On the maximal weight of $(p,q)$-ary chain partitions with bounded parts - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Integers : Electronic Journal of Combinatorial Number Theory Année : 2014

On the maximal weight of $(p,q)$-ary chain partitions with bounded parts

Filippo Disanto
  • Fonction : Auteur
  • PersonId : 960316
Laurent Imbert

Résumé

A $(p,q)$-ary chain is a special type of chain partition of integers with parts of the form $p^aq^b$ for some fixed integers $p$ and $q$. In this note, we are interested in the maximal weight of such partitions when their parts are distinct and cannot exceed a given bound $m$. Characterizing the cases where the greedy choice fails, we prove that this maximal weight is, as a function of $m$, asymptotically independent of $\max(p,q)$, and we provide an efficient algorithm to compute it.
Fichier principal
Vignette du fichier
o37.pdf (338.24 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

lirmm-01104898 , version 1 (22-08-2022)

Identifiants

Citer

Filippo Disanto, Laurent Imbert, Fabrice Philippe. On the maximal weight of $(p,q)$-ary chain partitions with bounded parts. Integers : Electronic Journal of Combinatorial Number Theory, 2014, 14, pp.A37. ⟨lirmm-01104898⟩
232 Consultations
42 Téléchargements

Altmetric

Partager

More