Solve a Constraint Problem without Modeling It

Christian Bessière 1 Remi Coletta 1 Nadjib Lazaar 1
1 COCONUT - Agents, Apprentissage, Contraintes
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : We study how to find a solution to a constraint problem without modeling it. Constraint acquisition systems such as Conacq or ModelSeeker are not able to solve a single instance of a problem because they require positive examples to learn. The recent QuAcq algorithm for constraint acquisition does not require positive examples to learn a constraint network. It is thus able to solve a constraint problem without modeling it: we simply exit from QuAcq as soon as a complete example is classified as positive by the user. In this paper, we propose ASK&SOLVE, an elicitation-based solver that tries to find the best tradeoff between learning and solving to converge as soon as possible on a solution. We propose several strategies to speed-up ASK&SOLVE. Finally we give an experimental evaluation that shows that our approach improves the state of the art.
Type de document :
Communication dans un congrès
ICTAI: International Conference on Tools with Artificial Intelligence, Nov 2014, Limasso, Cyprus. IEEE, Proceedings IEEE-ICTAI’14, pp.1-7, 2014, Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on. 〈10.1109/ICTAI.2014.12〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01228368
Contributeur : Joël Quinqueton <>
Soumis le : vendredi 13 novembre 2015 - 08:50:28
Dernière modification le : jeudi 11 janvier 2018 - 06:26:23
Document(s) archivé(s) le : vendredi 28 avril 2017 - 07:35:01

Fichier

ictai14.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Christian Bessière, Remi Coletta, Nadjib Lazaar. Solve a Constraint Problem without Modeling It. ICTAI: International Conference on Tools with Artificial Intelligence, Nov 2014, Limasso, Cyprus. IEEE, Proceedings IEEE-ICTAI’14, pp.1-7, 2014, Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on. 〈10.1109/ICTAI.2014.12〉. 〈lirmm-01228368〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

1082