A Graph-­based Method to Detect Rare Events: An Application to Identify Pathologic Cells

Abstract : Detection of outliers and anomalous behavior is a well-­known problem in the data mining and statistics fields. Although the problem of identifying single outliers has been extensively studied in the literature , little or some effort has been devoted to the detection of small groups of outliers that are similar to each other but markedly different from the entire population. Many real world scenarios have small groups of outliers , e. g. a group of students that excel in a classroom or a group of spammers in an online social network. In this paper , we propose a novel method to solve this challenging problem that lies at the frontiers of outlier detection and clustering of similar groups. The method transforms a multidimensional dataset into a graph , applies a network metric to detect clusters and renders a representation for visual assessment to find rare events. We test the proposed method to detect pathologic cells (e. g. Cancer , HIV , CVA , etc .) in the biomedical science domain. The results are very promising and confirm the available ground truth provided by the domain experts.
Type de document :
Article dans une revue
IEEE Computer Graphics and Applications, Institute of Electrical and Electronics Engineers, 2015, 36 (3), pp.65-73
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01259928
Contributeur : Arnaud Sallaberry <>
Soumis le : jeudi 21 janvier 2016 - 11:50:05
Dernière modification le : jeudi 24 mai 2018 - 15:59:25
Document(s) archivé(s) le : vendredi 22 avril 2016 - 10:31:23

Fichier

Sallaberry.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01259928, version 1

Collections

Citation

Enikö Székely, Arnaud Sallaberry, Faraz Zaidi, Pascal Poncelet. A Graph-­based Method to Detect Rare Events: An Application to Identify Pathologic Cells. IEEE Computer Graphics and Applications, Institute of Electrical and Electronics Engineers, 2015, 36 (3), pp.65-73. 〈lirmm-01259928〉

Partager

Métriques

Consultations de la notice

189

Téléchargements de fichiers

338