Semantic-Based Multilingual Document Clustering via Tensor Modeling - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2014

Semantic-Based Multilingual Document Clustering via Tensor Modeling


A major challenge in document clustering research arises from the growing amount of text data written in different languages. Previous approaches depend on language-specific solutions (e.g., bilingual dictionaries, sequential machine translation) to evaluate document similarities, and the required transformations may alter the original document semantics. To cope with this issue we propose a new document clustering approach for multilingual corpora that (i) exploits a large-scale multilingual knowledge base, (ii) takes advantage of the multi-topic nature of the text documents, and (iii) employs a tensor-based model to deal with high dimensionality and sparseness. Results have shown the significance of our approach and its better performance w.r.t. classic document clustering approaches, in both a balanced and an unbalanced corpus evaluation.
Fichier principal
Vignette du fichier
585_Paper.pdf (407.84 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

lirmm-01239231 , version 1 (07-12-2015)



Salvatore Romeo, Andrea Tagarelli, Dino Ienco. Semantic-Based Multilingual Document Clustering via Tensor Modeling. EMNLP: Empirical Methods in Natural Language Processing, Oct 2014, Doha, Qatar. pp.600-609, ⟨10.3115/v1/D14-1065⟩. ⟨lirmm-01239231⟩
228 View
373 Download



Gmail Facebook X LinkedIn More