Mining Representative Frequent Patterns in a Hierarchy of Contexts
Résumé
More and more data come with contextual information describing the circumstances of their acquisition. While the frequent pattern mining literature offers a lot of approaches to handle and extract interesting patterns in data, little effort has been dedicated to relevantly handling such contextual information during the mining process. In this paper we propose a generic formulation of the contextual frequent pattern mining problem and provide the CFPM algorithm to mine frequent patterns that are representative of a context. This approach is generic w.r.t. the pattern language (e.g., itemsets, sequential patterns, subgraphs, etc.) and therefore is applicable in a wide variety of use cases. The CFPM method is experimented on real datasets with three different pattern languages to assess its performances and genericity.
Domaines
Base de données [cs.DB]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...