterization of graphs that forbid a fixed graph $H$ as an immersion and can be embedded in a surface of Euler genus $\gamma$. In particular, we prove that a graph $G$ that excludes some connected graph $H$ as an immersion and is embedded in a surface of Euler genus $\gamma$ has either "small" treewidth (bounded by a function of $H$ and $\gamma$) or "small" edge connectivity (bounded by the maximum degree of $H$). Using the same techniques we also prove an excluded grid theorem on bounded genus graphs for the immersion relation.