Segment representation of a subclass of co-planar graphs

Mathew C. Francis 1 Jan Kratochvil 2 Tomáš Vyskočil 2
1 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : A graph is a segment graph if its vertices can be mapped to line segments in the plane such that two vertices are adjacent if and only if their corresponding line segments intersect. Kratochvíl and Kuběna asked the question of whether the complements of planar graphs, called co-planar graphs, are segment graphs. We show here that the complements of all partial 2-trees are segment graphs.
Type de document :
Article dans une revue
Discrete Mathematics, Elsevier, 2012, 312, pp.1815-1818. 〈http://www.sciencedirect.com/science/article/pii/S0012365X12000386〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00807948
Contributeur : Daniel Gonçalves <>
Soumis le : jeudi 4 avril 2013 - 16:09:45
Dernière modification le : jeudi 24 mai 2018 - 15:59:22

Identifiants

  • HAL Id : lirmm-00807948, version 1

Collections

Citation

Mathew C. Francis, Jan Kratochvil, Tomáš Vyskočil. Segment representation of a subclass of co-planar graphs. Discrete Mathematics, Elsevier, 2012, 312, pp.1815-1818. 〈http://www.sciencedirect.com/science/article/pii/S0012365X12000386〉. 〈lirmm-00807948〉

Partager

Métriques

Consultations de la notice

91