On the maximal weight of $(p,q)$-ary chain partitions with bounded parts - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Pré-Publication, Document De Travail Année : 2012

On the maximal weight of $(p,q)$-ary chain partitions with bounded parts

Laurent Imbert
Fabrice Philippe

Résumé

A (p,q)-ary chain is a special type of chain partition of integers with parts of the form paqb for some fixed integers p and q. In this note, we are interested in the maximal weight of such partitions when their parts are distinct and cannot exceed a given bound m. Characterizing the cases where the greedy choice fails, we prove that this maximal weight is, as a function of m, asymptotically independent of max(p,q), and we provide an efficient algorithm to compute it.

Dates et versions

lirmm-00815458 , version 1 (18-04-2013)

Identifiants

  • HAL Id : lirmm-00815458 , version 1
  • ARXIV : 1212.4370

Citer

Filippo Disanto, Laurent Imbert, Fabrice Philippe. On the maximal weight of $(p,q)$-ary chain partitions with bounded parts. 2012. ⟨lirmm-00815458⟩
276 Consultations
0 Téléchargements

Altmetric

Partager

More