Mining Tweet Data - Statistic and semantic information for political tweet classification

Guillaume Tisserant 1 Violaine Prince 1 Mathieu Roche 2, 3
1 TEXTE - Exploration et exploitation de données textuelles
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
2 ADVANSE - ADVanced Analytics for data SciencE
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : This paper deals with the quality of textual features in messages in order to classify tweets. The aim of our study is to show how improving the representation of textual data affects the performance of learning algorithms. We will first introduce our method GenDesc. It generalises less relevant words for tweet classi- fication. Secondly we compare and discuss the types of textual features given by different approaches. More precisely we discuss the semantic specificity of textual features, e.g. Named Entity, HashTag.
Type de document :
Communication dans un congrès
KDIR: Knowledge Discovery and Information Retrieval, Oct 2014, Rome, Italy. KDIR'14: International Conference on Knowledge Discovery and Information Retrieval, pp.523-529, 2014, Text-Mining Session
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01054908
Contributeur : Mathieu Roche <>
Soumis le : samedi 9 août 2014 - 21:10:48
Dernière modification le : lundi 22 octobre 2018 - 09:54:03

Identifiants

  • HAL Id : lirmm-01054908, version 1

Citation

Guillaume Tisserant, Violaine Prince, Mathieu Roche. Mining Tweet Data - Statistic and semantic information for political tweet classification. KDIR: Knowledge Discovery and Information Retrieval, Oct 2014, Rome, Italy. KDIR'14: International Conference on Knowledge Discovery and Information Retrieval, pp.523-529, 2014, Text-Mining Session. 〈lirmm-01054908〉

Partager

Métriques

Consultations de la notice

236