Contraction Obstructions for Connected Graph Searching
Abstract
We consider the connected variant of the classic mixed search game where, in each search step, cleaned edges form a connected subgraph. We consider graph classes with bounded connected monotone mixed search number and we deal with the the question weather the obstruction set, with respect of the contraction partial ordering, for those classes is finite. In general, there is no guarantee that those sets are finite, as graphs are not well quasi ordered under the contraction partial ordering relation. In this paper we provide the obstruction set for k = 2. This set is finite, it consists of 174 graphs and completely characterizes the graphs with connected monotone mixed search number at most 2. Our proof reveals that the "sense of direction" of an optimal search searching is important for connected search which is in contrast to the unconnected original case.
Domains
Discrete Mathematics [cs.DM]Origin | Files produced by the author(s) |
---|
Loading...