On the Test and Mitigation of Malfunctions in Low-Power SRAMs
Résumé
In low-power SRAMs, power gating mechanisms are commonly used to reduce static power consumption. When the SRAM is not accessed for a long period, such mechanisms allow shutting off one or more memory blocks (core-cell array, address decoder, I/O logic, etc.), thus reducing leakage currents. In order to guarantee static power reduction in low-power SRAMs, reliable operation of power gating mechanisms must be ensured by adequate test techniques. In this paper, we first present a detailed analysis based on electrical simulations to identify faulty behaviors caused by realistic defects that may affect power gating mechanisms embedded in low-power SRAMs. Based on this analysis, we present an efficient test solution targeting detection of observed faulty behaviors. As a final contribution, we propose novel techniques to mitigate the impact of studied defects, once detected by test methods, therefore providing significant yield improvement.