Segmentation Through DWT and Adaptive Morphological Closing - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2011

Segmentation Through DWT and Adaptive Morphological Closing

Résumé

Object segmentation is an essential task in computer vision and object recognitions. In this paper, we present an image segmentation technique that extract edge information from wavelet coefficients and uses mathematical morphology to segment the image. We threshold the image to get its binary version and get a high-pass image by the inverse DWT of its high frequency subbands from the wavelet domain. This is followed by an adaptive morphological closing operation that dynamically adjusts the structuring element according to the local orientation of edges. The ensued holes are, subsequently, filled by a morphological fill operation. For comparison, we are relying on the well-established Canny's method and show that in special cases, our method perform better.
Fichier principal
Vignette du fichier
nuhman_1.pdf (1.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00839413 , version 1 (02-07-2013)

Identifiants

  • HAL Id : lirmm-00839413 , version 1

Citer

Nuhman Ul Haq, Syed Hamad Sherazi, Khizar Hayat, William Puech. Segmentation Through DWT and Adaptive Morphological Closing. EUSIPCO: EUropean SIgnal Processing COnference, Aug 2011, Barcelona, Spain. pp.31-36. ⟨lirmm-00839413⟩
253 Consultations
385 Téléchargements

Partager

More