Minimal Disconnected Cuts in Planar Graphs
Résumé
The problem of finding a disconnected cut in a graph is NP-hard in general but polynomial-time solvable on planar graphs. The problem of finding a minimal disconnected cut is also NP-hard but its computational complexity is not known for planar graphs. We show that it is polynomial-time solvable on 3-connected planar graphs but NP-hard for 2-connected planar graphs. Our technique for the first result is based on a structural characterization of minimal disconnected cuts in 3-connected K3,3-free-minor graphs and on solving a topological minor problem in the dual. We show that the latter problem can be solved in polynomial-time even on general graphs. In addition we show that the problem of finding a minimal connected cut of size at least 3 is NP-hard for 2-connected apex graphs.